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ABSTRACT

Developing climate prediction model integration schemes which can
provide realistic scenarios on long time scales with limited  computing
resources is the challenge of this research.  One method to succeed in
this task is to increase the integration timestep.  We have tested
several techniques which may prove useful.  The most successful was
applied to the shallow water equations over a spherical surface in which
the prediction model was represented in its normal modes, the high
frequency modes were balanced while the low frequency modes were
predicted.  Experiments which we will describe extend this procedure to a
state-of-the-art model (the NCAR/CCM3).  We have taken the predicted
data from each timestep of the model integration, projected it onto
Hough  modes, separated the modes into fast and slow components,
integrated the slow components with a timestep three times longer than
that used in the standard model run and balanced the fast modes.  The
modal data was then  reconverted to model format and returned for the
next iteration.  Seasonal model output using this procedure was
compared to the standard model run output and the results of ten
realizations showed the both calculations gave identical results within
model variability.    

1. Introduction

In a previous paper (Baer, et al., 1998) we explored various modeling

techniques which might decrease the computing resources needed to create desired

climate scenarios.  The logic for this search seems apparent.  Since global climate

predictions are made with coupled atmosphere, ocean and biosphere components,

only very few long time integrations can be accomplished with presently available

computational facilities.  Moreover current prediction models are not sufficiently

realistic to accurately predict the long time scales essential for climate assessment

despite their complexity, since the forcing function details have not yet been

comprehensively determined.  To extend our knowledge and skill in this arena of

seemingly unlimited problems, many numerical experiments must be undertaken and

this highlights the need for more computing power and more efficient modeling

techniques.

                                                
* Contribution to Rossby-100 Symposium.



2

We began our assessment of possible procedures to speed up model predictions

by using a series expansion of the model dependent variables in time, calculating the

coefficients of these series from initial conditions and testing the methodology to

determine if comparable results to conventional time integration methods could be

achieved with a longer time step, thereby reducing the total number of time steps

needed for a climate prediction.  Taylor series was our initial application since for first

order systems in time, the higher derivatives could be determined exactly using

computer programs such as Mathematica (see Wolfram, 1991).  Utilization of the

process with low order versions of the barotropic vorticity equation (BVE) on both the

plane (Lorenz, 1960) and the sphere (Baer, 1970) resulted in savings of up to a factor

of five in the time step if sufficient terms of the series were used.  When a more

complex system was tested -- the shallow water equations (SWE) -- a benefit was

also noted, but the computing complexity for generating the coefficients grew

dramatically.  To overcome such limitations, we explored an alternate series form

using a multi-level scheme (see Press, 1992).  In this case the coefficients are

determined from a set of initial conditions determined by calculations with the model

itself, in addition to the observed initial conditions.  On application to the BVE, results

were comparable to those from the Taylor series experiments; however when very

high accuracy requirements were imposed, the method performed substantially

better.  The technique does not require the intense computations which limited our

studies with the Taylor series procedure, and it can be applied to any model without

limitation.  Indeed we tested the method with the SWE model and observed very little

computing penalty.

For models other than the most simple, gravity wave propagation will severely

limit the time truncation interval if the integration method is explicit -- the CFL

criterion (Courant et al., 1928).  In working with the SWE in spectral form we noted

that balancing the high frequency modes clearly allowed for significant increases in

the time step, and in some cases gave satisfactory results with much larger time

steps than would be allowed if all the modes were predicted.  Working with this

knowledge, we expanded the SWE system to include a climatological mean state and

generated the normal modes appropriate to that system.  We then integrated the

system in its modal form, balancing the faster modes and numerically integrating the

slower modes using the leapfrog scheme.  This procedure gave satisfactory results

with sizable increases in time step when compared to control integrations.  The
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experiments included both 30 day integrations (forecast scale) and monthly averages

of climate scale integrations.  Moreover, combining the multi-level scheme with this

method gave results superior to the leapfrog scheme previously used for the slow

modes.

Indeed the results of these pioneering experiments were so promising that we

turned to a state-of-the-art model, the NCAR/CCM3 (Kiehl,  et al., 1996), as an

application and the results of those experiments will be presented herein.  Since our

method of modal separation does not require rebuilding of a model, we constructed a

framework surrounding the CCM3 and removed prediction data only at the end of

each integration period but before extrapolation.  That data was projected onto Hough

modes.  The modes were separated into fast and slow components using the desired

time step to establish the separation frequency of the modes.  The fast modes were

balanced and the slow modes were extrapolated over the specified time step to create

data for the next iteration.  The new Hough coefficients were then transformed into

new spatial fields on the CCM3 grid and returned to the model for calculating the next

time increment update.  This process was continued until the total integration time

period was completed.  Companion integrations were made for five month periods

using both our procedure and the conventional CCM3 calculation with its shorter

timestep.  To insure integrity of the calculations, ten realizations of the pairs were

undertaken so that climate variability of the model could be assessed.  Comparison of

the statistics derived from the runs indicates that our method with increased

timestep, and correspondingly less computing time, produced seasonal results

indistinguishable from those created by the traditional running of the CCM3.  Since

we used a timestep three times larger than the one used by the CCM3, our results

suggest the possibility of at least a threefold advantage for comparable prediction

skill.  The method is not dependent on the CCM3; we simply used that model for

convenience.  Moreover, the method is not bound to an explicit time integration

scheme and can be utilized with other prediction procedures.

2.  Methodology

As noted, we have selected the NCAR/CCM3 as a state-of-the-art AGCM to

test the procedure we developed previously (Baer, et al., 1998).  Moreover as a first

effort, we chose to project the relevant model variables, including the wind and height

fields, onto Hough modes.  These modes are the appropriate normal modes for
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studying the shallow water equations.  Hough modes are available as part of the

CCM3 package and thus make the calculations convenient.  Since frequencies are

associated with Hough modes, we are able to split the applicable set of modes into

those which are stable for the selected integration time increment (slow modes) and

those which are not (fast modes).  The coefficients of the slow modes we extrapolate

with the selected time increment following the model extrapolation scheme whereas

we balance the fast modes.  We adopted one of a number of balancing schemes

discussed and tested by Daley (1980).

The procedure is straightforward.  One can write the global primitive equations

in terms of the horizontal vector wind (V), the temperature (T), the surface pressure

(Ps), assuming a σ-coordinate system, and the geopotential (Φ) on the σ surfaces.

These five variables are related through the two equations of motion, the continuity

equation, the thermodynamic equation and the hydrostatic relationship.  The

equations can be organized to include the dynamical terms on the left hand side and

the forcing functions on the right; the resulting left hand side has become known as

the “dynamical core”.  We further modify this system by allowing only the terms of

the equations which arise from linearizing about a state of rest to remain on the left

hand side; all nonlinear terms are then included with the forcing terms on the right

hand side (RHS).  We shall denote these RHS terms as Qj (1 ≤ j ≤ 5).  Given this

format, the geopotential field (and/or the temperature through the hydrostatic

relationship) can be combined with the surface pressure to generate a new variable

which we will designate as h.  This results in three first order differential equations in

time in the variables (V, h).  Details of this process have been clearly discussed by

Somerville (1974), summarized by Daley (1991) and applied specifically to a space

discretized model by Temperton and Williamson (1981).

Consider now the linear equations with the right hand side terms (including

forcing and nonlinearity) set to zero.  Because there is no mean current, these

linearized equations can be separated into a vertical structure equation (a boundary

value problem) and three first order prediction equations with horizontal structure

only.  Solving the vertical structure equation ( see Baer and Ji, 1989) yields as many

modes as there are vertical model levels, provided suitable boundary conditions are

specified.  The associated eigenvalues, commonly denoted as equivalent depths, enter

as the separation constants to the horizontal structure equations.  Thus the solutions

to the horizontal equations differ for each equivalent depth but are identical in form to
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those of the shallow water equations which have as their solutions the Hough modes.

This problem has been studied in detail by Kasahara (1977) and the Hough modes

themselves have been analyzed by Longuet-Higgins (1968).  The longitudinal

distribution is given by Fourier series.  It is noteworthy that the Hough modes have

associated frequencies which we use to determine computational stability.  The

frequencies are evaluated from the linearized equations.

Consider now that we enter the NCAR/CCM3 program at the end of a time

cycle but before extrapolation and extract the five three-dimensional fields (V, T, Φ,

Ps) on the CCM3 grid, as well as the fields that contain the forcing and nonlinear

terms (Qj -- the RHS terms of the primitive equations).  We then transform these

fields such that,

    ̂  V  = V −   V 

  h = h (T, Φ, Ps) (1)

 Z = (    ̂  V  h)

 Q = (Qu Qv Qh)

where   V  is a suitable mean state wind field , Z is a vector of the three time dependent

variables, Qh is a composite function which evolved from a combination of the

equations which generated the prediction equation for h, and Q is the vector

containing the inhomogeneous terms of the three linear equations.  Note that

sufficient relations exist so that this process can be inverted.  We now expand both Z

and Q in terms of vertical modes H (σ), Fourier series in longitude (λ), and Hough

modes W (θ) in latitude, noting that there exist one Rossby and two gravity modes

with associated frequencies (ν) for each index set;

    

Z λi,θ j, σk, to( ) = Zm,n
k

n
∑

m
∑

l
∑ (to)Wm,n

k (θ j, ν)eimλi Hl(σk)

Q λ i,θ j, σk ,to( ) = Qm,n
k

n
∑

m
∑

l
∑ (to)Wm,n

k (θ j,ν)eimλ i Hl(σk)
(2).

Since each of the structures (H, W, exp) are either orthogonal or can be suitably

orthogonalized under summation over the global grid, Eq. (2) can be inverted to yield

complex coefficients as follows;
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Zm,n
l (to) = f Z(λi,θ j,σ k , to)Wm,n

k (θ j,ν)( )H l(σ k)e− imλ i[ ]
k
∑

j
∑

i
∑

Q m,n
l (to) = f Q(λ i ,θ j ,σ k ,to )Wm,n

k (θ j ,ν)( )Hl (σ k )e− imλi[ ]
k
∑

j
∑

i
∑

(3).

See Kasahara (1977) or Longuet-Higgins (loc. Cit.) for details on the function f.  The

prediction equation for the coefficients can then be written as,

    

∂Ζ m,n
l

∂t
= −iνΖm,n

l + Qm,n
l (4).

At this point one can use the frequencies of the Hough modes (ν) to separate the

coefficients     Ζ m,n
l  into fast and slow components.  The separation frequency is

selected as that frequency which corresponds to the chosen integration time step (∆t)

and which satisfies the CFL criterion for stability.  The coefficients for the slow modes

are predicted with the centered leapfrog scheme used by the model, whereas the high

frequency modes are advanced using method C of Daley (1980):

    
Ζ m,n

l (to + ∆t) = Ζ m,n
l (to − ∆t) + 2∆t −iνΖ m,n

l (to ) + Qm,n
l (to)( ) slow modes

    
Ζ m,n

l (to + ∆t) = Ζ m,n
l (to − ∆t)e−2iν∆t +

(1 − e−2 iν∆ t)

iν
Qm,n

l (to ) fast modes. (5)

When all the coefficients have been calculated at the new time, the process is

inverted; i.e., the new vector fields 
    
Z λi,θ j, σk, to + ∆t( )  are reconstructed using Eq. (2),

the five three-dimensional fields (V, T, Φ, Ps)     (to + ∆t)  are created using Eq. (1) and are

returned to the model (CCM3).  The model then continues through the next time cycle

after which the process described herein is repeated.  One can see that the only

involvement in the model is to bypass the prediction of the dynamic variables.  In

addition, the timestep for predicting variables which are not included in our set of five

must be changed to the timestep which we have selected for the prediction interval,

and these variables are extrapolated by the model in its normal cycle.  Reference to

the documentation manual of the NCAR/CCM3 (Kiehl,  et al., 1996) will identify those

variables.

3.  Experimental conditions

Using the methodology described above, a number of runs were performed with

the NCAR/CCM3.  The model truncation was T42 and 18 levels.  Required initial

conditions were taken from the 9/1/86 archives at NCAR and the model was
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subsequently run for six months to 2/28/87.  This model run was performed in the

standard CCM3 mode with no modifications using a time step of ∆t = 20 minutes.  A

separate run was then performed with identical initial conditions but applying the

method described above and with the modal splitting chosen to satisfy stability

conditions for a time step of ∆t = 60 minutes.  Our modified integration procedure

(Hough mode projection) was applied at each time step.  

Since we wish to determine if our method, aside from speeding up the output of

the model on the climate scale is also effective, we must establish that the results of

the separate integrations are comparable.  Moreover, since we are looking for

statistics on the climate scale, we must also identify the climate variability of the

model for the scales of interest.  We achieved an estimate of  climate variability by

performing ten integrations with each of the two experiments identified above,

making small but identical changes in the initial conditions for each integration.

These perturbations were created by generating a random error field for the surface

air temperature over continental areas only.  We calculated the standard deviation of

the surface air temperature field over the model grid on 9/1/86.  We selected one

percent of this value as the standard deviation input to a random number generator.

In addition to meeting this value of standard deviation, the random number generator

was required to create a set of grid point numbers which had a mean of zero and had a

normal distribution.  These numbers were then used as a perturbation field and added

to the initial surface temperature field.  We developed ten independent random fields

in this way and thus began each of the ten integrations with these modifications.

Note that there were a pair of integrations for each initial data set, the standard

model run and the run including the Hough function time integration procedure.

For this study, we analyze only seasonal means and their variations.  We have

taken means of a number of dependent variable fields from model output beginning on

12/1/86 and ending on 2/28/87, thereby allowing the model to equilibrate through the

first three months of integration.  The variances of these fields, derived from the ten

runs (denoted also as realizations) of each experiment define the climate variability

for that experiment and differences between results of the experiments can be

measured against that variance.
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4.  Results

To avoid any misinterpretation of the results of our experiments, we present

the model output in various formats.  These include diagrams describing model

variables integrated zonally (over longitude) in latitude vs height coordinates, maps of

variables on sigma surfaces and spectral plots.  Since model integrations are

performed in spectral space, we integrated the output variables over latitude and

describe the spectral results as fields of amplitudes in zonal wave number vs height

coordinates.

We studied all the model output variables to understand the total effect and we

present representative samples which include surface pressure, wind components,

temperature, moisture, etc.  To identify the climate prediction of any variable we

show its mean values taken from the ten realizations; this was done both for the

standard CCM3 runs and for the Hough function modified runs.  To identify the model

climate variability, we present the standard deviations of the ten realizations from

the climate mean, again for both experiments and for a number of variables.  The

differences between the two experiments, the standard CCM3 and our Hough

function modification, can best be seen by first creating the difference field for each

realization of any selected variable.  The absolute differences of these fields were then

averaged over the ten realizations.  These averaged difference fields are subsequently

compared to the standard deviation fields to assess the significance if any, of the

prediction differences.  

Finally to assess the prediction skill of the two experiments, we determined the

difference of each realization field from actual observations (insofar as an observation

field was available) and established means of these difference fields over the ten

realizations.  Although the climate predictions are not accurate as we shall show, the

two experiments yielded very similar difference fields.

Figure 1 describes the zonal wind in m/s on a latitude-height diagram.  The

values represent the zonally averaged zonal velocity (u) and averaged over the period

12/1/86 - 2/28/87 with data taken from the CCM3 integrations.  Panel (a) represents

the flow from the standard CCM3 runs using a 20 minute time step whereas panel (b)

describes the same variable but taken from the CCM3 integrations using the Hough

function scheme with a 60 minute time step.  At least for this variable, the similarity
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of these analyses is remarkable, suggesting that the predictions from the two

experiments are very comparable.

More detail on the similarity of the predictions can be gleaned from Figure 2

which displays zonally averaged variables on latitude-height diagrams similar to

Fig.1.  In this presentation we show the standard deviation from the ten case

ensemble mean of the temperature (panel a), and specific humidity (panel c), taken

from the output of the standard CCM3 integration procedure.  For comparison panel

(b) (temperature) and panel (d) (specific humidity) present the means over the ten

realizations of the absolute differences of the standard and Hough function based

experiments.  One can see that for both variables described, the differences in the

experiments at almost all points in the domain are smaller than the climate

variability of the CCM3 as represented by the standard deviations of the realizations.

Given the nature of these statistics, even occasional differences as large as twice the

standard deviation could be acceptable in terms of prediction errors, but such

differences are not experienced.  Thus for these variables, a prediction closer to the

standard run than that given by the Hough function based prediction could not be

expected.

Figure 3 shows the climate mean (DJF 86/87) geopotential height in tens of

meters on the 700 hPa surface.  Panel (a) represents the standard integration and

panel (b) describes the Hough function based integration.  This figure shows that no

point on the globe yields significant differences between the integrations.  For more

detail on the global map presentation, and for different variables, Figure 4 shows the

climate variability in terms of the standard deviation of the ten realizations on the

200 hPa surface for the meridional wind magnitude (panel a) and the surface pressure

(panel c).  For comparison, panel (b) (meridional wind) and panel (d) (surface pressure)

present the means of the absolute differences between the two experiments (similar

to Fig.2).  Again it is apparent that very few points on the global surface show

differences in the experiments which exceed one standard deviation in the climate

variability of the model.

We conclude this comparison by displaying several less commonly considered

variables and present them on spectral diagrams.  Note that the presented spectrum

has been severely truncated because the amplitude of the variables falls off very

rapidly with increasing wavenumber.  On Figure 5, panels (a) and (b) show the ten

realization averaged velocity potential for the standard and Hough function based
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integrations respectively.  One can see that except for a very few wave components,

the distributions of amplitude produced by the two experiments are remarkably

similar.  The comparison of the absolute differences in experiment output to the

climate variability of the velocity potential can be seen from panels (d) and (c)

respectively.  We again note only a very few scale components whose differences

exceed one standard deviation.  A similar result is seen for the divergence (a related

variable) on panels (f) and (e).

For the period under consideration, 12/1/86 - 2/28/87, some archived

observational data was available and we compared the two experiments to that data.

Panels (a), (c) and (e) of Figure 6 represent the absolute differences of the zonally

averaged standard integrations for u, v and T respectively from observations,

whereas panels (b), (d) and (f) show those differences using the Hough function based

model integration data.  Clearly the climate predictions (seasonal averages) for the

wind components (u, v) and temperature were not particularly successful.  However

the difference charts presented on this figure show that both experiments produced

essentially the same error fields.

In summary it is our contention that substituting Hough function based

integration data for standard integration data when presenting a climate prediction

made with the NCAR CCM3 would provide equivalent (and nondegraded) information,

but at a considerable savings in computer cost.

5. Conclusions

Finding an optimum calculation scheme for atmospheric prediction which is

dependent on the time scales of interest has been a fascinating but elusive challenge

to modelers for decades.  Particularly in this era of climate scale modeling, such a

procedure, if available, would not only provide more accurate predictions, but could

save enormous computing time.  Given the many predictions needed to solve the

climate problem in the face of current computing resource limitations, a workable

procedure could become a panacea of enormous proportions.

One approach to the problem would be a search for structures in the fluid

which have significant amplitude on the desired time scales.  If such structures do not

readily emerge, they may evolve from data through EOF analysis.  Some success

with this approach may be seen in structures such as PNA patterns, etc. (Wallace

and Gutzler, 1981).  The structures once found can be used as projection functions for
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model variables and their amplitudes can be predicted.  Since these structures do not

have obvious frequency properties, careful identification of their frequencies must be

made to avoid computational instability during predictions with enlarged timesteps.

This approach has been tried with varying success on simple models like the

shallow water equations and Kasahara (1991) has applied the technique in three

dimensions with a linear system including shearing currents.  Indeed it is the basis of

the spectral method, albeit the extremely simple structures generally used (surface

spherical harmonics) are not particularly characteristic of climate scale events.  We

note however that it is not essential to actually predict with the identified structures,

but they may be used for extrapolation purposes.  On the assumption that frequency

can be associated with the structures, model data can be projected onto the

structures and only those structures which have low frequency need to be predicted.

The structures with high frequency should be balanced to avoid instability.  We

experimented with this procedure using Hough modes and the shallow water

equations, and had dramatic success in making predictions with a significantly

increased timestep.

To determine if our concept may apply to state-of-the-art climate models, we

selected the NCAR/CCM3 for testing purposes.  However, to avoid the complications

of using complex structures whose frequency properties are unknown, we chose to

begin the experiments by applying Hough modes, this choice based on our success

using them for the SWEs and because their frequencies are known.  We thus ran a

series of experiments with CCM3 by making a set of seasonal predictions.  One set of

runs were made with the CCM3 in its standard mode and another set was made by

projecting the model output onto Hough modes at each time step.  Following the

projection, the low frequency coefficients were extrapolated with a timestep three

times larger than the one used in the standard run, and the high frequency

coefficients were balanced.  The projection was then inverted and data returned to the

model for prediction of the next timestep.

The results of this experiment have been described herein and show that both

integrations produced essentially identical seasonal climates within the variability

range of the model.  This observation is heartening insofar as it validates the

procedure -- we achieved a threefold advantage -- but more so it encourages us to

proceed with the process.  The next step is clearly to identify more appropriate

structures for the model under consideration and to determine how their frequencies
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can be established.  Using those structures properly, based on the procedure outlined

herein, should not only lead to significantly greater savings in computing resources,

but may also yield more precise climate predictions on the particular climate scales

under study.  Different structures could be used for different time scales.  Indeed the

model structures could be changed during an integration if seasonal dependence

proved significant in long term predictions.
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FIGURE CAPTIONS

Figure 1.  Zonally averaged zonal wind (u) in m/s averaged over ten realizations for the

predicted season DJF, 1986/87.  Panel (a) describes results from the

standard CCM3 integrations and panel (b) shows results from the Hough

based integrations.

Figure 2.  Zonally averaged standard deviation of the temperature (T) in °K (panel a)

and specific humidity (Q) in 0.1g/kg (panel c) averaged over ten realizations

for the predicted season DJF, 1986/87, both describing results from the

standard CCM3 integrations.  Panels (b) and (d) show the absolute

differences over the ten realizations between the standard CCM3

integrations and the Hough based integrations for the T and Q results

respectively.

Figure 3.  Same as Figure 1 but for the geopotential height in 10m on a global map at

700 hPa.

Figure 4.  Same as Figure 2 but for meridional velocity (v) in m/s on the 200hPa global

surface on panels (a) and (b), and the surface pressure in hPa on panels (c)

and (d).

Figure 5.  The data used for this figure comes from the same source as the previous

figures.  In this case the data are converted to spectral space and presented

as amplitudes averaged over latitude with planetary wave number on the

abscissa.  Panels (a) and (b) present the mean spectra of the velocity

potential taken from the standard CCM3 integrations and the Hough based

integrations respectively.  Panel (c) shows the standard deviation spectra

for the same variable and panel (d) describes the absolute difference

spectra between the standard and Hough based integrations.  Panels (e)

and (f) are the same as (c) and (d) respectively but describe the divergence.

Figure 6.  Absolute differences between model integrations and observations averaged

over ten realizations for the predicted season DJF, 1986/87.  The left hand
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panels use the standard CCM3 integration data and the right hand panels

use the Hough based integration data.  Panels (a) and (b) describe the zonal

wind, panels (c) and (d) describe the meridional wind and panels (e) and (f)

describe the temperature.
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Figure 1.  Zonally averaged zonal wind (u) in m/s averaged over ten realizations for the

predicted season DJF, 1986/87.  Panel (a) describes results from the standard CCM3

integrations and panel (b) shows results from the Hough based integrations.
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Figure 2.  Zonally averaged standard deviation of the temperature (T) in °K (panel a)

and specific humidity (Q) in 0.1g/kg (panel c) averaged over ten realizations for the

predicted season DJF, 1986/87, both describing results from the standard CCM3

integrations.  Panels (b) and (d) show the absolute differences over the ten

realizations between the standard CCM3 integrations and the Hough based

integrations for the T and Q results respectively.
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Figure 3.  Same as Figure 1 but for the geopotential height in 10m on a global map at

700 hPa.
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Figure 4.  Same as Figure 2 but for meridional velocity (v) in m/s on the 200hPa global

surface on panels (a) and (b), and the surface pressure in hPa on panels (c) and (d).
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Figure 5.  The data used for this figure comes from the same source as the previous

figures.  In this case the data are converted to spectral space and presented as

amplitudes averaged over latitude with planetary wave number on the abscissa.

Panels (a) and (b) present the mean spectra of the velocity potential taken from the

standard CCM3 integrations and the Hough based integrations respectively.  Panel

(c) shows the standard deviation spectra for the same variable and panel (d)

describes the absolute difference spectra between the standard and Hough based

integrations.  Panels (e) and (f) are the same as (c) and (d) respectively but describe

the divergence.
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Figure 6.  Absolute differences between model integrations and observations averaged

over ten realizations for the predicted season DJF, 1986/87.  The left hand panels use

the standard CCM3 integration data and the right hand panels use the Hough based

integration data.  Panels (a) and (b) describe the zonal wind, panels (c) and (d)

describe the meridional wind and panels (e) and (f) describe the temperature.


