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Abstract A nonlinear wavelet neural network (WNN) model with natural orthogonal
expansion (NOE) and combined weights is constructed to predict the annual frequency of
tropical cyclones (TCF) occurring over the coastal regions of Southern China. Combined
weights are obtained by calculating categorical weights, based on the particle swarm
projection pursuit, and ranking weights, based on fuzzy mathematics, followed by opti-
mization. The global monthly mean heights at 500 hPa and sea-surface temperature fields
are used as two predictors. The linear and nonlinear information of the predictors with
reduced dimensions is gathered through the NOE and combined weights, respectively, and
treated as the input into the WNN model. This model is first trained with the 55-year (i.e.,
1950–2004) TCF data and then used to predict annual TCFs for the subsequent 5 years
(i.e., 2005–2009). Results show that the mean absolute and relative errors are 0.6175 and
9.34 %, respectively. The impacts of the combined weights, NOE and WNN as well as the
traditional multi-regression approach on the TCF prediction are examined. Results show
superior performance of the WNN-based model in the annual TCF prediction.

Keywords Wavelet neural network ! Statistical prediction ! Tropical cyclone frequency !
Combined weights

1 Introduction

Fuzzy mathematics and nonlinear intelligent computation techniques have been widely
applied to many scientific and engineering fields during the past two decades (Jin et al.
2000; Iliadis and Spartalis 2005; Song et al. 2006; Bingham and Zhang 2007; Wang and
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Bao 2009). Proper treatment of linear and nonlinear processes and construction of non-
linear mathematical models, especially in optimizing predictors in those models, have
attracted considerable attention in order to improve their predictive skills.

Yu et al. (2005) showed the prediction of 24-h rainfall from tropical cyclones (TCs),
based on their tracks, intensities, sizes and movements, with a fuzzy multi-targets algo-
rithm. Liu and Zhang (2012) provided reasonable estimations of the hazard risks associated
with TCs affecting Southern China using a fuzzy information spread technique and a gray
hazard-year prediction model after constructing hazard damage indices with the synthe-
sized linear processing and combined weights method. Lazarovitch et al. (2009) showed
the prediction of ground-water distribution under trickle irrigation using an artificial neural
network (ANN) model. Zhu et al. (2003) studied the effects of the Madden-Julian Oscil-
lations on the development of TCs over the Indian and West Pacific oceans with the
empirical orthogonal functional analysis. Jin et al. (2005) addressed the ‘‘overfitting’’
problem in ANN-forecast models and improved the associated generalization capability by
constructing a low-dimensional ANN learning matrix through principal component anal-
ysis. Chen et al. (2008) found optimal projection directions in a projection pursuit model
by combining a particle swarm optimizing algorithm and penalty function. Yao et al.
(2009) examined the monthly and seasonal monsoon intensity index prediction through the
construction of a nonlinear genetic neural network ensemble prediction model because of
the nonlinear nature involved.

Because of the limited skill in the seasonal to inter-annual prediction of TC tracks by
meteorological models, many past studies have developed various statistical forecast
models in an attempt to predict the frequency of TCs (TCF). For instance, Xiao and Xiao
(2010) examined the characteristics of TCFs occurring over Northwest Pacific and their
landfalls over China using the TC data during the years of 1951–2008. Kwon et al. (2007)
conducted the ensemble prediction of TCFs for the Northwestern Pacific basin. Yin et al.
(2010) applied a back-propagation neural network (BPNW) model to the prediction of
annual TC occurrences over Northwest Pacific. Lu et al. (2003) used an ANN model, in
which mean generating functions and stepwise regression analysis are incorporated, to
analyze the annual TCFs affecting Guangxi Province. Ying and Wan (2011) studied the
prediction of the annual TCF over China with an optimized regression model, in which a
correlative searching method is used to screen predictors and then their multi-collinearity is
removed after performing principal component analysis.

While the previous studies have demonstrated considerable success in individually
applying the algorithms of fuzzy mathematics, linear principal component analysis, step-
wise regression analysis, nonlinear particle pursuit and BPNW to the hazard-risk analysis
and TCF prediction, few studies have integrated all the strengths associated with the above
individual algorithms for the prediction of TCFs. Thus, it is the intention of this study to fill
in the gaps in order to improve our predictive capability of TCFs. Specifically, the
objectives of this study are to (1) construct a nonlinear wavelet neural network (WNN)
model by coupling natural orthogonal expansion (NOE) and combined weights and (2)
apply this WNN-based model to the prediction of annual TCF for the coastal regions of the
Southern China. To achieve the above objectives, we define the global monthly mean
500-hPa height (MH500) and sea-surface temperatures (MSSTs) in the 12 months prior to
a TC season as two major predictors for the TCF of the TC season. The TCF data and the
global MSST and MH500 data during the 56 years of 1949–2004 will be used as a training
sample, and the subsequent 5 years of 2005–2009 will be utilized to validate the predicted
TCFs with the WNN-based model.
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The next section presents the use of linear and nonlinear dimensional reduction
algorithms to separate the linear and nonlinear information of the predictors, respec-
tively. Section 3 describes the construction of the WNN model and shows how a multi-
dimensional nonlinear dataset can be projected onto a lower-dimensional space. Sec-
tion 4 shows the application of the WNN-based model to the prediction of the annual
TCFs affecting Southern China after model training with the TCFs, MH500 and MSSTs
data during the 56 years of 1949–2004. The impact of combined weights, NOE and
WNN as well as the traditional multi-regression approach on the TCF prediction will
also be examined.

2 Linear and nonlinear dimensional reduction

In constructing our TCF prediction model, an important first step is to perform the linear
and nonlinear dimensional reduction of the preprocessed data associated with the two
predictors through NOE and combined weights, respectively.

2.1 Linear dimensional reduction

While multi-indicator variables could provide rich information describing an event, they
often increase the workload of data collection and subsequent data processing. In addition,
because of certain inter-relationship among these variables, some multi-collinearity issue
may arise. In this regard, NOE could identify a predictor matrix with the fewest possible
indicators containing concise linear information to replace a multi-indicator predictor
matrix, thereby reducing the matrix dimensions. In particular, since the principal com-
ponents of NOE are orthogonal to each other, they do not have any multi-collinearity
influence. Moreover, NOE can extract true signals from the original matrix that are often
contaminated by random noises, because the principal components are relatively less
sensitive to random noises.

Suppose that a predictor matrix X (i.e., MH500 or MSST in the present case) can be
expressed in terms of a time function Z and a space vector V, that is, X = VZ, the
decomposition of X can be achieved by the principal component decomposition method
(Jin et al. 2005). Specifically, for a given predictor matrix,

X0 ¼ x0ij

! "

n#m
; ð1Þ

a normalization procedure may be performed using

xij ¼
x0ij & !xi

si
; ði ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;mÞ;

where xi; si are the i-th row sample mean and standard deviation, respectively (Xie and Liu
2006), and the normalized predictor matrix is written as

X ¼ ðxijÞn#m; ð2Þ

Its covariance matrix is

S¼ 1

n
XXT ð3Þ
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where XT is the transposed matrix of X. By obtaining eigenvalues of the real symmetric
matrix S, that is, k1, k2, …, km (k1' k2' ! ! ! ' km), and their corresponding eigenvector,
V = (v1, v2, …, vm), we can express each principal component as the linear combination of
the original multi-indicator variables, that is,

zi ¼ ti1x1 þ ti2x2 þ ! ! ! þ tinxn; ð4Þ

or a more general matrix expression

Z ¼ VTX ¼ ðz1; z2; . . .; znÞT ð5Þ

With the above procedures, we can significantly reduce the number of indicators in the
original data and treat these principal component predictors as part of the model input.

2.2 Nonlinear dimensional reduction

The combined weights method, coupling a nonlinear data processing technique and fuzzy
mathematical theory, is capable of reducing a multi-dimensional vector space to a lower-
dimensional space such that data analysis can be markedly simplified. To obtain the
combined weights of a predictor, say matrix (1), its relative membership values rij need to
be first calculated through the membership weighting function,

rij ¼
xij &min

j
xij

max
j

xij &min
j

xij
ði ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;mÞ ð6Þ

where max
j

xij and min
j

xij are the maximum and minimum values of the j-th indicator (Xie

and Liu 2006), respectively. This will yield a fuzzy weighted evaluating TCF matrix
R = (rij)n9m after standardizing the predictor sample xij. Then, categorical and ranking
weights, based on the projection pursuit-particle swarm optimization algorithm and fuzzy
mathematical theory, respectively, will be calculated, as detailed below, and optimized to
obtain the combined weights (Jin et al. 2003; Liu and Zhang 2012).

2.2.1 Determining the categorical weights A1 = {ai1, i = 1, 2, …, n}

Projection pursuit is a statistical method that is typically used to process the nonlinear, non-
normal distributed data in a multi-dimensional space. It will give the projection direction
that characterizes the multi-dimensional data structures or properties, and reduce a multi-
dimensional space problem to a lower-dimensional one, thereby simplifying our analysis
and understanding. In mathematical terms, this is equivalent to projecting points in a multi-
dimensional space to lower-dimensional one while keeping the categorical information of
predictors in their original multi-dimensional space. In the present case, the projection
pursuit method begins from synthesizing the original multi-indicator matrix to a one-
dimensional projection series along the projected direction A1 = {ai1; i = 1, 2, …, n} with
the membership weighting matrix rij (i = 1, 2, …, n; j = 1, 2, …, m),

rij ¼
xij &minj xij

max
j

xij &min
j

xij
ði ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;mÞ ð7Þ

To determine the projected direction, it is necessary to ensure the one-dimensional dis-
tribution of the projection points locally as dense as possible but globally with the clustered
points as widely spread as possible. To this end, we define the projection objective function:
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Qa ¼ Sz ! Dz; ð8Þ

where Sz is the standard deviation of zj,

Sz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

j¼1

ðzj & !zÞ2

m& 1

vuuut
; ð9Þ

and Dz is the local density of the projected points,

Dz ¼
Xn

i¼1

Xn

j¼1

ðK & dijÞuðtÞðK & dijÞ: ð10Þ

In Eq. (10), K is the window radius of the local density; dij = |zi - zj| is the distance
between points; t = K - dij; and the unit step function u(t) is 1 for t C 0, and 0 for t \ 0.
When selecting K, it is necessary to ensure that the average number of the projected points
within the window will not be too small to avoid the generation of large moving-average
errors, and meanwhile, it will not increase too fast with increasing n. Thus, we take an
empirical value of K = 0.1Sz, following Jin et al. (2003).

Given a predictor sample, the projection objective function Qa changes with projection
direction, and different projection directions will reflect different data characteristics. An
optimized projection direction should capture the most important characteristics of the
multi-dimensional data, so the projection direction can be estimated by maximizing the
projection objective function:

max Qa ¼ Sz ! Dz

s:t:
Pn

i¼1

a2
i ¼ 1 and ai' 0

8
<

: ð11Þ

where s.t. is an acronym of ‘‘subject to’’. To solve the complicated nonlinear optimization
problem using A1 = {ai1; i = 1, 2, …, n} as the optimization series, we define the fitness
function as

f ðai1Þ ¼ Qa: ð12Þ

Next, a particle (or point) swarm optimization algorithm is employed to optimize the
projection direction (Bonabeau et al. 2000). In this algorithm, the fitness function (12)
regulates the search direction, according to each particle’s position and velocity. Each
particle can pursuit its current optimal particle by memory through its interaction with
others, and it can also keep finding an optimal region in a complicated solution space. If a
better solution is found, it will be used as a base to search the next solution. Every
interactive process is not entirely random, but the finding and updating solution processes
are all optimized. This optimization algorithm will allow one to find k units with high
fitness from the particles that have evolved to the last generation, and obtain k better-
projected directions as the categorical weights of the predictors A1 = {ai1, i = 1, 2, …, n}
after dimensional reduction.

2.2.2 Determining ranking weights A2 = {ai2, i = 1, 2, …, n}

The analytic hierarchy process in fuzzy mathematics treats the variable under study (e.g.,
TCFs herein) as a system, and the essence of system evaluation is a process of optimizing
and ranking. In general, if an element of rij in R is large, so is its ranking influence on the
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predictor. That is, given the i-th indicator of the predictor matrix R, if the algebraic sum si

along the i-th line is large, so is its optimized ranking influence on the predictor. In this
study, we derive the ranking information of the predictors’ sample sets, with some tech-
niques from Jin et al. (2003), and then determine each predictor’s ranking weights.

Specifically, we start from the fuzzy evaluation matrix R = (rij)n9m, and let si ¼
Pm

j¼1

rij:

From

cij ¼
si&sj

maxfsig&minfsig ðcm & 1Þ þ 1; si' sj

1
si&sj

maxfsig&minfsig
ðcm&1Þþ1

si\sj

(
ð13Þ

where max{si} and min{si} are the maximum and minimum values of si, respectively, and

cm ¼ minf9; int½maxfsig
minfsig þ 0:5*g is an important reference constant, we construct a decision

matrix C = (cij)n9m and obtain a level 1–9 decision matrix C to be used to calculate the
ranking weights of each predictor. The eigenvalues of C are used to calculate consistency
index (CIC). If CIC \ 0.10, it means that the decision matrix meets the consistency
requirements, and the ranking weights A2 = {ai2, i = 1, 2, …, n} can be obtained. If it
does not, an optimization algorithm in MATLAB 7.0 may be used to obtain a modified
decision matrix until it meets the consistency requirements.

2.2.3 Determining combined weights A = {ai, i = 1, 2, …, n}

The combined weights A = {ai, i = 1, 2, …, n} can be obtained by optimizing the
objective function,

min F ¼
Xm

j¼1

Xn

i¼1

ðljai1 & aijrij þ ð1& lÞjai2 & aijrijÞ

s:t:
Xn

i¼1

ai ¼ 1 and ai' 0; i ¼ 1; 2; . . .; n

ð14Þ

where we may take the categorical coefficient as l = 0.5, assuming that each categorical
weight has the same reference value. So, the original multi-dimensional nonlinear predictor
matrix X can now be simplified to a one-dimensional linear predictor series A, that is,

Z+ ¼ R A ¼ ðz+11; z
+
21; . . .; z+n1Þ

T ð15Þ

This one-dimensional predictor series should be highly correlated with the prognostic
variable under study (e.g., TCF), and it will be used as part of the input into the WNN-
based prediction model to be derived in the next section.

3 Construction of a WNN-based prediction model

Numerous studies showed that there are often complicated linear and nonlinear relation-
ships between prognostic variables and predictors. Thus, it is desirable to capture the key
linear information in the original multi-indicator array of each predictor, and meanwhile
gather as much nonlinear information as possible. As mentioned in the preceding section,
the linear information in the original data array is obtained by performing NOE twice,
while its nonlinear information is gathered by performing NOE once, followed by the
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combined weights derived through the particle pursuit and fuzzy mathematics. These
algorithms are relatively simple and easy to execute, but their resulting functions are
powerful with few parameters to be adjusted.

The generalization of a nonlinear model is another key factor in evaluating how well the
model performs. A WNN model typically couples the wavelet transformation with BPNW,
and it replaces the S-type activation function in BPNW with a transfer function that uses
the wavelet basis function as hidden nodes. Thus, such a WNN model contains superior
properties of the functional approximation and error tolerance from wavelet transforma-
tion, and the self-learning ability from neural network. Unlike a normal neural network
prediction model, such a WNN model could not only determine the network structures
objectively, but also has a fine generalization performance.

In this study, we intend to develop a nonlinear prediction model by coupling NOE and
combined weights with a WNN model, which takes advantage of the strengths in NOE and
combined weights and all the superior properties of a WNN model. Specific steps in
constructing this WNN-based model are given as follows:

i. Generate randomly the stretch coefficient ej and the transfer coefficient pj of the
wavelet function in the range [0, 1], design a weighting function wij associated with the
input and hidden layers and a weighting function wjk associated with the hidden and
output layers, and specify the overall convergence error of the model.

ii. Determine the number of nodes for the respective input, output and hidden layers,
based on the sample characteristics.

iii. Determine the training and prediction samples through correlation analysis: (a) form a
new data series after applying NOE and correlation analysis to the original data array;
(b) gather numerous indicators after performing NOE on the new data series; (c)
obtain combined weights after applying the particle pursuit and fuzzy mathematics
algorithms to the new data series, followed by optimization; and (d) gather further key
indicators after performing dimensional reduction for the new data series with the
combined weights. The final predictors associated with MH500 and MSST found in
(b) and (c) will be used as the input into the WNN-based model.

iv. Given the input data series xi (i = 1,2, …, k), the output of the hidden layer should be

gjðxÞ ¼ gj

Pk

i¼1

wijxi & pj

ej

0

BB@

1

CCA ðj ¼ 1; 2; . . .; lÞ; ð16Þ

where g(j) is the j-th node output value of the hidden layer; ej and pj are the stretch and
transfer coefficients of the wavelet basis function gj, respectively. We use the Morlet
mother wavelet basis function for gj(x), that is, gj(x) = cos(1.75x)Exp(-x2/2), which gives
better results, based on numerous model experiments.

v. A nonlinear WNN-based prediction model is finally constructed after obtaining

outputs from the WNN model yk ¼
Pl

i¼1

wikgðiÞ; ðk ¼ 1; 2; . . .;mÞ and performing the

WNN-integrated training, where l and m are the number of nodes in the hidden and
output layers, respectively.

Figure 1 shows the flow chart of the above-mentioned steps starting from the data
processing to dimensional reduction, model training and the prediction of the annual TCFs
using the WNN-based model.
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4 Model application and analysis

In this section, we apply the WNN-based prediction model constructed in the preceding
section to the TCF prediction for the coastal areas of Southern China consisting of the
Provinces of Guangdong, Guangxi and Hainan. These regions typically suffer the most
frequent passage, the most severe impact and the longest duration of TCs in China.
However, the annual TCFs over these areas vary substantially from year to year, for
example, from the highest 9 to the lowest 1 during the past 61 years (i.e., 1949–2009; see
Tables 1 and 2). In addition, the relationships between the TCFs and predictors are
complicated, involving both linear and nonlinear processes. Thus, the above-mentioned
variable annual TCFs and complicated relationships provide a severe test to examine the
reliability of the WNN-based model in predicting the TCFs over Southern China.

4.1 Data source and processing

For this study, we treat the landfalling TCF over Southern China as the prognostic variable.
Several TCF datasets collected during the years of 1949–2009 are used, that is, including
those from Typhoon Annual Book for years 1949–1988 and Tropical Cyclone Annual
Book for years 1989–2009 (see Tables 1, 2). The global MH500 and MSST fields, used as
the two major predictors, are from the National Centers of Environmental Prediction
(NCEP) 1"-resolution reanalysis. Statistically, we may expect the MH500 field to roughly
indicate the relative strength of the subtropical high in determining the tracks of TCs
through the Southern China (Chen and Ding 1979; Deng et al. 1999), and the MSST field
to reveal TCFs and the genesis/intensity of TCs over the region under study (Aberson
1998; Kaplan and DeMaria 1999; Wu et al. 2010). We treat the first 56-year (i.e.,
1949–2004) data (but for 55-year TCFs, i.e., 1950–2004) as the model-training sample, and
the remaining 5-year (i.e., 2005–2009) data as the independent prediction sample.

Data pre-processing with NOE

Linear dimensional 

reduction
Particle pursuit to 

obtain categorical 

Model inputs

WNN training

model prediction

Fuzzy math to

derive ranking 

Combined weights for nonlinear

dimensional reduction

Fig. 1 The flow chart of a nonlinear WNN prediction model by coupling NOE and combined weights
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Before applying the WNN-based prediction model, we calculate first the correlations
between the above-mentioned 55 TCFs in a series and the 55 MH500 values in a series
from each month of a 12-month period prior to the June month of individual TC seasons
(e.g., from June to December in 1949 and January to May in 1950 for the TCF of 1950) for
the 55 years (i.e., 1949–2003) at each (1" 9 1") grid box. Repeat the above procedures for
MSST. This will initially give 12 global maps of the correlations associated with each
predictor. Figure 2a, b shows examples of the correlations between the TCFs and MH500,
and the TCFs and MSST for the month of Septembers, respectively. In these maps, we are
only concerned with the grid boxes at which (a) the absolute correlation coefficients are
greater than 0.32 (i.e., reaching the 98 % significance level) and (b) threshold (a) is met for
a continuous coverage of at least 30 grid boxes. For the examples given in Fig. 2a, b, 64
and 157 grid boxes meet the specified thresholds, respectively.

With the high-correlated grid boxes obtained above, their NOE analysis of the asso-
ciated correlation arrays will give new correlations between the 55-year TCFs and
numerous (dimensionless) principal components. We pick 27 principal components with
the absolute correlation coefficient of greater than 0.20 as preliminary indicators, 22 of
which are associated with MH500 in the present case. Although only five preliminary

Table 2 Comparison of the WNN-predicted annual TCF after averaging 30 forecast tests to the observed
one and their associated absolute and relative errors during the years of 2005–2009

Years Observed Predicted Absolute error Relative error (%)

2005 6.0000 7.4531 1.4531 24.22

2006 4.0000 3.9294 -0.0706 1.76

2007 5.0000 4.6248 -0.3752 7.50

2008 9.0000 7.9062 -1.0938 12.15

2009 9.0000 9.0950 0.0950 1.06

Average 6.6000 6.6017 0.6175 9.34

Standard deviation 2.3022 1.8663 0.5253 9.47

The 5-year averaged errors and standard deviations are also given

Fig. 2 Horizontal distribution of the correlation coefficients (a) between the 55-year TCFs and the 55-year
MH500 in the month of Septembers prior to individual TC seasons over the southeastern US-Atlantic region;
and (b) as in (a) but for MSST over the Southern Indian Ocean. Only the areas of significance are shown
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indicators are associated with MSST, their contributions to the 55-year TCFs are not small.
That is, their correlations with the TCFs are as high as -0.54, whereas 14 preliminary
indicators associated with MH500 are less than 0.3. These 27 indicators with the highly
correlated principal components will be treated as the model-training sample. Clearly, this
will ensure the high correlation of the two predictors with the TCFs during the 55 years.

4.2 Prediction of annual TCF for Southern China

The above 27 preliminary indicators will be reduced to nine indicators after applying
stepwise regression, and then performing the NOE of the nine indicators will yield three
principal components that have both the high variances (i.e., 19.3075, 15.2321 and 9.9372)
and the high correlation between the TCFs and the predictors (0.6185, -0.3560 and
-0.3356) for the 56 years under study. Meanwhile, to effectively capture the nonlinear
information of each predictor, the number of the selected nine indicators will be reduced to
one through the combined weights, in which the correlation coefficient between this
indicator and the TCFs is 0.4433. A total of four principal indicators, that is, the three
principal components after the NOE plus one principal component after applying the
combined weights, will be used as the model input into the WNN model. The 56-year data
sample during the years of 1949–2004 will be network-trained via the WNN prediction
model.

According to Kolmogorov’s mapping network theorem (Krylov 2002), a three-layer
network can accomplish the projection from any n to m dimensions. Thus, we decide to
construct such a three-layer network with one hidden layer. In general, too many nodes in a
hidden layer will affect network performance, leading to too long a learning process,
whereas too fewer nodes could cause a bad network error tolerance. Our initial experi-
mentation indicates that six nodes are appropriate for the hidden layer, giving rise to a 4-6-
1 network structure. During the network training, we take the learning probability of the
neural network weight and the wavelet parameter as 0.01 and 0.001, respectively (Shi et al.
2010; Jin 2004), and set the sum of errors, that is,

P
|actual value - default value|, as the

target function. If the sum of errors is set too small, the training process may enter a local
valley with poor results. Our network training experience indicates that when the sum of
errors equals about 8, the mean relative error of the sample predictors can be kept at about
14 %, giving the best training result. In this case, we have 5 % probability to obtain
predictions with the mean relative error of about 10 %. Figure 3 compares the averaged
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Fig. 3 Comparison of the time series of the trained annual TCF (pink) from the nonlinear WNN model to
the observed one (blue) during the years of 1949–2004 (see text for more details)
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annual TCF from the selected 30 trained TCFs with smaller relative errors after training the
56-year data sample for 600 times, at which the above-mentioned conditions are met.
Obviously, the trained TCFs compare very favorably to the observed, revealing that the
WNN nonlinear prediction model, based on the NOE and combined weights, does have a
great data-fitting capability.

Now, we may use this trained WNN model to ‘‘predict’’ the subsequent 5-year TCFs,
that is, 2005–2009, using the MH500 and MSST data from each month of a 12-month
period prior to the June month of the TC season of concern (e.g., from June to December in
2004 and January to May in 2005 for the TCF prediction of 2005). Clearly, the TCFs and
the MH500 and MSST data are independent from those used in the above training process.
Figure 4 compares the predicted annual TCF, after averaging 30 forecast tests, to the
observed one for each year from 2005 to 2009. The standard deviations of the predicted
TCFs vary from 0.5 to 2.3. Table 2 shows that the mean absolute and relative errors are
0.6175 and 9.34 %, respectively. We have estimated the root-mean-squared error (RMSE)
as 0.832. These results are indeed encouraging, indicating the effectiveness of the WNN-
based model in predicting the annual TCFs for the coastal region of the Southern China.

4.3 Impact of combined weights, NOE and WNN

As mentioned in Sect. 4.1, the above encouraging results are obtained with four predictors,
that is, the three principal component predictors plus one (combined weights) predictor,
after performing NOE, combined weights and WNN. In this subsection, the importance of
each of the three processes is examined using the results presented in Sect. 4.2 as a control
model.

Specifically, in Test A, only the three principal component predictors are used as the
input into the WNN model, but excluding the one predictor from combined weights. In
Test B, the combined weight algorithm is applied multiple times, rather than going through
NOE, until the 27 preliminary predictors is dimensionally reduced to one predictor, which
is then used as the input into the WNN model. Table 3 shows that the mean absolute and
relative errors for Tests A and B are 0.9823, 15.15 % and 0.7147, 11.64 %, respectively,
with the RMSEs of 1.264 and 6.914. These errors are all obviously greater than those in the
control prediction model, that is, 0.6175 and 9.34 % (see Table 2). Thus, the use of NOE
and combined weights to extract the respective linear and nonlinear information of the
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Fig. 4 Comparison of the WNN-predicted (pink) annual TCF after averaging 30 forecast tests to the
observed one (blue) during the years of 2005–2009
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predictors followed by the WNN process is effective in obtaining highly reliable prediction
results.

In order to objectively evaluate the dimensional reduction of the predictors with multi-
dimensional information and the TCF prediction performance of the WNN model, three
tests are designed to see how well the traditional regression models would perform. Note
that multi-regression models have been used at today’s operational weather prediction
centers for predicting the tracks and intensities of TCs (Aberson 1998; Kaplan and
DeMaria 1999). Thus, in Test C, all the four predictors are used as the input into a linear
multi-variable regression prediction model, instead of the WNN model. Table 4 shows that
the mean absolute and relative errors for this prediction model are 1.1309 and 16.62 %,
respectively, with an RMSE of 1.281. These errors are clearly greater than those given in
Table 2.

In Tests D and E, the model input is the same as Tests A and B, respectively, except that
a linear regression prediction model is used instead of the WNN model. Table 5 shows the
associated errors of two tests. A comparison of Table 3 and Table 5 indicates that with the
same predictors and the same independent testing sample, the WNN-based model produces
higher prediction accuracies, suggesting further the effectiveness of the model in capturing
the essence of the correlations between the TCFs and predictors.

Table 3 As in Table 2 except for Test A (left: excluding the combined weights predictor) and Test B (right:
without going through NOE)

Years Observed Test A Test B

Predicted Absolute
error

Relative
error (%)

Predicted Absolute
error

Relative
error (%)

2005 6.0000 5.8731 -0.1269 2.12 7.1190 1.1190 18.65

2006 4.0000 4.3301 -0.6699 13.40 5.0352 0.0352 0.70

2007 5.0000 5.0448 1.0448 26.12 4.8627 0.8627 21.57

2008 9.0000 6.2100 -2.7900 31.00 7.6089 -1.3911 15.46

2009 9.0000 8.7202 -0.2798 3.11 8.8345 -0.1655 1.84

Average 6.6000 6.03564 0.9823 15.15 6.69206 0.7147 11.64

Standard
deviation

2.3022 1.6670 1.3988 13.13 1.7106 0.9897 9.72

Table 4 As in Table 2 except for Test C (use of a multi-regression model)

Years Observed Predicted Absolute error Relative error (%)

2005 6.0000 7.3147 1.3147 21.91

2006 4.0000 4.4524 0.4524 11.31

2007 5.0000 4.2459 -0.7541 15.08

2008 9.0000 6.8053 -2.1947 24.39

2009 9.0000 9.9390 0.9390 10.43

Average 6.6000 6.55146 1.1309 16.62

Standard deviation 2.3022 2.3369 1.4308 6.27
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5 Concluding remarks

In this work, we constructed a nonlinear WNN-based model by coupling NOE and com-
bined weights in order to predict the annual TCF for the coastal regions of the Southern
China. The global MH500 and MSST fields are used as the two major predictors. Because
of the typical linear and nonlinear relationships between the TCFs and predictors, NOE is
used to perform linear dimensional reduction in the predictors, while the combined weights
method, which combines categorical weights, based on the particle pursuit, and ranking
weights, based on the fuzzy mathematics, is used to conduct the nonlinear dimensional
reduction. The projection of the multi-dimensional nonlinear data to a lower-dimensional
space provides more useful linear and nonlinear information for the training of the WNN-
based model. In constructing the WNN-based model, the S-type activation function in
ANN is replaced by the Morlet mother wavelet basis function, and the global convergence
error in WNN is set as the objective function.

The WNN-based model is tested with a 61-year dataset, using the first 56-year (i.e.,
1949–2004) data as a training sample and the subsequent 5-year (i.e., 2005–2009) data to
validate the prediction of TCFs. Results show that the mean absolute and relative errors are
0.6175 and 9.34 %, respectively. The impacts of using the combined weights, NOE and
WNN as well as the traditional multi-regression approach for the TCF prediction are also
examined. Results show superior performance of the WNN-based model in the TCF
prediction.

Of course, the above results do not imply that the WNN model so constructed is perfect,
especially in terms of physical processes involved in TCFs. In the future, it may be
desirable to include vertical wind shear as one additional predictor to explore its impact on
annual TCFs through the genesis of TCs (Kaplan and DeMaria 1999; Frank and Ritchie
2001; Zhu et al. 2003; Zhang and Kieu 2005). It will also be of interest to gain insight into
why the annual TCFs over certain areas are highly correlated with MSST or MH500.
Nevertheless, our results appear to have important implications to the construction of such
a WNN-based prediction model for other fields (e.g., natural disasters, economics and
finance).
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