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ABSTRACT

This comment presents some concerns with the study of Stern et al. and their misinterpretation of the

contraction of the radius of the maximumwind (RMW) in tropical cyclones. It is shown that their geometrical

RMW contraction model provides little dynamical understanding of the RMW contraction during tropical

cyclone intensification, and it differs fundamentally from the RMW contraction model of Willoughby et al.

that was derived from the directional derivative concept. Moreover, it is demonstrated that Stern et al. were

mistaken in commenting on the derivation of the governing equation for the RMW contraction in Kieu.

1. Introduction

Recently, Stern et al. (2015, hereinafter S15) examined

the contraction of the radius of maximum wind (RMW)

during tropical cyclone (TC) intensification. A central

issue raised by S15 is the implicit perception that the in-

tensification of the maximum tangential wind (VMAX) is

always concurrent with the eyewall contraction during

TC rapid intensification. Using an idealized simulation

and observational analyses, S15 pointed out that such

simultaneity between the contraction of the RMW and

the intensification of VMAX is not always valid, as the

RMW could quickly slow down during TC rapid in-

tensification despite continuing increases in VMAX.

While S15’s study of this relationship between the

eyewall contraction and intensification is consistent with

previous observational and modeling studies (e.g.,

Corbosiero et al. 2005; Xu and Wang 2010; Kieu 2012,

hereinafter K12), S15’s approach to the understanding of

the RMW contraction contains some inherent issues that

render their interpretation problematic. In addition, S15

misinterpreted K12’s derivation of an equation for the

RMW contraction in their discussion. In section 2, we

summarize S15’s main results and argue that S15’s in-

terpretation of the RMW contraction based on a geo-

metrical approach provides little understanding of the

processes underlying the RMW contraction. In section 3,

we discuss S15’s misinterpretation of K12’s work on the

derivation of the governing equation for the contraction

of the RMW during TC intensification.

2. A geometrical interpretation of the RMW
contraction

S15 started their analysis of the RMW contraction by

considering first a radial tangentialwind profileV5V(r, t)

with the peak value at some radius, presumably the

RMW, such that

›V(r, t)

›r

����
r5R

5 0, (1)

where R denotes the RMW and the uppercase variable

V(r, t) denotes the tangential wind evaluated at r 5 R.

After taking a time derivative of Eq. (1), they obtained

›

›t

�
›V

›r

�
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dR

dt
5 0: (2)
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Rearranging Eq. (2), S15 arrived at an equation that de-

scribes how the RMW is changing with time as follows:

dR

dt
52

(›/›r)(›V/›t)

›2V/›r2

����
RMW

, (3)

which is Eq. (7) in S15. In S15, the numerator (›/›r)(›V/›t)

is coined by a term ‘‘the radial gradient of the time

tendency of V,’’ and the denominator ›2V/›r2 is called

‘‘curvature or ‘sharpness’ of the radial profile of V’’

(S15, p. 1288). S15 then treated these two terms as some

type of physical mechanisms that could explain the

contraction of the RMW. Their detailed analyses of

these two terms (see Figs. 5 and 6 in S15 and the asso-

ciated discussion therein) led to their key conclusion

that the RMW contraction is due to the increased radial

gradients of the wind tendency in the numerator of Eq.

(3) but not to the wind curvature term in the de-

nominator. Although there is no mathematical issue in

their derivation of Eq. (3), we have several concerns, to

be discussed below, with the use of this equation to

provide an understanding of the RMW contraction.

First, onemay notice that Eq. (3) is purely geometrical

with no dynamical content and can be applied to any

radial wind profile y(r, t) that possesses a maximum or

minimum. In fact, one could use an arbitrary smooth

profile y(r, t) with one or multiple maxima to arrive at

the same equation as Eq. (3) for all points r* where

y(r*, t) is a local extreme with ›y/›rjr5r*5 0. In addition,

S15’s contraction equation [Eq. (3)] requires that

both ›2V/›r›t and ›2V/›r2 have to be given before

calculating the contraction rate. It just happens a priori

from the model output of an axisymmetric vortex that

the denominator and the numerator of Eq. (3) have a

radial profile as shown in their Figs. 5 and 6. Namely, the

radial distributions of either ›2V/›r2 or ›2V/›r›t in S15’s

Figs. 5 and 6 are not derived from the prognostic equation

for theRMWcontraction but are given in advance. In this

sense, using these given distributions to explain theRMW

contraction provides little understanding into the pro-

cesses leading to RMW contraction, because of the

following critical question: Why could such radial distri-

butions of the tangential wind develop? Specifically, one

would like to know what physical mechanisms can ex-

plain the radial distributions shown in their Figs. 5 and 6

during the RMW contraction, not a priori assuming these

distributions and then plugging into the geometrical re-

lationship Eq. (3) to see how the contraction takes place.

Second, it should be mentioned that for all practical

purposes, has one known y(r, t) and ›y(r, t)/›t in ad-

vance, which are needed to compute the denominator

and numerator of Eq. (3), one would know immediately

where the RMW will be and what the contraction rate

would be in the next without any reference to Eq. (3).

Stating that the contraction of the RMW is ‘‘a result of

an increase in the radial gradient of the wind tendency’’

(S15, p. 1296) or ‘‘contraction is halted in association

with a rapid increase in the sharpness of the tangential

wind profile’’ (S15, p. 1283) is similar to a statement

that a change of velocity is a result of an acceleration.

There is nothing wrong with such a statement, but such a

statement bears little relation to physical processes that

we are aiming to understand, which are the physical

forcings that produce such an acceleration. This point is

highlighted here because the geometrical approach

presented in S15 in this sense contains no dynamical

explanation for the RMW contraction.

Third, unlike S15 mentioned, Eq. (3) has no clear

similarity to the RMW contraction equation presented

in Willoughby et al. (1982, hereinafter W82), which is

supposedly Eq. (3) in the original work of W82. An

examination of the original Eq. (3) in W82 shows that

W82 appeared to derive their RMW contraction equa-

tion from Petterssen’s (1956) definition of ‘‘a derivative

in a moving frame of reference’’ (or the directional de-

rivative) that contains no second-order derivative in the

denominator (Petterssen 1956, sections 3.2 and 3.3).

Indeed, the principle underlying W82’s Eq. (3) can be

seen from the definition of the directional derivative

along a parameterized curve in the cylindrical co-

ordinate (r, u, z) as follows (e.g., Schutz 1980):

dy

dt
5

›y

›t
1 _r

›y

›r
1 _u

›y

›u
1 _z

›y

›z
, (4)

where y(r, u, z) is the Eulerian field of the tangential wind

and the dot denotes the time derivative along a given

curve.1 If we can (i) follow theRMWpoint such that dy/dt

can be computed along the way; (ii) express the RMW

contraction rate, c52 _r52dR/dt, as defined byW82, as

we follow the curve R(t) traced out by the RMW in the

(r, z) plane; and (iii) assume that the contraction is along

the inflow such that vertical motion is negligible, then c

can be derived from Eq. (4) as follows:

c52
dR

dt
5

›y

›t

� �
max

2
dV

dt

� �
RMW

›y/›r
, (5)

where (›y/›t)max is the maximum tendency of the tan-

gential wind at a fixed radius (e.g., at the RMW at the

1We emphasize that Eq. (4) is the definition of a directional

derivative along a parameterized curve. By convention, we always

assume that such a parameterized curve can be defined as a smooth

horizontal curve R(t) traced out by the RMW in the (r, z) plane.
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current time step) and (dV/dt)RMW is the differenced

VMAX at two different (e.g., the next and current) time

steps at two different RMWs that may not be the same

during contraction. Assuming that one has two radial

profiles for the tangential wind y(r, z0, t1) at time t1, and

y(r, z0, t2) at time t2 obtained, for example, from

aircraft observations at a fixed flight level z0 as discussed

inW82, then all the right-hand side (rhs) terms of Eq. (5)

can be readily computed, thus allowing us to quantify

the contracting rate c.

To illustrate how the directional derivative in Eq. (4)

can lead to theRMWcontraction rate as given byEq. (5),

Fig. 1 shows a snapshot of the tangential wind profile

at one specific height level at two different times t and

t 1 Dt with a note that in the limit of Dt / 0,

�
dV

dt

�
RMW

’
V

B
2V

A

Dt
5

V
B
2V

C

Dt

1
V

C
2V

A

Dr

Dr

Dt
’

�
›y

›t

�
max

2 c
›y

›r
. (6a)

A rearrangement of Eq. (6a) leads to Eq. (5), thus

justifying the basic directional derivative principle in

W82’s equation for the RMW contraction. It is appar-

ent from Fig. 1 that if we can trace the RMW to obtain

(dV/dt)RMW, and if we know the maximum local change

of y, that is, (dy/dt)max from the flight-level data as

presented inW82, then either Eq. (5) or Eq. (6a) gives

an estimation of the RMW contraction rate. As shown

above, Eq. (5) or Eq. (6a) derived from the directional

derivative principle at the RMW has no connection to

the second-order derivative of tangential wind profile,

that is, ›2V/›r2 as appeared in the denominator of Eq. (3)

obtained by S15.

Unlike the claim in S15, we are not able to derive

Eq. (5) from Eq. (3) above, which is Eq. (7) in S15. It

appears that S15 incorrectly replaced the total derivative

(dV/dt)RMW in the original equation in W82 by a partial

time derivative ›V/›t in the numerator of their Eq. (8).

This replacement is not correct because (dV/dt)RMW in

W82 is not the total derivative at one given time and one

location in space, but it is the change of VMAX at two

different times and two different locations due to the

change of the RMW with time. In their reply to this

comment, Stern et al. (2017, hereafter S17) interpret

(dV/dt)RMW, however, as the total derivative at one

specific time and point in space; that is,

�
dV

dt

�
t5t,r5RMW

5
›V

›t

����
t5t,r5RMW

1
›V

›r

dR

dt

����
t5t,r5RMW

(6b)

[see Eq. (4) in S17] and argue that (dV/dt)RMW is then

the same as (›V/›t)RMW, because ›V/›r5 0 at theRMW.

Based on this interpretation, S17 claim that Eq. (5) cannot

be derived from the directional derivative because of the

presence of the zero denominator. S17’s argument is in-

valid because (dV/dt)RMW in W82 and (dV/dt)t5t,RMW

in Eq. (6b) represent two different concepts: the former,

given inEq. (6a), is used to estimate the temporal changes

of V following the contracting RMW [i.e., (VB 2 VA)/Dt
in Fig. 1], whereas the latter, after setting ›V/›r 5 0 in

Eq. (6b) by S17, is used to calculate the total temporal

changes ofV at one fixedRMWand time [i.e., (VD2VA)/Dt
in Fig. 1]. The two are only identical when the RMW or

VMAX does not change with time. From the practical

standpoint, W82’s calculation of (dV/dt)RMW can be

easily estimated from flight data by simply subtracting

the VMAX values at two different times and dividing it

by the time interval, which has also been demonstrated

in Fig. 1. Thus, one should not simply replace (dV/dt)RMW

estimated over a finite time interval in W82’s original

equation by (›V/›t)RMW as argued in S17.

Even if we could accept that the interchange be-

tween the above two derivatives at the RMW, the

second-order derivative given by Eq. (3) using the left,

the right, and the centered finite difference at the

RMW, will result in some ambiguity that any attempt

to match the finite-difference form of Eq. (3) with

W82’s original equation would be misleading. Spe-

cifically, S17’s use of one-side derivative to relate Eq. (3)

to Eq. (5) herein is subjective and arbitrary, because

the RMW contraction rate could differ, depending

on how Eq. (3) is calculated. For instance, if a more

accurate finite approximation, such as a centered finite

difference, is used to calculate the RMW tendency in

Eq. (3), that is,

dR

dt
52

›V

›t

� �
RMW1DR

2
›V

›t

� �
RMW2DR

›V

›r

� �
RMW1DR

2
›V

›r

� �
RMW2DR

,

then there is no way one can get rid of the term

(›V/›r)RMW1DR in the denominator when relating

Eq. (3) to Eq. (5). Thus, the similarity between Eqs. (3)

and (5) does not apply for this second-order accuracy

approximation. Similarly, calculating ›V/›r first and

then ›(›V/›r)/›t versus calculating ›V/›t first and then

›(›V/›t)/›r at the RMW in Eq. (3) may also lead to

different results. From this perspective, choosing one

particular finite approximation to prove that two mathe-

matical expressions are the same as presented in S17 is

obviously an invalidmathematical argument. In summary,

we have shown from the above several angles that unlike

S15 and S17 claim, S15’s RMW tendency equation is not

similar to W82’s [cf. Eqs. (3) and (5) herein].
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3. A dynamical interpretation of the RMW
contraction

In early analyses of idealized simulations using an axi-

symmetric model and ensemble real-data simulations of

Hurricane Katrina (2005) with theWeather Research and

Forecast (WRF) Model, K12 noted a cessation of the

RMWcontraction (i.e., a steady state in theRMW)during

TC rapid intensification, regardless of model configura-

tions or initialization. This steady state in the RMW

contraction turns out to be common during the rapidly

intensifying stages of TCs from the best track data (Qin

et al. 2016) and many previous modeling studies of TC

development (e.g., Chen et al. 2011; K12;Wang andWang

2014) but has not been well understood. To examine this

phenomenon, K12 used a simple Rankine-like vortex to

derive the physical mechanisms underlying the contrac-

tion of the RMW. Despite its simplicity, K12’s kinematic

model suffices to arrive at a conclusion that the RMW

contraction is governed by two dominantly opposing pro-

cesses: one is related to the inward advectionof the absolute

angular momentum (AAM) by the radial inflow, while the

other is attributed to the frictional forcing in the planetary

boundary layer (PBL) that tends to oppose the RMW

contraction. The contraction will stop if the frictional forc-

ing, which is proportional to the square of VMAX, can be

balanced by the inward advection by the radial inflow.

An interesting feature of K12’s model is that the condi-

tion for theRMWto stop contraction still allows the vortex

to intensify, provided that the inward advection of the ab-

solute angularmomentumby the radial inflowat theRMW

can be maintained. This simple model thus captures the

cessation or interruption of RMW contraction during TC

intensification as found from previous modeling studies

(Chen et al. 2011; K12; Wang and Wang 2014). The role

of frictional dissipation in preventing the RMW from

collapsing is confirmed in more detailed analyses by

Castaño et al. (2014) and N. Qin et al. (2017, unpublished

manuscript). Although K12’s model contains an inherent

weakness in assuming a given profile for the radial wind

u(r, t) that is governed by the radialmomentumequation, it

could at least reveal an important role of thePBL friction in

the inner-core region in suppressing theRMWcontraction.

In their discussion of the RMW contraction, S15

commented that there is ‘‘a mathematical error,’’ that

is, missing a term ‘‘VdR/dt,’’ in K12’s derivation

(footnote 10 in S15, p. 1300), which invalidates the main

result related to the impacts of the frictional forcing.

Furthermore, S15 argued that the contraction of the

RMW should depend only on the ‘‘the tangential wind

near the RMWand its radial and time derivatives’’ (S15,

p. 1300) but not on the friction nor the radial wind, be-

cause S15 argued that the strong radial inflow would

otherwise imply a collapse of the RMW contraction. We

found that S15’s comments on the mathematical error in

K12 and especially their related discussion about the

role of friction in the RMW contraction are invalid.

To facilitate our discussion, let us summarize below the

main steps by which K12 obtained his Eq. (5). Basically,

K12 started with a barotropic Rankine-like vortex

structure given by

y(r, t)5

8><
>:

V(t)r "r,R

›y(r, t)

›r
5 0 at r5R

(7)

and proposed two questions: (i) How will the Rankine-

like vortex as given by Eq. (7) contract with time, and

(ii) could it be used to explain the cessation of the RMW

contraction during rapid intensification as often found

from full-physics models and observations?

FIG. 1. Schematic of the RMW contraction model presented in W82. Black (red) line denotes

the radial profile of the tangential wind at a given level at time t 5 0 (t 5 Dt).
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To answer the above questions, K12 used the axi-

symmetric tangential momentum equation as follows:

›y

›t
52u

›y

›r
2

uy

r
2w

›y

›z
2 fu2

C
D

H
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u2 1 y2)

p
, (8)

where the last term on the rhs denotes frictional dissipa-

tion in the PBL. Substituting the radial profileEq. (7) into

Eq. (8), and noting that (i) ›y/›z5 0 since y(r, t) does not

depend on z and (ii) the partial derivative with respect to t

will not act on the coordinate variable r, we obtain

dV

dt
r52u

›y

›r
2(V1 f )u2

C
D

H
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u2 1 y2)

p
"r#R ,

(9a)

where

8>><
>>:

›y(r, t)

›r
5V(t) "r,R

›y(r, t)

›r
5 0 for r5R

(9b)

[see appendix 1 in K12 for constructing a piecewise

smooth profile satisfying the condition in Eq. (9b)2].

Note that becauseV is assumed to be a strict function of

time for the Rankine-like vortex in all K12’s derivations,

that is,V5V(t), it is justifiable to replace ›V/›t by dV/dt

in Eq. (9a). Since Eq. (9a) is valid for"r#R, it has to be

valid at r 5 R. Evaluating Eq. (9a) at r 5 R, and noting

the condition Eq. (9b), we have

dV*

dt
R52(V*1 f )U2

C
D

H
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 1V2

p
at r5R ,

(10)

whereU(t)5 u(r, t)jr5R and the notationV*(t) is used to

emphasize that the angular velocity is exactly defined at

r 5 R as follows:

V(t)5 y(r, t)j
r5R

5V*(t)R . (11)

In practice, V*(t) is slightly different from V(t) defined

in Eq. (9b) when a piecewise smooth radial profile of

V(t) given by Eq. (9b) is used. This small difference

betweenV*(t) andV(t) does not, however, changeK12’s

RMW contraction equation, because all of K12’s deri-

vations assume that V*(t) 5 V(t), which is well justified

for an actual wind profile (see the appendix). We note in

the above discussion that, at theRMW,Eq. (11) is used to

estimateVMAX, but Eq. (9b) must be used to estimate the

radial derivative of y(r, t). These two equations are not

interchangeable. Therefore, one should not use Eq. (11)

to estimate the radial derivative of y(r, t) at the RMW.

For the sake of consistency herein, all uppercase

letters denote the variables evaluated at the RMW to

distinguish from the lowercase letters representing

Eulerian field variables. Because U(t) , 0, Eq. (10) can

be rewritten as

dV*

dt
R5 (V*1 f )jUj2C

D

H
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 1V2

p
at r5R .

(12)

This is essentially Eq. (5) in K12, except that here, we

use V* instead of V when applying Eq. (9a) at r 5 R for

the clarity in this comment. Basically, Eq. (12) describes

how aRankine vortex given by Eq. (7) would evolve with

time. It states that if a vortex with a tangential wind dis-

tribution given by Eq. (7) follows the governing Eq. (8),

then at r5 R, the evolution of the angular velocity V*(t)

must be governed by Eq. (12). We note that Eq. (12) is

not closed becauseU(t) is not known, which is ultimately

linked to the radial momentum equation, the equation of

state, and the thermodynamic equation.

To estimate the RMW contraction rate, K12 assumed

that the profile in Eq. (7) will be maintained at all times

during the contraction. This implies that the Rankine

relationshipV(t)5V*(t)R(t) at the RMWmust be valid

during contraction so that upon taking a time derivative

of this Rankine relationship along the contracting di-

rection given by R(t), we have

dV

dt
5

dV*

dt
R1V*

dR

dt
, (13)

which can be rearranged as

dV*

dt
R5

dV

dt
2V*

dR

dt
. (14)

We note again that Eq. (13) does not imply that the

RMWhas to follow any momentum or material surface

along a given streamline. It merely states that if the

Rankine-like profile y(r, t) 5 V(t)r is maintained during

the entire TC development, then the value of the field

variable y(r, t) at the point r5 R(t), that is,V(t)5 y[R(t), t],

must always satisfy V(t) 5 V*(t)R(t) and so Eq. (13) is

ensured. Plugging Eq. (14) into Eq. (12), we arrive at

V*
dR

dt
5

dV

dt
2(V*1f )jUj1C

D

H
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 1V2

p
at r5R ,

(15)

2An example of a smooth wind profile y(r, t) that ensures con-

dition Eq. (9b) is y(r, t)5 V(t)re2(r/R)20 1 b[12 e2(r/R)20]/ra, where

b and a are proportional coefficients. This smooth profile, plotted

in Fig. A1, has a typical Rankine property that (i) y(r, t)’V(t)r for

r , R, (ii) y(r, t) ’ b/ra for r . R, and (iii) ›y(r, t)/›r 5 0 at r ’ R.
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which is Eq. (6) in K12. If one notes thatV*� f,V�U,

then a slight rearrangement of Eq. (15) gives

dR

dt
52jUj1C

D

H
VR1

R

V

dV

dt
, (16)

which is Eq. (7) in K12 with no difference.

An immediate consequence of Eq. (16) is that the

RMW contraction rate will be faster for larger drag

coefficient CD. This result can be readily confirmed in

any model framework by simply varying the coefficient

CD and seeing how the rate of the RMW contraction

looks (see Fig. 4 and related discussion in K12).

Figure 2 reproduces the results from thisCD-sensitivity

experiment in K12, using the axisymmetric model de-

veloped by Rotunno and Emanuel (1987). As CD in-

creases from 0.8 3 1023 to 1.2 3 1023, we notice that

the RMW contraction rate (i.e., the slope of the RMW

time series) increases during the rapid intensification

period. This confirms the role of the PBL friction in

governing the RMW contraction process as suggested

by Eq. (16).

Unlike S15 and S17 misinterpret, the RMW con-

traction rate [i.e., Eq. (16)] by no means implies that

the RMW is a surface or momentum surface advected

by the radial inflow. As discussed in K12, the first term

on the rhs of Eq. (16) represents the impacts of the

inward advection of the AAM by the radial inflow.

During the TC intensifying stage, this inward AAM

advection leads to the spinup of the tangential wind in

the inner-core region, thus continuously producing a

new RMW inward that pictorially gives one an im-

pression that the RMW is advected inward by the radial

inflow. On the other hand, friction [i.e., the second term

on the rhs of Eq. (16)] tends to reduce the spinup of the

tangential wind, thus preventing the formation of any

newly formed RMW. As a result of the larger AAM

advection during the TC intensification, the RMW will

be contracted until friction can balance the AAM ad-

vection. From this physical perspective, it is entirely

possible that the RMW can expand even within the

inflow regime if the friction becomes more dominant,

for example, during landfall [i.e., the second term is

larger than the first term in Eq. (16)].

Because of their misinterpretation of our RMW

contraction equation and their dismissing the role of

friction, S17 mislead the readers by arguing that our

equation must always produce the RMW contraction

in the inflow regime. S17’s argument about the role of

friction is physically irrational, because modeling ana-

lyses show that the RMW is located at the radius where

the radial inflow is strong, that is,U, 0. Therefore, the

existence of frictional force is a must to prevent in the

RMW contraction from shifting inwards, as indicated

by Eq. (16). A vortex structure with a strong inflow

at the RMW but no frictional force as S15 argued is

not physically realizable, because the PBL frictional

convergence is part of TC intensification. Without

friction, a TC cannot even exist let alone allow for the

existence of a radial inflow at the RMW. The impor-

tance of friction in governing the RMW contraction

was observed in an earlier modeling study by Yau et al.

(2004), who showed that the simulated RMW associ-

ated with Hurricane Andrew (1992) increases as the

surface friction is reduced. It is therefore perplexing to

see S17’s strong claim that the friction is not directly

related to the RMW contraction as articulated in their

discussion section.

Along with their unjustified dismissing of the role of

friction in the RMW contraction, S15 was also confused

about the partial time derivative ›y/›t versus the total

derivative dy/dt in going from Eq. (8) to Eq. (12) in their

earlier discussion (see footnote 10 in S15, p. 1300). Note

that the partial time derivative ›y/›t in Eq. (8) will not

touch upon the coordinate variable r. K12 simply

plugged a functional form y(r, t)5 V(t)r into the partial

derivative ›y/›t to get a term (dV/dt)r as seen in Eq. (9a)

and evaluated the resulting Eq. (9a) at the point r5R to

arrive at Eqs. (10) and (12). Therefore, one should not

expect to have ‘‘the term VdR/dt’’ in Eqs. (9a) and (9b)

as S15 (p. 1300) comment.

Unfortunately, S17 provide no response to our above

remark in their reply to this comment, which is one of

the major purposes of this comment and reply. Instead,

S17 introduce a new assumption that the Rankine

parameter V should be now a function of both time and

radius and then use this new assumption to criticize

K12’s derivation. It should be pointed out that K12 has

never assumed that V 5 V(r, t) as seen from the above

derivations of Eqs. (7)–(16). Rather, V(t) is assumed to

be only a function of time in all K12’s derivations such

that V*(t) 5 V(t), and so dV/dt 5 ›V/›t (see the ap-

pendix for the justification of this assumption). Appar-

ently, if V(t) is a function of time only, then the extra

term in S17’s Eq. (23) will vanish, and S17’s Eq. (23) is

identical to K12’s Eq. (6) or Eq. (15) herein. Of course,

one can always question the validity of any assumption,

but it is not a mathematically valid argument to use a

different assumption to claim that another derivation

has ‘‘a mathematical error’’ simply because different

assumptions lead to different equations. Their in-

consistent comments of K12’s missing a term VdR/dt in

S15 (see footnote 10 in S15, p. 1300) and K12’s missing a

term (dR/dt)(›V/›t) in S17 [see S17, their Eq. (23)] in-

dicates that the coauthors of S15 and S17 are unwill-

ing to accept their mistake in commenting on K12’s
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derivation. This can also be seen from their reply to our

comments on the application of their geometrical model

for the RMW contraction and their arguing for the

similarity of their geometrical model to W82’s equation

of the RMW tendency.

It should be pointed out that the coauthors of S15

and S17 appear to understand clearly the well-known

condition of ›y/›r 5 0 at the RMW, since they have

used it (i) to derive their geometric model and (ii) to

claim the similarity of their RMW tendency equation

to W82’s. Thus, their new assumption of V(r, t) as

functions of both r and twhen taking a radial derivative

of y(r, t) at the RMW is irrational and unjustified. As

indicated clearly in Eq. (9b), we have y(r, t)5V(t)r for

r , R, but we must have exactly ›y/›r 5 0 when taking

the radial derivative of y at r5R. The smooth profile in

our footnote 2 is an example that could ensure the

condition Eq. (9b), so there is no conflict in our wind

profile as S17 argue; that is, our conditions ›y/›rjr5R5 0

and V(t) 5 V*(t)R(t) are not mutually exclusive.

Despite this clear emphasis, that S17 still assume the

profile y(r, t) 5 V(r, t)r at the RMW to criticize our

derivation indicates their unwillingness to accept their

confusion in S15. So we state that S17’s argument

based on the dependence of V(r, t) on radius is irrel-

evant to our derivations, because we only work

with V(t) rather than with the full profile V(r, t) as

S17 claim.

One may notice that S17’s use of a different wind

profile from that used in K12 to attack the validity of

K12’s derivation implies S17’s indirect acknowledg-

ment of misinterpretation in S15 and that there is no

mathematical error in K12’s RMW contraction equa-

tion. Moreover, S17 (section 5) use the diagnostically

obtained results for the mature stage of a simulated TC

to attack the results of K12 and those presented herein,

which are derived from the prognostic tangential mo-

mentum equation for the intensifying stage of a TC.

Apparently, they fail to realize that by doing so, they

are comparing apples and oranges, because these re-

sults are obtained from two different types of equations

for two different stages of TC development. Moreover,

they also fail to understand that the radial gradient

of the time tendency of V, that is, (›/›r)(›V/›t), and

the curvature of the radial profile of V (i.e., ›2V/›r2)

in their geometrical model [i.e., Eq. (3) herein] must

involve dynamical processes that are dictated by the

prognostic tangentialmomentum equation [e.g., Eq. (8)].

Despite their misinterpretations and inconsistencies

between S15 and S17, one notices S17’s excessive

uses of unusual expressions to negate K12’s deriva-

tions and our comments, which are either not sub-

stantiated or represent their misinterpretations or

misunderstandings.

Although K12 did not discuss the evolution and

structures of a TC vortex in the outer region r . R, a

quick inspection of a full Rankine profile will show

that it is not likely to have a situation in which the

inflow can lead to expansion of the RMW by allow-

ing for the tangential wind outside of the RMW to

spin up faster than that in the inner-core region.

Indeed, consider the radial wind profile Eq. (7)

with a further expansion for the outer-core region

r . R as follows:

FIG. 2. Time series of the RMW (km) from Rotunno and Emanuel’s (1987) axisymmetric

hurricane model obtained from a 25-day simulation, with the surface drag CD 5 0.8 3 1023

(black), 1.0 3 1023 (red), and 1.2 3 1023 (cyan). Reproduced from K12.
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y(r, t)5
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Plugging Eq. (17) into Eq. (8) gives

8>>><
>>>:
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"r.R .

(18)

It is immediately clear from the rhs of Eq. (18) that the

positive contribution to the spinup of the inner-core

winds 2(2V 1 f )u is much larger than the spinup of the

outer-region winds, which is proportional to 2fu. One

should not therefore expect a situation in which the

friction alone could account for the weakening of tan-

gential winds in the inner-core region as discussed in S15

(p. 1301), because the advective term 2(2V 1 f )u will

dominate during the TC rapid intensification period. In

fact, detailed derivations in Kieu and Zhang (2009) show

that such a drastic difference in the absolute angular

momentum advection between the inner-core and the

outer-core regions explains the much faster spinup of the

tangential flow in the former than that in the latter region.

As a result, a vortex with a deceleration or a much slower

spinup of the tangential wind in the inner-core region

relative to the spinup in the outer-core region should not

occur during the rapid intensification of TCs, at least, for

the Rankine-like profiles Eqs. (7) and (17).

4. Summary and conclusions

In this comment, we have reexamined the issue of

RMW contraction during TC development as studied by

K12 and S15. We have shown that (i) S15 mistakenly

commented on a missing term VdR/dt in K12’s deriva-

tion of an equation for the RMW contracting rate and

(ii) S15’s geometrical model provides little dynamical

understanding of the RMW contraction because it does

not involve any equation in the primitive equations

system. Although S15’s statements such as ‘‘contraction

begins and subsequently accelerates as a result of an

increase in the radial gradient of the wind tendency’’

(S15, section 5a) or ‘‘acceleration of contraction is due to

an increasing radial gradient of the V tendency’’ (S15, p.

1290) are not wrong, they bear little physical implication

as the key question is, Why could ‘‘an increase in the

radial gradient of the wind tendency’’ occur during TC

development?

Along with the issue about the interpretation of the

RMW contraction in their geometrical model, we also

showed that S15 made a mathematical error in their

argument that incorrectly led them to a conclusion that

S15’s equation of the RMW contraction is equivalent to

W82’s equation of the RMW contraction. From the

mathematical error in relating their RMW tendency

equation to W82’s and their erroneous comment of a

missing term VdR/dt in K12’s derivation, we found that

S15 were confused in both cases about the partial time

derivative ›y/›t versus the total derivative dy/dt.

Finally, we have pointed out that in their reply to this

comment, S17 provide no response to our comment on

their mistaken statement in S15 that K12’s derivations

miss a term VdR/dt. Instead, S17 use a radial profile of

the tangential wind that differs from that in K12 to claim

that K12’s derivations miss a term, (dR/dt)(›V/›r)R. In

this comment, we have shown that (i) S17’s use of a

different radial profile of the tangential wind from that

used in K12 to attack K12’s derivations is unjustified and

(ii) S17’s claim of missing the term (dR/dt)(›V/›r)R in

K12 is rooted in their using ›y(r, t)/›r 6¼ 0 at the RMW to

derive K12’s RMW tendency equation. We could see

that the coauthors of S17 understand well the condition

of ›y/›r 5 0 at the RMW, since they have used it to

derive their geometric model and to claim the similarity

of their RMW tendency equation to W82’s. However,

S17’s use of a different wind profile y(r, t)5V(r, t)r from

that in K12 and their lacking response to our comment

indicate their unwillingness to accept their mistaken

comments in S15. Based on the above analyses, we

conclude that K12’s derivations for the RMW contrac-

tion equation contain no mathematical error and that

the associated reply and discussion in S17 are irrelevant

to our comments on S15’s misinterpretation.
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APPENDIX

Approximation for the Inner-Core Angular
Velocity V at the RMW

There is an implicit assumption in K12 that the

angular velocity estimated at the RMW, which is de-

noted by V*(t) in Eq. (10) herein, is the same as the

angular velocity V(t) in the inner-core region of a

hurricane-like vortex. This assumption lies at the root of

the criticism that S17 introduce in their reply to this

comment, as S17 argue that this difference is significant

at the RMW such that ›V/›rjr5R 6¼ 0, and so it cannot be

neglected. In this appendix, we will show that under the
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piecewise smooth profile given by condition Eq. (9b)

in the main text, V*(t)’ V(t) such that dV*/dt’ dV/dt

as assumed in K12.

Indeed, we first apply the Taylor expansion for the

tangential wind y(r, t) at r 5 R as follows:

y(R2 dr, t)’ y(R, t)2
›y

›r

����
r5R

dr1O(dr2) � � � , (A1)

where dr is a small increment around R and O(dr2) de-

notes higher-order terms. Because of the piecewise

smooth condition Eq. (9b), and recall thatV(t)5 y(R, t),

we rearrange Eq. (A1) to obtain

V(t)’ y(R2 dr)1O(dr2)5V(t)3 (R2 dr)1O(dr2) .

(A2)

With the definition of V*(t) at the RMW, dividing R at

both sides of Eq. (A2) gives

V*(t)’V(t)

�
12

dr

R

�
1O(dr2) . (A3)

Apparently, in the limit of dr/ 0, V*(t) is as close

to V(t) as expected, which underlines K12’s assumption

ofV(t) as a strict functionof time"r#R in derivingEq. (10)

herein. One could in principle introduce a new as-

sumption to take into account the variation of V with

radius at theRMW.However, the physical implications

of the frictional force and the AAM advection in the

RMW contraction as described by our Eq. (16) continue

to be valid from the dynamical perspective.

To directly verify the approximation ofV*’V from the

model output, Fig. A1 displays an example of the radial

profile of the tangential wind at the model lowest level

as obtained from Rotunno and Emanuel’s (1987) axisym-

metric model after 72h into the model integration. A

straightforward calculation of V* at the RMW location

gives V* ; 3.58 3 1023 s21, and similar calculation for V
at a point nearbygivesV; 3.563 1023 s21.Apparently,V*

and V are very close as expected, thus justifying the as-

sumption of V*’ V discussed below Eq. (10).

As a final check of how well the modified Rankine

profile with a constant solid-body rotationV assumed in

K12 can be applied to the actual TC inner-core region,

the analytical profile provided in footnote 2 is also

plotted in Fig. A1, assuming that V 5 3.583 1023 s21,

R5 19 km, a5 0.8 , and b5VRa11. Note again that this

smooth profile has all typical Rankine properties in-

cluding (i) y(r, t)’ V(t)r for r, R, (ii) y(r, t)’ b/ra for

r . R, and (iii) ›y(r, t)/›r 5 0 at r ’ R as assumed in

Eq. (9b). Except for some distortion of the wind distri-

bution near the vortex center, one notices that the an-

alytical profile describes well the wind structure in the

TC eye as a solid-body rotation with a constant angular

FIG. A1. The radial profile of the tangential wind (solid black; m s21) at 10-m height that is

obtained from Rotunno and Emanuel’s (1987) axisymmetric hurricane model after 72 h

into the integration. The cross denotes the point near the RMWwith an angular velocity ofV;
3.563 1023 s21, along with an angular velocity ofV*; 3.583 1023 s21 that is evaluated exactly

at the RMW location. The dashed red curve denotes the analytical profile y(r, t)5V(t)re2(r/R)201
b[1 2 e2(r/R)20]/ra with V(t) ; 3.58 3 1023 s21, R 5 19 km, a 5 0.8, and b 5 VRa11.
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velocity inside the inner-core region. Such an approxi-

mated linear structure of the tangential wind in the TC

inner core is well maintained after the model storm

reaches 30ms21, at least in the axisymmetric model

framework. Of course, one could refine further this wind

structure to better capture the inner-core tangential

wind. However, the Rankine profile with the angular

velocity as a strict function of time is practically ac-

ceptable, at least to the zero order as assumed in K12’s

model [see also Holland et al. (2010) for a review of

modified Rankine profiles for TC wind structure].
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