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ABSTRACT

To meet the challenge of developing a comprehensive weather and
climate prediction model which can give realistic scenarios for many
time scales, more computer power than is currently available will be
needed.  One possibility for alleviating this shortcoming is to increase the
integration timestep.  We propose and test several methods which may
prove useful.  One procedure is an expansion of the model dependent
variables in a Taylor series.  Application of this method to simple models
indicates acceptable increases in timestep by a factor of five.  A multi-
level approach which is less complex to apply gives comparable results
and is more successful when high accuracy is desired.  To bypass the
limiting constraint of the CFL condition on gravity waves, an approach
is suggested in which the prediction model is represented in its normal
modes and the high frequency modes are balanced while the low
frequency modes are predicted.  Experiments with this procedure are
described and in combination with the multi-level integration technique
show substantial increases in integration timestep for acceptable
integration results, both on the forecast and climate scale.  Experiments
are now underway applying this process to the NCAR/CCM3, a state-of-
the-art model.

1. Introduction

Global climate predictions currently made with coupled atmosphere and ocean

components and sometimes with a biosphere included, are very complex and require

so much computing power on available computing hardware using traditional

numerical algorithms that only very few integrations can be accomplished with given

resources.  Yet despite their complexity, these models have difficulty producing

agreement on more than a few general parameters of the system.  Unfortunately,

current models do not include a sufficient breadth of spatial scales to realistically

predict the long time scales which are essential for climate assessment, nor are the

details of some significant physical forcing yet sufficiently well understood.  Since

numerous scenarios must be computationally played out with the most

comprehensive models in order to identify meaningful bounds on the range of influence

of the many incorporated parametric variables, computing resources some orders of

magnitude larger than presently available seem needed to solve the climate problem.

                                                
* Contribution to “Riehl Memorial Volume of Meteorology and Atmospheric Physics”.
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Current climate prediction models are solved as a marching problem in time,

and their computing requirements are determined by the number of steps needed to

march into the future.  Climate change requirements suggest that prediction times

may reach beyond decades, including increased resolution to determine regional

events.  Given the many experiments needed to develop a successful model (GCM) on

these time scales, some procedure to increase the speed of model output without loss

of accuracy appears not only desirable but essential.

To understand how one might decrease the machine time needed to compute

climate model integration results, define a "computing cycle" to be that time required

to do once all the calculations which must systematically be repeated to complete the

entire calculation.  On a true serial machine which can handle just one computation

at a time (non-vector), the computing cycle would be the time for that operation.  On

a massively parallel processor (MPP) with unlimited processors, the computing cycle

would include all the calculations which would not need repetition by their dependence

on previous calculations.  For conventional marching problems, the minimum

computing cycle could be one complete time step.  Thus it is this computing cycle

that one would attempt to approach as a limit for an integration.  It is evident from

this viewpoint that exploitation of MPPs is appropriate and desirable, and we shall

presume that approach in the ensuing discussion.   

Since there are numerous ways to construct the climate prediction systems in

preparation for numerical computations, the choice should be geared to the

computational device available.  Consider a SIMD parallel processor.  These

machines were among the first of the MPPs designed and were comparatively simple

as all the processors performed the same function, and thus could be economically

manufactured even with many processors.  If the climate prediction system could be

constructed to take advantage of this computer design, integrations using such a

machine with a very large number of processors could approach the ideal computing

cycle discussed above.  

We have explored this approach by applying the spectral representation first

to the barotropic vorticity equation (BVE) and then to a two level baroclinic model, as

simple test representations for the more complicated GCMs.  If the procedure does

not work for a simple model, it cannot be expected to work for more complex systems.

Expanding the BVE model dependent variables in horizontal global functions (solid

harmonics) and integrating over the global surface yields a set of coupled nonlinear
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ordinary differential equations which are first order in time and can be extrapolated.

More detail on the development of these equations can be found in Baer (1964), and

Baer and Platzman (1961) among others.  The vector of the time dependent variable

expansion coefficients (the weights of the global structure functions used in the

expansion) appears in the prediction system as differentiated in time and must be

evaluated as the sum of quadratic products of the time dependent coefficients

themselves.  The application to SIMD parallel processors becomes evident here when

one notes that each quadratic product is multiplied by a constant coefficient

(effectively a weight) denoted as an interaction coefficient (IC). The vector of ICs is

very large. If the ICs are distributed each to a processor, each processor can perform

the product of the quadratic product times its IC if only the two expansion coefficients

have been delivered to it.  Thus all processors perform the same task.  A subsequent

sweep over all the processors yields the sum which represents the time derivative

field of the expansion coefficient vector.  A suitable time stepping scheme then yields

the new set of expansion coefficients.  With a computer containing enough processors,

this step can be accomplished in little over one machine cycle. Historically, this

method for solving the prediction system proved unpopular because a technique

denoted as the transform method, developed by Machenhauer and Rasmussen (1972)

and Orszag (1970) was computationally more efficient on available serial processors.

In the environment of SIMD parallel processors, this judgment might be reconsidered.

The process although simple and straightforward has the drawback that as

resolution increases the number of computations needed grows as the cube of the

expansion coefficient index and thus becomes increasingly larger than the number

needed to solve the problem by the transform method.  If the number of processors

were unlimited this difficulty would not exist, but clearly that will never be the case.

The other difficulty arises from limitations in communication to and from the

processors.  At the end of each iteration, new values must be communicated to the

processors so that they can produce a new product.  Although innovative

programming is hastening this activity, the data distribution currently takes more

computer time than the actual product calculation in each processor, thus limiting

the benefits of parallel processing.

We have performed integrations with the BVE both in the IC format and using

the transform method for intercomparison purposes on the CM-200 and CM-5 at Los

Alamos National Laboratories (LANL).  For various truncations the IC format has
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run as fast or faster than the transform method, despite the limitations of

communication.  This result has encouraged us to program and run some

experiments with the baroclinic model, a model similar to the one used by Baer and

Alyea (1971) and Alyea (1972).  Preliminary integrations suggest that on the CM-5

the IC method is comparable to the transform method in speed.  Unfortunately, MPP

developments have moved in the direction of MIMD machines and SIMD machines

with very large numbers of processors (the largest had 64K) are no longer available.

This approach has consequently been deferred.

In keeping with the concept that many calculations can be achieved in one

computing cycle on a MPP (even the MIMD machines have many processors; the

latest machines have in the neighborhood of 1000), another approach is to

incorporate as many time steps in one cycle as the computer will allow.  Because of

the initial value nature of the problem, the equations can be configured such that

subsequent time steps can be related to the initial conditions if the calculations are

spread out on many processors.  Developing such formulas is straightforward for a

linear system, but highly complex for nonlinear systems.  We thus reverted to series

expansion techniques in the expectation that including higher order terms in the time

expansion would allow for longer time steps with equal accuracy, so long as the

selected time step remained within the stability requirements of the model.  Finally,

one can reconstruct the prediction equations in a format that will allow for a larger

time step without loss of accuracy.  We have attempted this approach by expanding

the dependent variables in normal modes derived from the linearized version of the

nonlinear system, and by balancing the higher frequency modes, predicting only those

modes which have a stability condition which allows the use of longer time steps.

We shall show in the subsequent discussion how the application of time

expansion methods, including Taylor Series and multi-level techniques can allow for

significant increases in time step when applied to simple models such as BVE and the

shallow water equations (SWE).  This success is encouraging insofar as it suggests

that computing efficiency can be enhanced, and encourages us to proceed with

applications to more state-of-the art GCMs.  Additionally, we will describe

experiments with the SWE in normal mode form involving the balancing of high

frequency modes which indicate that sizable increases in time step can be achieved

using this procedure with little loss of accuracy.  This latter technique is not bound to

an explicit time integration scheme and can be utilized with a Lagrangian approach,
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although we have not yet tested the latter.

2. Possible techniques

From a conceptual viewpoint, any initial value problem should be determinable

from the initial conditions alone.  This suggests that a formula which involves only

functions of the initial conditions should be able to determine the ultimate solution

without the requirement of solving a number of initial value problems in sequence.

Details for developing such a formula clearly become exceptionally complex for even

the simplest problem, but the concept is enlightening.  Given a sufficiently powerful

MPP, the computing cycle could be reduced to one time step for the entire prediction

calculation.  This hypothesis clearly ignores possible instabilities in the solutions and

thus is only appropriate for stable methods or limited to the stability conditions of the

selected scheme.  Let us explore the possible applications.

Consider first the extension of the time step by use of a Taylor series (TS)

which will raise the accuracy of each calculation and thus allow for an increase of the

time increment when compared to use of a single first order term of the series.  If one

considers the following first order differential system in time,

                                                
    

dΨi

dt
fi(Ψ1, Ψn)           1 i n                                         (1)

where   Ψi  represents any model dependent variable, higher order derivatives can be

generated by repeated differentiation.  The commonly used forward scheme presented

as a Taylor series expansion takes the general form,
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and the leapfrog scheme is,
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where A can be any of the   Ψi .  All the required derivatives can be calculated exactly

from (1) using Mathematica (Wolfram, 1991), and since the calculations refer only to

initial conditions, they can be spread over as many processors of a MPP as are

available.  If convergence of the Taylor series proves too slow, for more efficiency one

can use a Pade´ approximation (see Press et al., 1992) by replacing each series

coefficient with a rational function.  The coefficients of the Pade´ approximant can be

calculated from the Taylor series coefficients.
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Since there are a limited number of processors available, and the calculation of

the higher derivatives becomes somewhat unwieldy, we have also considered a multi-

level approach in time to determine the series coefficients with a substantially

smaller computing penalty.  Based on the system (1), the following polynomial series

can be substituted for the Taylor series at reference time to;

                                                   

    

Ψi(t) ai, j
j 0

j m 1

(t to) j

dΨi

dt
(t) jai, j

j 0

j m 1

(t to)
j 1

                                                 (2).

Assuming that   Ψi  and 
  

dΨi

dt
 are known from m previous time levels (t-m ∆t), we

generate 2m equations to solve for the m coefficients ai,j.  These equations are solved

by the singular value decomposition (SVD, see Press et al., loc. cit.) method. The

integration is advanced l timesteps (l∆t, 1 ≤ l ≤ L) with these coefficients and then the

process is repeated until the final result is achieved.  Both these techniques have

been tested with several models and their efficacy will be demonstrated in the

following discussion.

3. Models tested

We began our tests with the simplest models since calculations with them are

of modest cost and lack of success would preclude more expensive calculations with

more sophisticated models.  These models fall into the category of two dimensional

models either without divergence (the BVE is an example) or with divergence (the

SWE fits this description).

a.  BVE on a plane

This model is represented by the Lorenz (1960) low-order three component

system.  It is developed by the expansion of the BVE in doubly periodic Fourier series.

The BVE has the following form,

                                                  
    t

2 Ψ ˆ k Ψ 2Ψ       (3)

and for doubly periodic flow, the stream function Ψ has the property that,

    
Ψ x

2

k
, y

2

l
,t Ψ x, y,t , where k represents the planetary wave number, l is
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the latitudinal wave number, and x and y are the Cartesian coordinates in the

longitudinal and latitudinal directions respectively.  When the series is truncated to

just three wave numbers, the minimum for nonlinear flows (see Platzman, 1962), the

vorticity takes on the truncated form,

    
2Ψ Acos ly F cos kx 2Gsin lysin kx

and the prediction system is represented by the following set of three ordinary

differential equations in time;

                                                            

    

˙ A a k,l FG

˙ F b k, l AG

˙ G c k, l AF

           (4).

As noted earlier, repeated differentiation of Eqs. 4 will lead to the following general

formula (we present only one for the variable A) which can be calculated from the

initial conditions by use of Mathematica;

  

j A

t j si
i

J

ae1i be2 i ce3i A e4i Fe5 iGe6i .

Note that the solutions will depend on the choice of wave numbers (l, k), the total

energy of the system and the energy distribution amongst the modes; i.e., A, F, and G.

b.  BVE on the sphere

The vorticity equation for this system is given by Eq. 3.  However the

expansion over the spherical surface is in associated harmonics which are a

composite of Fourier series in longitude (λ) and Legendre polynomials in latitude (φ).

As with the Lorenz system, we select a low order system (see Baer, 1970a) which

includes an arbitrary zonal flow and two components (n  , n  ) of a planetary wave (l).

All zonal components are linearly dependent on each other, thus only one need be

included in the nonlinear system.  We denote this component with the symbol n, its l

index is zero, and it is described by the Legendre polynomial Pn (φ).  The other two

components are represented by two dimensional wave numbers and are conveniently

represented as complex numbers; they are, 
    

n il,   n il .  The system

equations in terms of the complex stream function coefficients (Ψ) take the form (for

details on this system and its solutions in terms of elliptic functions, see Baer,

1970b);
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˙ Ψ n 2an ImΨ Ψ*

˙ Ψ i Ψ ih Ψ ig ΨnΨ ig ΨnΨ

˙ Ψ i Ψ ih Ψ ig ΨnΨ ig ΨnΨ

(5).

We selected a somewhat realistic but simple zonal structure in latitude based on the

following formula,

G(φ) = (sin43φcos2φ + sin42φ - 0.2 cos2φ) cosφ.

For this system, the solutions depend on the wave numbers (n,  ,  ), the total

energy in the system, the energy distribution amongst the modes (Ψn, Ψ  , Ψ   ), and

the distribution of the zonal flow, G(φ).

c.  Shallow water equations on the sphere

This system has been thoroughly studied by Kasahara (1977) and we repeat

only the basic system equations for completeness.  For details the reader is referred

to Kasahara’s paper.  The prediction equations (Navier-Stokes) for the wind

components (u,v) and the free surface height (h) are,

                                         

    

du

dt
f

u

a
tan v

g

a cos

h
0

dv

dt
f

u

a
tan u

g

a

h
0

dh

dt

h

a cos

u v cos
0

(6).

These equations may be written more conveniently in vector form if we assume that

the vector W ≡ (u v h)T; this yields the form,

                                                
    

W
t

LW iF( , , t) (7).

The linear matrix operator L and the nonlinear vector F can clearly be determined

from Eqs. 6.  As with the low order barotropic systems, it is convenient to expand the

dependent variables (W) in appropriate characteristic functions which in this case

are the Hough modes   H l
s  (λ, φ) (see Longuet-Higgins, 1968) and which depend on

longitude and latitude.  The nonzonal parts of W are expanded in these polynomials

with time dependent coefficients   Wl
s(t), and the zonal components are expanded in

Legendre polynomials.  The result of the expansion of Eqs. 6 in Hough modes leads to
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the following prediction equation for the expansion coefficients,

                                          
    

dWl
s(t)

dt
i l

sWl
s(t) iFl

s(t) (8),

and the   l
s are the eigenvalues of the linear operator L.  The coefficients of the

nonlinear vector,     Fl
s(t) , are determined by Gauss quadrature.

In the spectral domain, one predicts the evolution of the expansion coefficients.

If the coefficient represents a high frequency mode such as a gravity mode, the

stability condition could be severe and a higher order calculation would not be

beneficial.  Under such conditions other procedures have been advanced, the most

common of which is to integrate these modes using an implicit time scheme.  A more

attractive alternative is to present the system in both high and low frequencies,

predict the low frequency components and balance the high frequency components.  If

one combines the low frequency members (slow modes) of the set of coefficients   Wl
s(t)

into a vector Y and the high frequency (fast) modes into the vector X by assessing the

frequencies   l
s, one can write Eq. 8 as follows;

                                 

    

˙ Z i zZ Nz (Y, Z)     fast modes,

˙ Y i y Y N y (Y,Z)    slow modes.
 (9)

The matrices represent the linear coefficients of Eq. 8 and the vectors N are

composed of the nonlinear terms.  Details of this process may be found in Baer and

Tribbia (1977) and there is a rich body of literature on this initialization methodology.

In particular, although most schemes use the slow mode equation of (9) for prediction,

a variety of schemes have been proposed to predict or balance the fast modes.  A

number of these were summarized by Daley (1980) and we list the five which we have

tested.  The vector ZB represents the fast modes which are to be balanced.  If no

prediction is specified for the slow modes (Y), the prediction follows Eq. (9).

Method A: (see Machenhauer, 1977)

    

ZB t i z
1
Nz Y t , ZB t      

˙ Y t i yY t Ny Y t , ZB t   

Method B: Each predicted fast mode is represented by the symbol z.
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z t ∆t z t ∆t e 2 i z∆t 1 e 2i z∆t

i z
Nz Y t , Z t

Method C:

  ZB t i z
1

Nz Y t , ZB t ∆t

Method D: (see Tribbia, 1979)

    

ZB t i z
1
Nz Y t , 0

˙ Y i yY t N y Y t , ZB t  

Method E:

    

ZB t i z
1
Nz Y t , ZB t ∆t

˙ Y i yY t Ny Y t , ZB t ∆t  

The solutions depend on the spectral truncation limits for the Hough modes,

the zonal profile chosen, and the initial energy distributions.

d.  SWE in normal mode form

For this model representation, we use the Hough equations (8) and integrate

them as a control run to generate a model climate.  We extract the mean flow from

this climate.  We then linearize Eqs. 8 but include a linear interaction with the mean

flow which we have taken from the climate run.  Thus the resulting equations will look

identical to Eqs. 8 except that we must replace the nonlinear term on the right hand

side; this will look as follows,

                                         
    
iFl

s(t) i l
s Wl

s (t)
s 

(10)

where the   l
s are the coefficients which come about because of the linear interaction

with the specified climate zonal flow.  Note that (8) can now be rewritten as

                                         

    

W
t

ˆ L W 0

ˆ L L i l
s

(11)

and 
  l

s  is the matrix of the coefficients   l
s .  If we decompose   ̂ L  into its principal
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components (say  (W)) and define them as the normal modes, they satisfy the linear

system,

                                        
    t

A ˆ L 
0 (12).

We now expand the SWE (Eqs. 7) in terms of these modes as distinct from the Hough

mode expansion (Eqs. 8), generating a new spectral system.  Using the eigenvalues of

  ̂ L , we separate the modes of  into fast and slow components, developing a system

similar to (9).  

Test integrations were performed with this system using both the standard

leap-frog and the multi-level schemes, wherein the slow modes were predicted and the

fast modes were balanced using Method C described above.  The solutions will depend

on the truncation of the system, the cutoff point between fast and slow modes and on

the initial distribution of dependent variables.

4.  Results

We have tested the above models with a variety of techniques to establish a

speedup in computing without loss of accuracy.

a.  Taylor series with Lorenz model

Using the Taylor series expansion for the dependent variables of (4), we have

integrated the equations under a variety of conditions.  We considered two different

maximum zonal winds (15 and 20 meters per second), three wave ratios (k/l = 2, 6,

20) representing shorter to the longest planetary waves respectively, and three

different initial energy distributions amongst the waves determining the relative

magnitudes of the coefficients A, F, and G.  These variations gave a total of 18

experiments from which to draw our conclusions for this model.

For each experiment we established a reference integration which was made

with a three minute timestep; we established that this time increment gave results

which was exceptionally close to the analytic solution.  Subsequent integrations were

performed over extended times ranging from 100 to 1200 hours, the limit determined

from the known oscillation frequency, since we required the nonlinear oscillation to go

through a number of cycles.  The experiments were then run using various numbers

of terms of the Taylor series.
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We considered three features of the integrations to measure the accuracy of

the predictions, in all cases comparing the results to the reference integration.  We

chose the time mean of the variables, their nonlinear period, and the amplitude of

their oscillation.  Finally we defined a maximum allowable timestep (∆tmax) as that

integration interval which gave results which did not exceed a 10 percent error norm

of the three measures defined above when compared to the exact solution.  Because

there are three variables, the norm involves nine components.  

The specific value of ∆tmax  is not consequential, but the relative value for each

of the various experiments is.  We therefore normalize the ∆tmax  values to the case

which uses the regular leapfrog method; i. e., with only the first term of the Taylor

series.  Thus for example a value of five would indicate that one could use a timestep

five times larger than the conventional timestep used when applying the usual

leapfrog scheme and achieve results within ten percent of the exact solution.  The

results vary depending on the specific experimental conditions chosen, so we have

summarized them for all 18 experiments, including a standard deviation so that the

variability among the experiments may be noted.  Figure 1 presents these results,

showing the increase in time step achievable for the allowed error discussed above

and normalized as stated (ordinate) as a function of the number of terms in the

Taylor series used (abscissa).  Note that both the leapfrog scheme and the forward

scheme have been tested.

We see for this system that savings in computational time can be substantial;

up to a factor of 6.5 if one is willing to use 15 terms of the Taylor series.  Comparable

savings can also be achieved using the forward time scheme.  For studies using this

model these benefits are dramatic, but one also gains some insight into the potential

computational advantages for less simple models.  Utilizing MPP machines

effectively, the penalty for using many terms of the Taylor series may be negligible.

b.  Taylor series with spherical model

In this series of experiments we expand the dependent variables of (5) in Taylor

series and integrate for a variety of conditions similar to the process described above

for the BVE in a channel.  Here we also consider two energy levels determined from

the maximum initial zonal wind speed.  Additionally we chose three distinct planetary
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waves (l = 3, 5, 10), and five distinct combinations of (n  , n  ).  Finally, we selected two

zonal/wave initial energy combinations yielding a total of 20 experiments.  The

reference integration was established in an identical fashion to the channel problem,

and the experiments were run in the same way, with varying numbers of terms of the

Taylor series.  The conditions on ∆tmax were the same as in the previous model, as

were the error bounds, but we used the amplitudes of the two wave energies and the

total energy as the measures for testing the prediction accuracy and errors, again

comparing to the reference (exact) solution.

Figure 2 shows the summary results of the 20 experiments in a representation

identical to Fig. 1.  Note however that we made the calculations for only a maximum

of seven terms of the Taylor series and thus were only able to experience a benefit

factor of slightly above four.  If one were to extrapolate to 15 Taylor series terms, the

results would be comparable to Fig. 1.  The development of the higher derivatives of

the Taylor series for this model using Mathematica was considerably more involved

and computer intensive, and for this reason we terminated the calculation.  On a MPP

with many processors, this increased computing penalty would become irrelevant.

Nevertheless, this model also indicates substantial savings in computing

requirements using the Taylor series approach.

c.  Taylor series with shallow water Hough model

The shallow water system presents a greater challenge to computing efficiency

than the BVE insofar as it allows for gravity motions which propagate at relatively

high frequencies and violating the CFL condition with explicit time schemes will lead

to instability.  Moreover this system does not have analytic solutions, and like other

non-externally forced nonlinear systems may exhibit bifurcation tendencies.  To avoid

the latter problem, we have tested the system only on the forecast time scale and

limited our integrations to six days.  To reduce potential instability from gravity

motions, we have balanced a subset of gravity modes.

We have investigated the shallow water model in Hough mode form (Eqs. 8) by

separation into fast and slow modes (Eqs. 9).  Following Kasahara (loc. cit.), we

include 20 planetary waves; Hough modes 1 ≤ l ≤ 60, including 20 Rossby modes, 20

eastward gravity modes and 20 westward gravity modes for each planetary wave.
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The equivalent depth chosen was 10 km and the initial distribution was a Haurwitz

wave (see Phillips, 1959) with wave number six (for details see Kasahara).  For

testing purposes a control run was made using the leapfrog scheme with a time step

of three minutes and including the explicit prediction of all modes (Eqs. 9) for six days.

In the experiments to be described, the dependent variables (Y, Z) of Eqs. 9

were expanded in Taylor series and integrations were performed using the first order

terms only (standard leapfrog scheme) and using both the first and third order terms.

Various calculations were also made in which all Rossby modes were predicted

explicitly, but different subsets of gravity modes were balanced.  It is evident that if

more gravity modes are balanced, a longer timestep could be used.

We established a number of experiments to test the effect of balancing on the

allowed time increment by assessing the linear frequency of the gravity modes from

the first of Eqs. 9.  Ten categories were set up, each with a subset of balanced gravity

modes which had a stability time scale smaller than the selected time step whereas

those gravity modes explicitly predicted had a frequency which was stable for the

selected time step.  The first category included all gravity waves in the subset of

balanced modes and the time step selected was 57 min.  The tenth category had a

time step of 12 minutes and included only a small fraction of the gravity modes in the

balanced subset.  Table 1 lists the time steps used for cutoff of the balanced modes in

the various categories.  Note that one can integrate with a smaller time step than the

critical one for any category, since all the explicitly predicted modes for any category

are linearly stable for the critical time step listed.  Indeed choosing a shorter time

step improved the integration results as might be expected and will be demonstrated.

Table 1:  Critical time steps selected for each category of balanced gravity wave

subsets.

Category D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

∆tcrit (min) 57 57 51 36 27 21 18 15 12 12

Let us first consider the effects of the various balancing schemes (Methods A-

E of Section 3 above).  Our observation from a number of experiments with the

various methods suggests that no one method stands out as significantly superior.

Figure 3a demonstrates the RMS vector wind difference (when compared to the

control run) developed during the six days of integration with Category D1 and using
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the critical time step of 57 min., clearly the worst case since all the gravity modes are

balanced.  Note that the errors grow substantially with time for all the methods.  We

noted that as we changed category and balanced fewer gravity modes using the

appropriate critical timestep, the error was lower and grew less rapidly, but there was

no particular preference demonstrated for any one method.  However, when Category

D7 was reached,  the error growth was minimal and all methods gave very similar

results (see Figure 3c).  If the time step for any Category is reduced from the critical

value, the error was reduced.  This can be seen from Figure 3b which is the same as

Fig. 3a but describes results based on a time step of 30 minutes.  

The impact of balancing fewer modes (with the penalty of using a shorter

timestep) on the forecast quality can be seen on Figure 4.  Based on the results

shown above with the various methods, we describe only those with the use of method

A.  The RMS vector wind error is shown for experiments with all ten categories using

∆tcrit .  As indicated above, we see on Fig. 4a that errors grow substantially until one

reaches Category D7 after which the errors remain small.  

Using more terms of the Taylor series expansion is demonstrated on Fig. 4b

where we use the first and third terms of the Taylor series.  We note that the errors

are substantially reduced from those seen on Fig 4a (the ordinary leapfrog scheme)

but is most apparent and significant for those categories greater than D6.  Because

of the complexity in calculating the higher derivatives for the Taylor series expansion,

we did not include higher order terms, but the tendency for improvement in

predictions using them seems evident.

d.  Multi-level scheme with Lorenz model

Because the derivatives as coefficients of the Taylor series become more

difficult to evaluate as their order increases and/or the model complexity expands, we

tested the effects on integration time using the multi-level scheme as a substitute for

the Taylor series coefficients (see Eq. 2).  For simplicity, we applied the technique to

the Lorenz model discussed above in subsection a.  We performed the same 18

experiments and used the three minute timestep integrations for reference.  However

to establish better statistics we ran each case for 150-200 periodic cycles,

considerably more than for the Taylor series experiments.  Moreover, we determined

error statistics at various accuracy levels in addition to the ten percent level chosen

previously, ranging from 0.1% to 10%.  A number of variations of the multi-level
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scheme were also considered; for the number of terms in the series, we varied m in the

range, 1 ≤ m ≤ 70, and for the number of time steps with the same coefficients, we

varied L in the range 1 ≤ L ≤ 5.  Finally to test for convergence we ran some

experiments using the Pade’ approximation.

At the ten percent accuracy level, the results using the multi-level  scheme are

similar to those using the Taylor series method with a number of terms.  However, as

the accuracy requirements are increased, significant improvement is seen with the

multi-level scheme, whereas no such benefit is noted using the Taylor series scheme.

Indeed when the accuracy is set at 0.1 percent, the multi-level scheme gives very

good results for substantially longer time steps than the Taylor series scheme.  A

demonstration of this is seen on Figure 5.  Here we show on the ordinate the ratio of

the allowed time step to that of the simple leapfrog scheme for the stated accuracy,

and the number of terms in the series (m) on the abscissa.  The number of iterations

for a given set of coefficients for these experiments is L=3.  The bars on the one

percent curve represent the variance in the mean value for the 18 experiments and

give a measure of the variability in the experiments.

Changing L does not appear to affect the results systematically.  For some

experiments a smaller value gave better results whereas for others a larger value

improved the results.  The figure shows how the results are affected by the number of

series terms used.  In all cases, using more than 20 terms had a negative effect and in

general the optimum benefit was found at less than 20 terms.  Finally, the

application of the Pade’ approximation did not increase the maximum allowed time

step significantly for any of the experiments we ran.

e. Normal mode form of the SWE model

The previous experiments were designed to establish the advantages of a

series expansion in optimizing the time step.  In this study with the SWE expanded in

normal modes, the emphasis is on enlarging the time step based on the methodology

of splitting the modes and balancing those of high frequency.  For these experiments

we included both forcing and dissipation, distributed uniformly in scale.  Additionally

these functions were energetically balanced so that no significant changes to the

energetics of the system was notable.  The total number of modes selected was 2520;

the slowest 500 were predicted as described in subsection 3.d above and the

remainder were balanced.  The critical period at cutoff for this choice (and others)
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may be seen from Figure 7.  For integration purposes both the simple leapfrog and

the multi-level schemes were tested.  For the multi-level scheme, the parameters

were set to L = 10 and m = 10.  To compare the experimental integrations to the

expected solutions of the system, control runs were made for ten years with ∆t = 3

minutes, yielding robust solutions.  Note that for this nonlinear system exact

solutions do not exist.  Three separate experiments were made using the initial

conditions specified by Kasahara (loc. cit.) but using wave five instead of six.  In

addition to the case for which the energy level was specified by Kasahara (Case a), we

ran two additional cases in which the energy level of the system was halved (Case b)

and doubled (Case c).  The initial fields of u,v,h are shown on Figure 6.

The time steps we selected to run these experiments were ∆t = 45 min. for case

a, ∆t = 48 min. for Case b, and ∆t = 36 min. for Case c.  These times were selected

based on tests which indicated stable integrations and were somewhat less than the

critical values determined from the cutoff frequency of the modes based on linear

analysis.  Figure 7 shows the CFL limit for a subset of modes used in the integrations.

To establish meaningful statistics on integration periods of one month, we selected

every 60th day of the control runs as an initial data set and ran the experiments for

30 days.  We thus created 50 predictions for each experiment.  These predictions were

averaged to yield much more stable results.  

The error growth of the global RMS vector wind difference over the 30 days of

integration may be seen on Figure 8.  We show here the 50 realization average

difference between the case and the control normalized by the standard deviation of

the daily vector wind from the control.  The normalization factor determines the

random variability of the 50 realizations.  Note that the variability of the

experiments relative to the control are much less than this variability.  Although the

error grows during the period it never exceed 15 percent for any of the cases which

indicates a good forecast.  Although there is some variability from case to case, it is

not substantial.  We do observe that the multi-level scheme outperforms the simple

leapfrog scheme for all cases and at all times, especially as the integration time

increases.  Similar results were noted for the geopotential height differences and the

errors were even smaller, never reaching 12 percent.
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F.  Normal mode form of the SWE model; Climate scale

Having seen the benefits to using the modal approach on the forecast scale, we

applied it on the climate scale.  We used the same model and initial conditions as in

the previous study for monthly forecasts.  In this experiment we integrated for ten

years using the same time increments for the cases as in the previous experiment,

and extracted monthly averages of relevant variables for the last nine years of data,

yielding 108 realizations (note that there is no seasonality in the model).  These

results were compared to the output of the control runs which used the three minute

timestep.

Using zonally averaged data, Figure 9 shows the average difference of the

zonal wind of each case from the corresponding control for the entire sample of

realizations (108) plotted against northern hemisphere latitude.  The differences are

quite small indicating a satisfactory prediction, but it is noteworthy that the multi-

level scheme outperforms the simple leapfrog scheme significantly.  To establish the

variability of the experimental results relative to the model variability determined

from the 108 control realizations, Figure 10 --using a format similar to Fig. 9-- depicts

the ratio (in percent) of the differences of the standard deviation of the experimental

zonal wind from the control (based on 108 realizations) to the standard deviation of

the zonal wind of the control.  This measure shows the errors of the experiments

relative to the variability of the model itself, determined from the control run.  We see

that the errors are small everywhere relative to the variability of the control run, but

that the multi-level scheme gives far more accurate results than the simple leapfrog

scheme.  This is true for all three cases.  

A more precise determination on the performance of the experiments can be

seen from details of the modes themselves as contrasted to the gross statistics seen

on Fig. 10.  We compared the 108 realization average amplitudes of the 500 predicted

modes of the three cases and noted that they were quite similar to the control values,

but more interestingly, that only a handful had sizable amplitudes.  Thus these few

modes represented most of the profile of the predicted variables and their variation.

We selected the eight most dominant modes from each experiment (which appear in

pairs as expected) and from the Hough mode analysis represent all three of the model

variables, both wind components and the geopotential height.  The results of the

analysis are represented on Table 2.  The selected modes from each experiment are

listed as they appear sequentially in the modal set.  The average amplitudes of the
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control run are shown in parenthesis followed by the means of the differences in

amplitude between both the simple leapfrog and multi-level integrations from the

control respectively, both differences normalized by the control values and presented

in percent.  The data corroborate the results shown on Fig. 9 and indicate that no

significant mode varies far from the control.  As to the variability of the differences

within the 108 realizations, we calculated the standard deviations of the differences,

normalized them by the standard deviation of the model variability as determined

from the control run, and presented these values in percent for the eight modes and

all cases.  These results correspond to those presented on Fig. 10.  Again we see that

no mode has variability in differences to the control in excess of about 25-30 percent

of the model variability and for most modes, considerably less.  Finally, and as noted

also from Fig. 10, in almost all cases the multi-level scheme out performs the simple

leapfrog scheme by a significant factor.

Experiments with other cutoff points were carried out with the smallest point

at mode 50.  Although this allowed for a considerably longer integration time step, see

Fig 7, the errors were unacceptably large.

5.  Conclusions

In the research presented herein, we have attempted to identify procedures

which could help speed up calculations of atmospheric and/or oceanic prediction

models with the intent of achieving more model runs with limited computing

resources.  The need for such speedup was detailed in the introduction.  Our initial

effort was to use a series expansion of the model dependent variables in time,

calculate the coefficients of these series from initial conditions and test the

methodology to determine if comparable results to conventional time integration

methods could be gained with a longer time step.

We explored using Taylor series since for first order systems in time, the higher

derivatives could be determined exactly using sophisticated computer programs such

as Mathematica.  We applied the process to the barotropic vorticity equation (BVE)

on both the plane and on the sphere and noted benefits up to a factor of five in time

step if sufficient terms of the series were used.  When a more complex system was

tested (the shallow water equations (SWE)) a benefit was also noted, but the

computing complexity for generating the coefficients prompted us to explore other
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avenues.  Nevertheless, this procedure could potentially serve the prediction

community well, particularly those who use simple models for their studies.

To overcome the limitations noted above, we explored an alternate series form

using a multi-level scheme.  In this case the coefficients are determined from a set of

initial conditions determined by calculations with the model itself, in addition to the

observed initial conditions.  On application to the BVE, results were comparable to

those from the Taylor series experiments; however when very high accuracy

requirements were imposed, the method performed substantially better.  The

technique does not require the intense computations which limited our studies with

the Taylor series technique, and it can be applied to any model without limitation.

Indeed we tested the method with the SWE model and observed very little computing

penalty.

For most models other than the most simple, gravity wave propagation will

severely limit the time truncation interval if the integration method is explicit (the

CFL criterion).  In working with the SWE in spectral form we noted that balancing

the high frequency modes clearly allowed for significant increases in the time step,

and in some cases gave satisfactory results with much larger time steps than would

be allowed if all the modes were predicted.  Working with this knowledge, we expanded

the SWE system to include a climatological mean state and generated the normal

modes to this system.  We then integrated this system in its modal form balancing

the fastest modes and numerically integrating the slower modes.  From the

experiments described in the text, we discovered that this method gave satisfactory

results with sizable increases in time step when compared to control integrations.

The experiments included both 30 day integrations (forecast scale) and monthly

averages of climate scale integrations.  Moreover, tests with the multi-level scheme

together with this method gave results superior to the simple leapfrog scheme.

Indeed we were so pleased with the results of these pioneering experiments

that we turned to a state-of-the-art model, the NCAR/CCM3, as an application.

Since the method does not require rebuilding of the model, we constructed a

framework surrounding the model and have to date performed one integration.  Our

results when compared to the archives of the CCM3 suggest that we can achieve a

threefold advantage to the time increment used by that model with comparable

prediction skill.  This experiment requires further study before it can be published, but

we comment on it because of the potentially encouraging results which this method
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might yield.  Moreover, the method is not bound to an explicit time integration scheme

and can therefore be utilized with a Lagrangian prediction procedure.
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FIGURE CAPTIONS

Figure 1.  Ratio of acceptable time step using a number of terms in the Taylor series

to using a single term when applied to the Lorenz low-order system.  Both

leapfrog and forward schemes are presented and standard deviations from

18 experiments are shown.

Figure 2.  Ratio of acceptable time step using a number of terms in the Taylor series

to using a single term when applied to the low-order system on the sphere.

Both leapfrog and forward schemes are presented and standard deviations

from 20 experiments are shown.

Figure 3.  RMS vector wind difference between experiments and the control run

evolving with integration time using the SWE with balancing of the high

frequency modes.  Results using two cutoff points (D1 and D7), three time

steps (in minutes) and five balancing schemes (A-E) are displayed.

Figure 4.  RMS vector wind difference between experiments and the control run

evolving with integration time using the SWE with balancing of the high

frequency modes.  All ten cutoff frequencies tested (Dx) are shown with

their limiting time steps in minutes.  The lower panel describes the effect of

adding the third order Taylor series term.  Balance scheme A is used

throughout.

Figure 5.  Ratio of acceptable time step using a number of terms in the multi-level

scheme (with L=3) to using a single term when applied to the Lorenz low-

order system with leapfrog integration.  Three acceptability conditions

representing allowed errors in percent from the control are presented and

standard deviations from 18 experiments are shown.

Figure 6.  Initial conditions (u, v, h) for the experiments using the SWE with a

climatological zonal field.  Cases a, b and c are shown.
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Figure 7.  The CFL critical timestep in minutes for the first 1000 modes of the SWE

model with a climatological zonal field expressed in normal mode form for

the three cases considered.  The table gives the values for three modal

indices.

Figure 8.  Fifty case averaged RMS vector wind difference from control normalized by

the standard deviation of the daily control vector wind for the normal mode

SWE model shown evolving in time.  All three cases using both the multi-

level and leapfrog schemes are presented.

Figure 9. Zonally averaged difference from control of the nine year monthly mean

zonal wind (u) as a function of latitude wind for the normal mode SWE

model. All three cases using both the multi-level and leapfrog schemes are

presented.

Figure 10. Ratio (in percent) of the differences of the standard deviation of the

experimental mean zonal wind from the control to the standard deviation of

the mean zonal wind of the control taken from the 108 monthly

realizations, presented as a function of latitude for all three cases and both

the multi-level and leapfrog schemes.
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Table 2: Percentage differences of mean normal mode amplitudes from control and
their standard deviations normalized by control values.  For the control experiments,
the normalized amplitudes are given in parentheses.  The eight largest modes are
presented.

mode # control leap-frog mean m-level mean leap-frog std. m-level std.
Case (a)

107 (0.1970) 19.35 8.14 10.40 5.10
108 (0.1912) 15.90 4.21 11.44 1.46
115 (0.3200) 17.62 4.57 10.88 5.95
116 (0.3110) 14.96 4.43 21.12 16.89
117 (0.3152) 15.79 4.31 3.60 8.36
118 (0.3213) 15.17 5.31 9.32 4.70
145 (0.1043) 12.90 2.69 10.64 2.95
146 (0.1056) 15.79 5.55 10.56 7.79

Case (b)
141 (0.1844) 10.39 10.39 19.75 18.75
142 (0.2023) 17.74 17.74 17.68 10.83
169 (0.1559) 6.06 6.06 5.25 26.64
170 (0.1702) 12.67 12.67 17.61 14.61
223 (0.1602) 21.01 21.01 28.93 12.54
224 (0.1524) 16.25 16.25 30.50 17.03
317 (0.4585) 26.74 26.74 35.30 22.67
318 (0.4493) 25.59 25.59 34.62 21.26

Case (c)
71 (0.3815) 43.83 12.51 29.24 9.76
72 (0.3876) 44.95 13.19 12.87 5.47
99 (0.1958) 2.79 4.00 26.53 11.64

100 (0.1936) 3.59 3.64 21.41 10.26
111 (0.2238) 51.44 7.31 5.55 27.20
112 (0.2489) 54.59 11.48 18.28 8.25
371 (0.2002) 27.68 8.76 8.82 1.46
372 (0.2002) 30.93 8.32 7.83 0.54
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Figure 1.  Ratio of acceptable time step using a number of terms in the Taylor series

to using a single term when applied to the Lorenz low-order system.  Both leapfrog

and forward schemes are presented and standard deviations from 18 experiments are

shown.
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Figure 2.  Ratio of acceptable time step using a number of terms in the Taylor series

to using a single term when applied to the low-order system on the sphere.  Both

leapfrog and forward schemes are presented and standard deviations from 20

experiments are shown.
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Figure 3.  RMS vector wind difference between experiments and the control run

evolving with integration time using the SWE with balancing of the high frequency

modes.  Results using two cutoff points (D1 and D7), three time steps (in minutes)

and five balancing schemes (A-E) are displayed.
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Figure 4.  RMS vector wind difference between experiments and the control run

evolving with integration time using the SWE with balancing of the high frequency

modes.  All ten cutoff frequencies tested (Dx) are shown with their limiting time steps

in minutes.  The lower panel describes the effect of adding the third order Taylor series

term.  Balance scheme A is used throughout.
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Figure 5.  Ratio of acceptable time step using a number of terms in the multi-level

scheme (with L=3) to using a single term when applied to the Lorenz low-order

system with leapfrog integration.  Three acceptability conditions representing allowed

errors in percent from the control are presented and standard deviations from 18

experiments are shown.  
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Figure 6.  Initial conditions (u, v, h) for the experiments using the SWE with a

climatological zonal field.  Cases a, b and c are shown.
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Figure 7.  The CFL critical timestep in minutes for the first 1000 modes of the SWE

model with a climatological zonal field expressed in normal mode form for the three

cases considered.  The table gives the values for three modal indices.
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Figure 8.  Fifty case averaged RMS vector wind difference from control normalized by

the standard deviation of the daily control vector wind for the normal mode SWE

model shown evolving in time.  All three cases using both the multi-level and leapfrog

schemes are presented.
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Figure 9. Zonally averaged difference from control of the nine year monthly mean

zonal wind (u) as a function of latitude wind for the normal mode SWE model. All three

cases using both the multi-level and leapfrog schemes are presented.
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Figure 10. Ratio (in percent) of the differences of the standard deviation of the

experimental mean zonal wind from the control to the standard deviation of the mean

zonal wind of the control taken from the 108 monthly realizations, presented as a

function of latitude for all three cases and both the multi-level and leapfrog schemes.


