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A hazard-risk assessment model and a grey hazard-year prediction model (GHYPM) are
constructed by integrating recent advances in the fuzzy mathematics, grey theory and
information spread technique, and then applied to 17-year tropical cyclones (TCs) hazards
in Southern China. In constructing the models, a genetic fuzzy mathematical algorithm is
first developed to calculate the categorical and ranking weights of TC hazard impact and
cause indicators, from which their combined weights are obtained after optimization.
The hazard impact and cause index series are then found by coupling the combined
weights with their corresponding down-scaled indicators. A two-dimensional normal-
spread technique is employed to create a primitive information matrix and a fuzzy relation
matrix in order to make fuzzy rough inference of hazard risks with the factorial space the-
ory. An exceeded probability model is developed to assess the possibility of exceeding any
given hazard-year category. Results from the GHYPM show that the simulated hazard risk
values are more or less consistent with the hazard-impact index series, with more than 60%
probability of exceeding a moderate hazard year in Southern China. Results also show
small relative errors of the GHYPM, indicating its applicability to the prediction of TC haz-
ard-years up to 20 years.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Skillful analysis and accurate prediction of natural hazards are of extreme importance for hazard mitigation. However, the
fuzzy and stochastic nature of hazards and the pertinent data collection usually cause data incompleteness for statistical
analysis and prediction. In addition, the duration of useful data samples for natural disasters is often too short, for instance,
only 15–25 years in China. Clearly, such a small sample size can hardly be analyzed, using conventional statistical or param-
eter-estimation methods, to reach scientifically meaningful conclusions. Thus, numerous fuzzy mathematics, grey models
(GMs) and information spread techniques have been developed since 1960s [1] to aid in the risk assessment of natural disas-
ters and sporadically occurring events.

For example, Sun and Ma [2] showed the important roles of fuzzy rough set models, based on certain fuzzy compatible
relations, in decision-making when they were applied to clinical diagnoses. Hundecha et al. [3] developed a fuzzy-logic based
rainfall-runoff model to analyze the flood-related hazard conditions and predict possible hazard risks. Iliadis and Spartalis
[4] used the fuzzy logics to study the risks of forest fires in Greece. Yui et al. [5] applied a fuzzy multi-objective scheme
to the short-term (<24 h) prediction of rainfall associated with tropical cyclones (TCs); TCs are defined herein as having
. All rights reserved.
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the maximum surface wind speed of at least 17.2 m s�1. Cheng and Wang [6] constructed a prototype hazard index model for
estimating TC hazards with a grey analytical hierarchy process (GAHP) – a grey correlation algorithm. Zhang and Liu [7]
developed a fire-hazard predictive grey system model [GM (1, 1)] for fire accidents by taking advantage of the powerful pre-
dictive skill for uncertainties with GM (1, 1) theory.

According to Huang [8], we may view hazard risk analyses as a process to identify a functional relationship between the
probability distributions of hazard causes (e.g., rainfall amounts or surface wind strengths) and hazard impacts or hazard
carriers (e.g., on human-beings, buildings, crops) using information matrices (i.e., inputs vs. outputs). In this regard, Zhang
et al. [9] analyzed the geographical characteristics of storm-surge hazards caused by TCs using the hazards data collected
along the coastal region of Guangdong Province during the period of 1949–2005. In their study, a risk assessment model with
the use of an information spread technique included was applied to TC storm-surge hazards by calculating the maximum
water accumulation index at six tidal stations. Their model results were shown to compare favorably to those from a numer-
ical storm-surge model and observations.

Since many natural hazards occur randomly and irregularly, Feng and Hong [10] introduced the concept of hazard entro-
py that reaches a maximum value under some given constraints. They found that the hazard damage and loss series follows
the P-III distribution when the hazard entropy is maximized, and then estimated the recurrence time interval of future disas-
ter losses using historical hazard data and the properties of the P-III distribution. Andrade et al. [11] proposed a stochastic
model, based on the Bayesian and Monte Carlo Markov Chain algorithms, to improve the estimated allocation of water vol-
umes in a reservoir for the control of flood waves. With conventional statistical analysis methods, Lu [12] calculated the haz-
ard-risk index series (HRIS) of the TC-caused human casualties, inundations of agricultural area, and damaged houses over
the Shanghai metropolitan region during the years of 1949–1990. Although Chen et al. [13] have later improved the HRIS, it
is far from perfect and rigor in terms of either the selected indicators or the relative importance of various index series in
hazard risk assessment.

While the previous studies have demonstrated the successful applications of fuzzy mathematics, GMs, and information
spread techniques to hazard risk analyses, little attention has been paid to the development of an integrated hazard-risk
assessment and prediction system by combining various weights, index series and models with fuzzy algorithms in order
to extract valuable information from limited samples. In particular, few studies have been conducted to optimize hazard-im-
pact index series (HIIS) and hazard-cause index series (HCIS) for the risk assessment of natural hazards. Thus, it is our inten-
tion to fill in this gap by developing a fuzzy GAHP-based, genetic projection pursuit algorithm, following closely the work of
Jin et al. [14], and a GM (1, 1) model, following Liu et al. [15] and Liu and Zhi [16], for the prediction of TC hazard risk years,
respectively. Then, they will be tested with the TC hazard data collected for the period of 1990–2007 over Southern China
consisting of the provinces of Guangdong, Guangxi, and Hainan. Note that we assess the TC hazard risks herein with fuzzy
mathematical models, based on the given hazard-cause intensity and hazard-carrier’s vulnerability. Clearly, this risk assess-
ment approach would contain many uncertainties due to the fuzzy and random nature of natural hazards, changes in hazard-
carrier’s vulnerability and societal preparedness, as well as the reliability of hazard indicators used in the risk assessment
model.

The next section describes the database used for the present study, and shows how to construct a genetic projection pur-
suit algorithm, and then use it to determine the categorical and ranking weights of hazard-impact and hazard-cause indica-
tors, optimize their combined weights, and eventually obtain the HIIS and HCIS by coupling the combined weights with the
corresponding indicators. Section 3 discusses the construction of an exceeded probability model for assessing the probability
of exceeding any TC hazard-year category for the given database. Section 4 presents the derivation of a grey hazard-year pre-
diction model (GHYPM), based on the GM (1, 1) theory. A summary and conclusions are given in the final section.
2. Construction of a hazard risk assessment model

2.1. Data base

The TC hazard data used for this study are from the ‘‘Dictionary of Hazards in China’’ for the years of 1990–2000 [17], and
some statistics hazard data for the years of 2001–2007 (even up to 2011) provided by the National Meteorological Data and
Hazard Information Internet (http://www.laxf.gov.cn/qbzq/qbswebsite/default.asp). The TC-related rainfall and wind data
are from ‘‘Annual Report of Tropical Cyclones’’ [18]. However, the year of 2004 is excluded in this study because of its anom-
alous fewer landfalling TCs, less damages and economic losses, and its relatively higher rate of missing data.
2.2. Construction of the hazard-impact index series

To obtain an index series that could characterize the variability of TC hazards, we must consider the following two factors:
(a) data representativeness, and (b) data continuity. For these two reasons, we select the 17-year (i.e., 1990–2007) database
that records relatively more complete TC hazards over Southern China than earlier years. Because TC hazard risks are mainly
associated with human casualties, property damages, and recovery of agricultural and industrial production, we define the
following five parameters as the TC hazard-impact indicators: the number of human mortalities (RM), the affected population
(RP), the affected agricultural area (RA), damaged buildings (RB), and direct economic losses (RL). Similarly, we consider the
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following three factors as the TC hazard-cause indicators over Southern China: the annual-total number (CN), the annual-mean
daily maximum rainfall amount (CR), and the annual-mean daily maximum wind (CW) of TCs. Keep in mind that the above
two groups of hazard indicators will be listed herein in the same order as listed above in the HIIS and HCIS, respectively, unless
otherwise stated. The same is also held for various weight series to be derived. It should be mentioned that some indicators are
similar to those used by Lu [12] and Chen et al. [13]. Appendices A and B tabulate the original data, after some minor data
quality control and needed calculations, in accordance with the above selected indicators.

As we know, the magnitudes of assigned weights will reflect the rankings and roles of individual indicators in the integrated
fuzzy assessment of hazard risks. They also signify to some degree the accuracy of a multi-indicator assessment system and af-
fect the quality of the final assessment results. To take full use of the categorical and ranking information of various hazard indi-
cators in the original high-dimensional space, Jin et al. [14] showed the use of an accelerated generic algorithm (AGA) to
calculate the combined weights from the categorical and ranking weights. Thus, we construct a fuzzy GAHP-based, genetic pro-
jection pursuit algorithm with the inclusion of some AGA algorithm in order to calculate the categorical and ranking weights,
and their combined weights are then obtained after optimization. Steps to attain these weights are described below.

(a) Standardize the hazard-impact indicator matrix, xij (i = 1, 2, . . . , 5; j = 1, 2, . . . , 17), from the 17-year sample data, as
tabulated in Appendix A. Normally, the larger the magnitudes of the selected indicators, the more meaningful are
the final risk assessment results, which is the case herein. Thus, it is desirable to define the membership weight or
down-scaled matrix rij (i = 1, 2, . . . , 5; j = 1, 2, . . . , 17) as
rij ¼
xij

max
1�j�17

fxijg þ min
1�j�17

fxijg
; i ¼ 1;2; . . . ;5; ð1Þ
where max
1�j�17

fxijg and min
1�j�17

fxijg are the maximum and minimum values of the jth indicator, respectively. Calculation of Eq. (1)

gives the following dimensionless, fuzzy weighted hazard-impact indicator matrix,

�4
R¼ðrijÞ5�17¼10

�

876 4745 73 3029 5365 3942 10000 1989 201 401 1022 1314 1259 1460 0 4562 310
1444 4575 1016 9784 6255 8176 4816 3995 1216 1718 2381 7205 3129 6352 216 7380 1273
1265 2778 802 9716 4935 5465 3079 3027 647 1528 2988 6025 1721 3692 284 5414 890
763 1738 1535 5247 9958 3813 9026 5007 119 274 2582 3663 447 1943 42 4468 179
243 1760 515 5313 6371 4714 9851 2589 311 998 2406 8102 1082 2780 149 8071 897

26666664

37777775:
(b) Determine the categorical weights of the hazard-impact indicators, A1 = ai1(i = 1, 2, . . . , 5), using a genetic projection
pursuit algorithm. This algorithm is useful for analyzing the statistical properties of multi-dimensional datasets with
non-normal distribution and nonlinearity [14]. In particular, it can help determine the projection direction of data
characteristics in a multi-dimensional space such that they can be examined in reduced dimensions. In this study,
we will use this algorithm to project the multi-dimensional information (i.e., multiple parameters involved in haz-
ard-impact and cause indicators) to a one-dimensional (1D) line embedded in the multi-dimensional space. This is
done by first synthesizing the membership weight matrix rij (i = 1, 2, . . . , 5, j = 1, 2, . . . , 17) into a linear base function:
e = (e1, e2, e3, e4, e5), where e is a unit vector,
zj ¼
X5

i¼1

eirij ðj ¼ 1;2; . . . ;17Þ: ð2Þ
To obtain more realistically the aforementioned weights, it is necessary to ensure the one-dimensional distribution of the
projected points locally as dense as possible, better condensed in clusters, and globally as well spread as possible. For this
purpose, we calculate the standard deviation (SZ) of zj,
SZ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

16

X17

ðzj � �zÞ2
vuut ; ð3Þ
j¼1

which measure the spread of the data. The local density (DZ) of the projected points can be determined by,
DZ ¼
X5 X17

ðK � dijÞuðtÞðK � dijÞ; ð4Þ

i¼1 j¼1

where the window radius of the local density is defined as K = 0.1Sz, distance dij = |zi � zj|, t = K � dij, and the unit step func-
tion u(t) is 0 for t < 0 and 1 for t P 0. The associated objective function after projection [19] is then written as
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Q e ¼ SzDz: ð5Þ
Since different projection directions reflect different characteristics of hazard-impact and cause indicators, an optimally pro-
jected direction should capture more important characteristics of the multi-dimensional information. In this study, the max-
imum value and optimized projection direction of Qe are obtained by maximizing the projected objective function with a
genetic algorithm, i.e.,
max Q e ¼ SZDZ ;

s:t:
X5

i�1

e2
i ¼ 1; and ei � 0:

ð6Þ
This gives the optimized projection direction as e⁄ = (0.8075 0.3076 0.1511 0.2096 0.4319). Normalization of e⁄ yields the
categorical weights of the hazard-impact indicators: A1 = (ai1; i = 1, 2, . . ., 5) = (0.4233 0.1612 0.0792 0.1099 0.2264). The cat-
egorical weight series so obtained reveals that the RM indicator is much more significant than the other indicators.

(c) Determine the ranking weights of the hazard-impact indicators, A2 = (ai2; i = 1, 2, . . . , 5), using the GAHP method. As
we know, systematic assessment of irregular data is essentially an optimized ranking process. Clearly, the greater an
element, rij, in the fuzzy indicator matrix, R, the more important role it has in determining the ranking weight of the
indicators being concerned. This implies that for any i-th indicator the greater its algebraic addition, the more signif-
icant influence it may have on the optimized ranking weights. Let
si ¼
X17

rij; ð7aÞ

j¼1

and from si�sj
8

cij ¼
maxfsig�minfsig

ðcm � 1Þ þ 1; si � sj;

sj�si

maxfsig�minfsig
ðcm � 1Þ þ 1

� ��1
; si < sj;

<: ð7bÞ
where max {si} and min {si} are the maximum and minimum values of si, respectively, and
cm ¼minf9;

R
½maxfsig=minfsig þ 0:5�g is a constant, we obtain a level 1-9 decision matrix C to be used for calculating the

ranking weights,
C ¼ ðciiÞ ¼ 10�4 �

10000 11137 6457 14512 9413
8979 10000 6015 13376 8503

15488 16624 10000 20000 14864
6891 7476 5000 10000 6607

26666664

37777775:

10624 11760 6728 15136 10000

According to fuzzy mathematics, the decision matrix C = (cij) = ai2/aj2) i, j = 1, 2, . . . , n) has the reflective (i.e., cii = 1 when i = j),
reciprocal (i.e., cij = 1/cji), and consistency (i.e., cij cjk = cjk) properties. The consistency property implies that the quantitative
relationship among different elements can be transformed, whereas a positive reciprocal matrix has a single eigenvalue, and
it must be a positive real number corresponding to a positive eigenvector. Moreover, it can be shown that when an n-order
positive reciprocal matrix C has the maximum eigenvalue of kmax � n, C has the consistency property [20]. Thus, calculation
of the eigenvalues of C (i.e., CIC) gives the consistency indicator: CIC = 4.0647 � 10�4 that is much less than 0.10; see [20] for
its rationality. Note that if the matrix C does not meet the consistency requirement, a modified decision matrix can be de-
rived using the optimization algorithms in Matlab [14]. The ranking weights of the hazard-impact indicators so obtained are:
A2 = (ai2; i = 1, 2, . . . , 5) = (0.1361 0.2914 0.1932 0.1759 0.2034), which show the significant contribution of the RP indicator,
and then the RL indicator. Since this result differs from that of the categorical weights, we have to calculate the combined
weights for being used in our risk assessment model.

(d) Determine the combined weights between the categorical (ai1) and ranking (ai2) weights A = (ai; i = 1, 2, . . . , 5). Solving
the following optimization equation,
min F ¼
X5

j¼1

X5

i¼1

l ai1 � aij jrij þ ð1� lÞjai2 � aijrij
� �

;

s:t:
X5

i¼1

ai ¼ 1; and ai � 0; i ¼ 1;2; . . . ;5;

ð8Þ
gives the combined weights of the TC hazard-impact indicators: A = (ai; i = 1, 2, . . . , 5) = (0.3362 0.1788 0.1261
0.1345 0.2244). Note that in Eq. (8) parameter l is set to 0.5, implying that all categorical weights are considered equal
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contributions. The combined weights show that the RM indicator is relatively more significant than the other indicators,
which is the same as that from the categorical weights.

Because the original hazard impact indicators range in several orders of magnitude, it is necessary to minimize the influ-
ences of the large different magnitudes on the ranking of HIIS. After some experimentation, we found it is more reasonable to
down-scale the magnitudes of RM, RP, RA, RB, and RL to the range of [0, 1], and represented by Idj

; Ifj Ihj
; Iej

; Isj
, respectively, i.e.,
Idj
¼

log dj � 1; dj P 100 persons
dj

100 ; dj < 100 persons

(
; Ifj

¼
log fj � 2; fj P 106 persons

fj
10000 ; fj < 106 persons

(
;

Ihj
¼

log hj � 2; hj P 6667 hm2

hj

100000 ; hj < 6667 hm2

(
; Iej

¼
log ej � 2; ej P 104 houses

ej

10000 ; ej < 104 houses

(
; and

Isj
¼

log sj � 2; sj P 109 RMB
sj

10 ; sj < 109 RMB

(
:

Applying the combined weight series A = (ai; i = 1, 2, . . . , 5) to the above down-scaled hazard-impact indicators leads to the
following HIIS,
yj ¼ a1Idj
þ a2Ifj

þ a3Ihj
þ a4Iej

þ a5Isj
: ð9Þ
Table 1 lists the values of yj for the present study.

2.3. Construction of the hazard-cause index series

The HCIS can be constructed, following the same procedures as those associated with the HIIS. Specifically, the genetic
projection pursuit algorithm is used to obtain the optimized projection direction (0.5377 0.0914 0.8382) for the hazard-
cause indicators (i.e., CN, CR, and CW) and their dimensionless, normalized categorical weights (0.3665 0.0623 0.5713). This
result indicates the more significant contribution of the CW indicator. Applying the GAHP method gives the decision matrix
of ranking weights,
C ¼ ðciiÞ ¼ 10�4 �
10000 5000 9352
20000 10000 19307
10693 5179 10000

264
375;
and calculation of its eigenvalues (i.e., CIC) yields the consistency indicator: CIC = 9.6370 � 10�5, which is much less than
0.10, indicating that the above decision matrix is satisfied with the matrix consistency requirements [20]. Then, we obtain
the ranking weights (0.2451 0.4955 0.2594) showing more pronounced contribution of the CR indicator, and the combined
weights a0k ¼ (0.3750 0.4415 0.1835), (k = 1, 2, 3), after performing optimization. The combined weights show more impor-
tant contributions of the CR indicator, followed closely by the CN indicator.
Table 1
The hazard-impact index (yj), hazard-cause index (xj), and the assessed hazard-risk index (~yj) caused by TCs over
Southern China in Years 1990–2007.

No. Year Impact index Cause index Risk index

1 1990 0.60 54.39 0.84
2 1991 0.87 48.89 0.66
3 1992 0.09 45.47 0.48
4 1993 1.10 53.32 0.78
5 1994 1.17 50.97 0.72
6 1995 1.07 52.69 0.78
7 1996 1.25 54.52 0.84
8 1997 0.83 51.85 0.74
9 1998 0.67 36.27 0.45
10 1999 0.19 40.72 0.37
11 2000 0.59 42.91 0.42
12 2001 0.90 53.86 0.78
13 2002 0.44 44.08 0.41
14 2003 0.75 51.19 0.73
15 2005 0.34 47.85 0.57
16 2006 1.14 55.23 0.84
17 2007 0.37 50.31 0.67
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Unlike the hazard-impact indicators, the original data associated with hazard-cause indicators do not exhibit large differ-
ences in magnitude. Thus, we may construct the HCIS by summing the weighted average of the original data directly with
the combined weights obtained above. Let the CN, CR, and CW index series be x1j, x2j, x3j (j = 1, 2, . . . , 17), we attain the HCIS
as
xj ¼
X3

k¼1

a0kxkj; j ¼ 1;2; . . . ;17: ð10Þ
See Table 1 for the values of xj.

2.4. Assess hazard risks using the two-dimensional normal spread and factorial space theory

As mentioned before, assessing natural hazard risks deals mainly with the identification of a functional relationship be-
tween the probability distribution of hazard-cause factors (as inputs) and a hazard-impact system (as outputs) [8]. Because
of the limited data samples, we adopt the information matrix algorithm to build an assessment model in order to objectively
assess TC hazard risks over Southern China.

First, we need to construct a primitive information matrix. For this purpose, the HCIS xj and the HIIS yj are treated as an
input and output sample, respectively, namely, X = {(x1, y1), (x2, y2), . . . , (x17, y17)}. Next, we define U and V as a discrete input
and output field, respectively, in a monitoring space, where U = {u1, u2, . . . , u12} and V = {v1, v2, . . . , v14}. To ensure the mon-
itoring accuracy, we use small spatial steps, i.e., Dx = 1.8956 and Dy = 0.0965, in U and V, respectively. Thus, the selected
monitoring space of X constitutes its input monitoring space, i.e.,
U ¼ fu1;u2; . . . ;u12g
¼ f35:32 37:22 39:12 41:01 42:91 44:80 46:70 48:60 50:49 52:39 54:28 56:18g;
and the selected monitoring space of Y constitutes the output monitoring space of X, i.e.,
V ¼ fv1;v2; . . . ;v14g ¼ f0:05 0:14 0:24 0:33 0:43 0:53 0:62 0:72 0:82 0:91 1:01 1:11 1:20 1:30g
With the use of the following two-dimensional (2D) normal spread algorithm
lððxjyjÞ; ðuh;vkÞÞ ¼
1

hx

ffiffiffiffiffiffiffi
2p
p exp �ðuh � xjÞ2

2h2
x

 !" #
1

hy

ffiffiffiffiffiffiffi
2p
p exp �

ðvk � yjÞ
2

2h2
y

 !" #
; ð11Þ
where subscripts j = 1, 2, . . . , 17; h = 1, 2, . . . , 12; and k = 1, 2, . . . , 14; hx ¼ 2:6851ðbx�axÞ
n�1 and hy ¼ 2:6851ðby�ayÞ

n�1 are the spread
parameters in (xj, yj) domain, n = 17, ax ¼min16j617fxjgax ¼max16j617fxjg, by ¼min16j617fyjg; by ¼ max16j617fyjg, we can
spread the sample information in (xj, yj) space into the monitoring space U � V, and then obtain a fuzzy set {gjhk} that con-
tains the spread information at each point in the monitoring space.

Summation of the fuzzy set {gjhk}, i.e.,
Ghk ¼
X17

j¼1

GðjÞ ¼
X17

j¼1

ðgjhkÞ12�14; ð12Þ
gives the primitive information matrix of X in the monitoring space U � V, namely,
G ¼ ðGhkÞ12�14 ¼ 10�4

�

496 697 887 1161 1637 2239 2643 2531 1921 1146 536 196 56 13
1193 1626 1912 2143 2502 2964 3207 2918 2143 1251 576 209 60 13
2178 2930 3376 3572 3719 3830 3661 3029 2075 1153 516 186 56 14
3180 4242 4919 5229 5294 5074 4413 3334 2131 1147 528 217 87 36
3951 5226 6130 6630 6710 6260 5239 3870 2537 1516 862 486 276 153
4286 5699 6787 7409 7437 6825 5754 4559 3497 2634 1937 1374 925 571
3984 5501 6788 7535 7547 6986 6304 5827 5486 5018 4314 3450 2532 1654
3095 4613 6078 7056 7333 7238 7377 7956 8571 8692 8133 6994 5432 3686
2003 3308 4755 5955 6730 7412 8512 10081 11587 12430 12325 11191 9071 6340
1087 2004 3179 4405 5588 6906 8609 10650 12637 14113 14686 13956 11721 8411
495 1018 1806 2829 4053 5485 7130 8936 10781 12450 13525 13380 11601 8533
188 437 880 1563 2477 3540 4654 5803 7055 8385 9473 9720 8677 6529

26666666666666666666666664

37777777777777777777777775

:
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After finding the primitive information matrix, we can now construct a fuzzy-relation matrix in order to make fuzzy
rough inference. Since factorial relations can be used to synthesize the essence of concepts or identities, and since a fuzzy
set can be used to quantify these variables, and even extrapolate them [21], we may consider U � V as a factorial space dis-
playing a knowledge structure of the information matrix [22,23]. To this end, let
sk ¼ max
16h612

fGhkgðk ¼ 1;2; . . . ;14Þ; and rhk ¼
Ghk

sk
; h ¼ 1;2; . . . ;12;
we obtain the following causal fuzzy relation matrix (with their magnitudes scaled to the range of [0, 1]) from the primitive
information matrix G:
Rf ¼frhkg12�14 ¼ 10�4

�

1157 1224 1307 1541 2169 3021 3070 2376 1520 812 365 140 48 15
2783 2853 2816 2844 3315 3999 3725 2740 1696 886 392 149 51 16
5080 5142 4973 4741 4928 5167 4252 2844 1642 817 351 134 47 17
7419 7444 7247 6940 7015 6846 5126 3130 1687 813 359 156 74 42
9217 9169 9030 8799 8891 8445 6085 3634 2007 1074 587 348 235 179

10000 10000 9997 9833 9853 9208 6683 4281 2767 1867 1319 985 789 669
9295 9653 10000 10000 10000 9425 7322 5472 4341 3556 2937 2472 2160 1938
7220 8094 8954 9365 9716 9766 8569 7471 6783 6159 5538 5011 4635 4320
4672 5804 7005 7903 8917 10000 9887 9466 9169 8807 8392 8019 7739 7430
2536 3516 4683 5847 7404 9317 10000 10000 10000 10000 10000 10000 10000 9856
1154 1787 2661 3755 5370 7400 8282 8391 8531 8822 9210 9588 9898 10000
439 766 1296 2075 3283 4776 5406 5449 5583 5942 6450 6965 7403 7652

26666666666666666666666664

37777777777777777777777775

:

Based on the fuzzy set in the given U field, eA ¼ fleAðu1Þ;leAðu2Þ; . . . ;leAðu12Þg, and the fuzzy relation matrix Rf in the mon-
itoring space of U � V, we can make the following fuzzy rough inference:
leBðvkÞ ¼ sup
uh2U
flAðuhÞ ^ rhkg ¼max

uh2U
fminfleAðuhÞ; rhkgg; vk 2 V ; ð13Þ
and attain the output fuzzy set in V
eB ¼ leBðv1Þ;leBðv2Þ; . . . ;leBðv14Þ
n o

: ð14Þ
Through the calculation of the gravitational center of the above fuzzy set
eyj ¼
X14

k¼1

leBðvkÞ � vk

,X14

k¼1

leBðvkÞ; ð15Þ
we obtain the estimated values of the output samples, i.e., the hazard risk index values or HRIS as roughly determined by the
hazard-cause indictors of TCs (see the last column in Table 1). We find that the standard deviation of assessment errors so
obtained is 0.0628, with a mean error of 0.2583. The correlation coefficient between the HRIS and HIIS given in Table 1 is
0.7461. Because they do not follow the normal distribution when chronologically ordered, they are not appropriate for t-test.
However, the HRIS and HIIS have similar distributions, based on the Kolmogorov–Smirnov test, with a 91.87% probability
and k = 0.4118.

It is apparent from Table 1 that the highest hazard-risk value of 0.84 corresponds to the years of 1990, 1996 and 2006,
whereas the lowest risk value of 0.37 corresponds to the year of 1999. These results are consistent with those obtained in
accordance with the HIIS (yj), especially for 1996 and 2006 in which Herb (1996), Sally (1996), Bilis (2006), and Saomai
(2006), hitting Southern China, were listed as 4 of the top 10 costliest (and deadliest) TCs from 1983 to 2006 [24]. However,
there is one exception for 1990, particularly when it is compared to 1994. We may attribute this exceptional result to the two
different ways to calculate HIIS and HRIS. Specifically, the year of 1990 has a hazard-impact index value (i.e., 0.60) that is
smaller than that of 1994 (i.e., 1.17) due to the smaller contributions of all the hazard-impact indicators in the combined
weights, whereas the hazard-risk index value of 1990 (i.e., 0.84) is larger than that of 1994 (i.e., 0.72) due to the dominant
RP and RW hazard-cause indicators (see Appendices A and B).

Of course, the above comparison also indicates the likely importance of including the total rainfall amounts of individual
TCs instead of the daily mean rainfall amount as one of the hazard-cause indicators. For example, Typhoon Abe (1990) pro-
duced a total rainfall amount of 468 mm in two days, whereas Typhoon Fred (1994) left behind 678 mm in four days. One
can clearly understand why Fred could produce more hazard problems, based on the RP indicator alone. Moreover, because
the HRIS is assessed after spreading the HCIS information and some fuzzy mathematical manipulations, it should not be con-
sidered as accurate as the HIIS. Nevertheless, the above issues will be examined in our future studies.
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3. An exceeded-probability model for the hazard risk index series

Because of the randomness and irregularity of natural hazards, it is often desirable for decision-makers to know the pos-
sibility of reaching or exceeding certain hazard levels, as compared to previous hazard events. Thus, in this section, we con-
struct an exceeded probability model, following Huang [8] and Huang and Shi [25], to estimate the possibility of exceeding
various categories of TC hazards over Southern China, based on the results obtained in the preceding section.

Given the hazard-impact index field Z = {z1, z2, . . . , zs} = {z1, z2, . . . , z14} = {0, 0.1, 0.2, . . . , 1.3}, we can use the following
one-dimensional normal spread algorithm [8,23] to spread the HIIS information carried by yj to every point in Z:
fjðzkÞ ¼
1

hy

ffiffiffiffiffiffiffi
2p
p exp �

ðyj � zkÞ2

2h2
y

" #
: ð16Þ
Its corresponding member function of the fuzzy subset ~y is
lyj
ðzkÞ ¼

fjðzkÞPs
k¼1fjðzkÞ

¼ fjðzkÞP14
k¼1fjðzkÞ

: ð17Þ
Let
gðzkÞ ¼
X17

j¼1

lyj
ðzkÞ; ð18Þ
and define the frequency of yj falling onto zk as the estimated probability, i.e.,
pðzkÞ ¼
gðzkÞPs
k¼1gðzkÞ

¼ gðzkÞP14
k¼1gðzkÞ

¼ 10�4 � f278 416 543 644 718 775 822 860 889 913 924 889 766 562g;
we obtain the probability of the assessed risk value that exceeds zk by taking the accumulative summation of p(zk), i.e.,
PðzkÞ ¼
X14

l¼k

pðzkÞ

¼ 10�4f10000 9722 9306 8762 8118 7400 6624 5802 4942 4053 3141 2217 1328 562g:
Clearly, the larger the value of the hazard-risk index, the better is the assessed parameter. Therefore, applying the above
exceeded probability result to the HIIS given in Table 1 yields the following categorical order:

(i) the catastrophic hazard year (yj > 1.2) of 1996;
(ii) the major hazard years (0.9 < yj 6 1.2) of 1994, 2006, 1993, 1995, and 2001;

(iii) the moderate hazard years (0.6 < yj 6 0.9) of 1991, 1997, 2003, and 1998;
(iv) the light hazard years (0.3 < yj 6 0.6) of 1990, 2000, 2002, 2007, and 2005; and
(v) the diminutive hazard years (0 < yj 6 0.3) of 1999, and 1992.

That is, the probabilities of exceeding moderate, major and catastrophic hazards are 0.6624, 0.4053, and 0.1328, respec-
tively. Obviously, the results conform the reality of the TC-caused hazard levels during the years of 1990 to 2007 in Southern
China. They could also be roughly estimated from the original data given in Appendices A and B.
4. An improved grey hazard-year prediction model

The grey estimation system theory is built upon the concepts of correlation space, and discrete but smooth functions. It
takes any stochastic process as the temporal and spatial variations of a grey process in a given four-dimensional domain such
that any stochastic variable can be treated as a grey variable in this system. It can also consider a randomly varying (in time
and space) discrete series as a manifestation of a potentially ranking series so that the former can be transformed into a rank-
ing series using appropriate transformation algorithms [15]. In this regard, predicting the future years of TC hazard risks in-
volves examining the hazard year series and HIIS and then finding their inherent characteristics. This can be achieved by
constructing a GM (1, 1) model, based on the previous TC hazard-year series, to estimate the recurrence time intervals of
future TC hazard risks, which is referred to as the GHYPM.

From the results obtained in Section 3, the hazard years exceeding the moderate hazard category are:
{Y(0)(k)}(k = 1, 2, 3, . . . , 10) = {1991, 1993, 1994, 1995, 1996, 1997, 1998, 2001, 2003, 2006}. The corresponding HIIS is
10�4 � (8681, 11025, 11692, 10692, 12507, 8349, 6676, 9045, 7536, 11397) and the corresponding hazard-year series is
d(0) = (2, 4, 5, 6, 7, 8, 9, 12, 14, 16).
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To ensure the predictive accuracy, we use the fifth order roots to improve the smoothness of the original discrete data and
obtain the following summed series:
dð1ÞðkÞ ¼
Xk

i¼1

dð0ÞðiÞ
( )

ðk ¼ 1;2; . . . ;10Þ

¼ 10�4 � ð11487 24682 38479 52789 67547 82704 98222 114660 131612 149023Þ: ð19Þ
Obviously,
fkdð0ÞðkÞ=
Xk�1

i¼1

dð0ÞðiÞg; ðk ¼ 2;3; . . . ;10Þ ¼ 10�4 � ð11487 5590 3719 2796 2244 1876 1673 1478 1323Þ
is a series in a deceased ranking, so it is indeed a smooth series. Averaging the hazard-year series between neighboring
points, i.e., zð1ÞðkÞ ¼ 1

2 ½d
ð1ÞðkÞ þ dð1Þðkþ 1Þ� k ¼ 1;2; . . . ;9, leads to the neighboring-mean series of d(1), i.e.,
Zð1Þ ¼ 10�4 � ð18085 31581 45634 60168 75125 90463 106441 123136 140318Þ:
A GHYPM may be derived from the following ordinary differential equation:
ddð1Þ

dt
þ adð1Þ ¼ b; ð20Þ
where the parameters a and b are obtained by applying the least-square algorithm to (20), â ¼ a
b

� �
¼ 10�4 � �342

12653

� �
. The

solution to Eq. (20) is then
d1ðtÞ ¼ qm expð�atÞ þ b
a
; ð21Þ
where qm is calculated, following Liu and Zhi [16], from
q ¼
X10

i¼2

exp½�aði� 1Þ�
dð0ÞðiÞ

,X10

i¼2

exp½�aði� 1Þ�
dð0ÞðiÞ

 !2

¼ 1:2826:
By setting q = qm[1 � exp (a)], we obtain qm = 38.1040. Therefore, the solution to (20) gives the GM (1, 1) form of the tempo-
ral response series for TC hazard-risk years,
d̂ð1Þðkþ 1Þ ¼ qð1� expðaÞÞ�1 expð�akÞ þ b
a
¼ qm expð�akÞ þ b

a
; k ¼ 0;1; . . . ;9: ð22Þ
After performing recovery transformations in temporal response through accumulative subtractions between d̂ð1ÞðkÞ in (19)
and d̂ð1Þðkþ 1Þ in (22), we obtain the following solution to the GHYPM,
d̂ð0Þðkþ 1Þ ¼ d̂ð1Þðkþ 1Þ � d̂ð1ÞðkÞ ¼ qmð1� expðaÞÞ expð�akÞ ¼ d̂ð1Þð1Þ � b
a

	 

1� expðaÞð Þ exp �akð Þ

¼ 1:1069 1� expð�0:0342Þð Þ expð0:0342kÞ
¼ 10�4 � 12826 13272 13735 14213 14708 15220 15751 16299 16867 17455ð Þ

ðk ¼ 0;1; . . . ;9Þ: ð23Þ
Transforming the above predicted results through accumulative subtractions, the simulated d(0)series is recovered as,
d̂ð0Þ ¼ 10�4 � ð34705 41185 48876 58002 68833 81685 96938 115039 136520 162011Þ: ð24Þ
We can estimate the error series between the simulated d(0) and predicted d̂ð0Þ by defining
eðkÞ ¼ fdð0Þ � d̂ð0Þg ðk ¼ 1;2; . . . ;10Þ; i:e:;

e ¼ 10�4 � ð�14705 � 1185 1124 1998 1167 � 1685 � 6938 4961 3480 � 2011Þ;
and the relative error series, Dk ¼ eðkÞ
dð0Þ

��� ���n o
, (k = 1, 2, . . . , 10), i.e.,
D ¼ 10�4 � ð7353 296 225 333 167 211 771 413 249 126Þ: ð25Þ
It is apparent that the mean relative error from the above series (25) is �D ¼ 0:1014, so the relative accuracy is 1� �D ¼ 0:8986
and the simulated accuracy is 1 � D7 = 0.9874. These results are all better than the respective mean relative accuracy and
simulated accuracy of 0.8620 and 0.9028 as obtained by Liu and Zhi [16]. In particular, our improved algorithm is more rig-
orous than theirs from the theoretical perspective.

With the GHYPM solution, we may predict the hazard-year series after the year of 2006 as d̂ð11Þ ¼ 19:2263,
d̂ð12Þ ¼ 22:8163, ðd̂ð13Þ ¼ 27:0767, ðd̂ð14Þ ¼ 32:1326, ðd̂ð15Þ ¼ 38:1325. After performing recovery transformations, these
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hazard-year series corresponds to the years of 2009, 2012, 2017, 2022, 2028, respectively, namely, after 3, 7, 11, 16, and 22
years from the most recent year of the exceeded probability of moderate TC hazards. Indeed, there were 9 landfalling TCs in
China in 2009, most of which took place in the coastal area of Southern China (see http://www.laxf.gov.cn/qbzq/qbswebsite/
default.asp). This verification is encouraging and it indicates that this GM (1, 1) model could be useful for predicting the fu-
ture hazard years, assuming the recurrence of TC hazards, with appropriate transformations and adjustments due to changes
in other parameters.
5. Summary and concluding remarks

In this study, a fuzzy mathematical model and a modified GHYPM are constructed to estimate and predict TC hazard-year
risks in Southern China, respectively. In constructing these models, a genetic projection pursuit algorithm is developed to
determine the categorical and ranking weights of the hazard-impact and hazard-cause indicators, and their combined
weights, obtained through optimization, are then employed to construct the HIIS and HCIS after data down-scaling, based
on different magnitudes of the hazard-impact indicators. Fig. 1 provides a flow chart of assessing the TC-hazard risks and
predicting the associated risk-recurrence years.

To identify the input–output functional relation between the probability distributions of the hazard-cause and hazard-
impact indicators, a two-dimensional normal spread algorithm is utilized to construct the primitive information and fuzzy
relation matrix, which allows us to make fuzzy rough inference of hazard risks from the HCIS with the factorial space theory
(see Fig. 1). For the TC hazards in Southern China, our calculation shows that the highest HRIS value corresponds to the years
of 1990, 1996, and 2006 and the lowest HRIS value corresponds to the year of 1999, which are consistent with the results
from the HIIS, except for the year of 1990. The standard deviation in estimation error is 0.0628, with a mean error of 0.2583.
We have attributed the inconsistent result for 1990 to the use of the hazard-impact and hazard-cause indicators for calcu-
lating the HIIS and assessing the HRIS values, respectively.

An exceeded probability model, based on the TC hazard-impact indicators, has been constructed to estimate the proba-
bility of exceeding a certain hazard-impact category (Fig. 1). We group the TC hazard impacts during the past 20 years in
Southern China into five categories. Results show that the probability of exceeding a moderate, major, and catastrophic haz-
ard year is 0.6624, 0.4053, and 0.1328, respectively.

A dynamic GHYPM, expressed by a time-dependent differential equation, has been constructed through the GM (1, 1) the-
ory using the original discrete hazard-year series, and its solution is represented in terms of a temporal response function. In
constructing the GHYPM, the original HIIS is first summed accumulatively to make it in a decreased ranking, and the fifth
root transformation is then performed to ensure its smoothness and predictive accuracy. Results show that the dynamical
model has a mean relative error, a mean relative accuracy, and a simulation accuracy of 0.1014, 0.8986, and 0.9874, respec-
tively. Because the response function d̂ðkþ 1Þ grows at an exponential rate, i.e., e0.0342k ?1 as k ?1, the model has a rel-
atively better performance for the first 5 recurrence time intervals, and its predictive accuracy drops rapidly after the year of
2028. Therefore, this model is more suitable for the hazard-year prediction within the first 20 years from 2007.

It should be mentioned that because of the incompleteness and limited size of the data samples and unavoidable errors in
data collection, we have noted that in some cases the hazard-impact and hazard-cause indicators could not be easily syn-
Apply the genetic projection pursuit algorithm                        Apply the GAHP method

           Perform 1D normal spread                           Perform 2D normal spread and fuzzy inference

Prediction of hazard-risk years

Assess hazard risksEstimate exceeded probability

Construct HCISConstruct HIIS

Calculate ranking weightsCalculate categorical weights 

Calculate combined weights

Standardize original data

Fig. 1. A flow chart of the fuzzy assessment of TC-hazard risks and the prediction of TC-hazard-risk years.

http://www.laxf.gov.cn/qbzq/qbswebsite/default.asp
http://www.laxf.gov.cn/qbzq/qbswebsite/default.asp
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chronized. In our future work, we will attempt to examine whether or not such a data sample could be considered as a piece
of fuzzy information with certain fuzzy relations in order to take full use of all data samples for the analyses and prediction of
TC hazard risks. Nevertheless, the above-mentioned problems may impose some limitations on the application of the fuzzy
mathematical model and GHYPM constructed in this study to the analysis and prediction of TC hazard risks in the other
coastal regions around the world. Thus, more future work is needed to gain insight into the inherent characteristics of TC
hazard-impact data, and construct appropriate hazard-cause indicators in order to improve the quality and accuracy of these
fuzzy mathematical models.
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Appendix A

The impact of TC hazards occurring during the period of 1990–2007 in Southern China in terms of the number of human
mortalities (RM), the affected population (RP), the affected agricultural area (RA), damaged houses (RB), and direct economic
losses (RL).
Year
 RM
 RP (104 people)
 RA (104 acres)
 RB (104)
 RL (108 RMB)
1990
 48
 675.75
 36.1325
 3.4303
 7.3085

1991
 260
 2140.587
 79.3374
 7.8168
 52.8285

1992
 4
 475.4359
 22.9047
 6.9037
 15.4521

1993
 166
 4578.1435
 277.5331
 23.6005
 159.5211

1994
 294
 2926.96
 140.9629
 44.7883
 191.2678

1995
 216
 3825.8
 156.1027
 17.151
 141.5335

1996
 548
 2253.46
 87.96
 40.5974
 295.757

1997
 109
 1869.29
 86.4736
 22.522
 77.74

1998
 11
 568.95
 18.491
 0.5355
 9.3474

1999
 22
 804.12
 43.641
 1.234
 29.973

2000
 56
 1114.08
 85.357
 11.6114
 72.232

2001
 72
 3371.592
 172.0839
 16.4745
 243.261

2002
 69
 1463.91
 49.1659
 2.011
 32.4885

2003
 80
 2972.21
 105.4598
 8.7408
 83.4772

2005
 0
 101.0595
 8.0984
 0.1897
 4.4737

2006
 250
 3453.4
 154.6494
 20.0966
 242.3109

2007
 17
 595.82
 25.4351
 0.8072
 26.9266
Appendix B

The characteristics of TC hazards occurring during the period of 1990–2007 in Southern China in terms of the annual-total
landed number (CN), the annual-mean daily maximum rainfall (CR), and the annual-mean daily maximum wind (CW) of TCs.
Year
 CN
 CR (mm)
 CW (m s�1)
1990
 4
 107.74
 29

1991
 8
 87.94
 38.5

1992
 6
 86.19
 28.17

1993
 8
 100.62
 32.125

1994
 7
 98.12
 27.375

1995
 11
 98.32
 28.1

1996
 6
 104.26
 34

1997
 2
 104.73
 26.5

1998
 3
 69.43
 24.5

1999
 8
 73.13
 29.6
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Appendix B (continued)
Year
 CN
 CR (mm)
 CW (m s�1)
2000
 4
 80.5
 32

2001
 8
 101.73
 32.4

2002
 7
 82.39
 27.67

2003
 8
 92.53
 40

2005
 3
 93.99
 28.5

2006
 6
 108.65
 27.3

2007
 5
 95.44
 34.3
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