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ABSTRACT

In this study, the linearized, f-plane, shallow-water equations are discretized into a matrix eigenvalue

problem to examine the full spectrum of free waves on barotropic (monopolar and hollow) vortices. A typical

wave spectrum for weak vortices shows a continuous range between zero and an advective frequency asso-

ciated with vortex Rossby waves (VRWs) and two discrete ranges at both sides associated with inertio-gravity

waves (IGWs). However, when the vortex intensity reaches a critical value, higher-frequency waves will be

‘‘red shifted’’ into the continuous spectrum, while low-frequency waves will be ‘‘violet shifted’’ into the

discrete spectrum, leading to the emergence of mixed vortex Rossby–inertio-gravity waves (VRIGWs).

Results show significant (little) radial wavelike structures of perturbation variables for IGWs (VRWs) with

greater (much smaller) divergence than vorticity and the hybrid IGW–VRW radial structures with equal

amplitudes of vorticity and divergence for mixed VRIGWs. In addition, VRWs only occur within a critical

radius at which the perturbation azimuthal velocity is discontinuous. As the azimuthal wavenumber increases,

lower-frequency waves tend to exhibit moremixed-wave characteristics, whereas higher-frequency waves will

be more of the IGW type. Two-dimensional wave solutions show rapid outward energy dispersion of IGWs

and slower dispersion of VRWs and mixed VRIGWs in the core region. These solutions are shown to re-

semble the previous analytical solutions, except for certain structural differences caused by the critical radius.

It is concluded that mixed VRIGWs should be common in the eyewall and spiral rainbands of intense

tropical cyclones. Some different wave behaviors associated with the monopolar and hollow vortices are

also discussed.

1. Introduction

Intense tropical cyclones (TCs) often develop polyg-

onal eyewalls, double eyewalls, and spiral rainbands in

the inner-core regions (e.g., Willoughby et al. 1982;

Marks and Houze 1987; Liu et al. 1997). These features,

superimposed on the mean rotational flow, play an im-

portant role in determining the structural and intensity

changes of TCs (Black and Willoughby 1992; Lee and

Bell 2007; Chen et al. 2011). Earlier views on the dy-

namics of these perturbation structures were based on

the theory of internal inertio-gravity waves (IGWs)

(e.g., Kurihara 1976; Willoughby 1978; Elsberry et al.

1987). One caveat with this theory is that these observed

structures often propagate much slower than pure

IGWs. Thus, more attention later has been shifted to

the vortex Rossby wave (VRW) theory of Macdonald

(1968) who drew an analogy between spiral rainbands

and Rossby waves around a rotating sphere (e.g., Guinn

and Schubert 1993; Montgomery and Kallenbach 1997,

hereafter MK; Wang 2002). Recent observational and

modeling studies have shown the presence of intense

divergence and cyclonic vorticity in the eyewall and spiral

rainbands (Jorgensen 1984; Liu et al. 1999; Hogsett and

Zhang 2009). Obviously, the IGW and VRW theories,

describing the respective divergent and rotational flows,

cannot provide a complete description of wave dynamics

in TCs.

Recently, Zhong et al. (2009, hereafter ZZL) devel-

oped a theory for azimuthally propagating mixed vortex

Rossby–inertio-gravity waves (VRIGWs) that are similar
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in many characters to the equatorial mixed Rossby–

gravity waves found by Matsuno (1966), one of which is

the presence of both rotational and divergent flows, in

contrast to nondivergent VRWs. By neglecting the ad-

vection of the mean height by perturbation radial flows

in the linearized, f-plane, shallow-water equations and

justifying the radial variation of the Bessel parameter

based on a real-data cloud-resolving TC simulation,

ZZL were able to obtain a form of the Bessel equation

for an azimuthal harmonic oscillator in the cylindrical

coordinates with the following cubic wave-frequency

equation exhibiting the coexistence of IGWs, VRWs,

and mixed VRIGWs:

v32 (m22FrhV)v1 nR0Tr 5 0, (1a)

wherev is the intrinsic frequency; the Froude number Fr

is the squared ratio of the rotational speed to the phase

speed of surface gravity waves; the vortex Rossby

number R0 is the ratio of the mean rotation to its radial

gradient of vertical absolute vorticity h; Tr is the cur-

vature of azimuthal flows; V is the angular velocity; and

m(n) is the percentage distance of each node, corre-

sponding to the positive roots of nth-order Bessel

function of the first kind, between the TC center and the

boundary radius for a given azimuthal wavenumber

(WN) n. Note that all the variables in Eq. (1a) are

nondimensional (see ZZL for more details). An im-

portant result from ZZL is that the normal-mode char-

acteristics of the three different waves are determined

by the following discriminant parameter associated with

Eq. (1a); that is,

Q5
(m22FrhV)3

27
2

1

4
n2R2

0T
2
r . (1b)

Using a real-data model-simulated TC vortex as the

basic state, ZZL found that (i) when Q . 0, there exist

two high-frequency oppositely propagating IGWs and

a low-frequency VRW propagating against the mean

flow; (ii) when Q 5 0, there are only two intermediate-

frequency waves exhibiting the characteristics of mixed

VRIGW; and (iii) when Q , 0, there is a single real

solution corresponding to a cyclonic-propagating low-

frequency VRIGW and two complex conjugate solu-

tions associated with dynamically unstable VRIGWs.

Thus, it is clear from Eq. (1b) that the smaller m is, the

more likely it is that mixed VRIGWs will occur.

Because the analytical solution in Eq. (1a) was ob-

tained after applying the above-mentioned two simpli-

fying procedures, it is desirable to examine to what

extent the results ofZZLcan be generalized. Furthermore,

little is understood about the spectral characteristics

of mixed VRIGWs in relation to IGWs and VRWs as

described by the linearized shallow-water equations.

Thus, in this study, we will use the same dynamical

framework as in ZZL, but without making any approx-

imation, to study various classes of waves propagating in

TC-like vortices, with more attention given to mixed

VRIGWs. This will be done by invoking numerical so-

lutions of the linearized shallow-water equations. Nu-

merical solutions are also desirable because ZZL assumed

nonzero Doppler-shifted frequency like other theoretical

wave-motion studies in order to derive the analytical

normal-mode solutions.

Montgomery and Lu (1997, hereafter ML) have also

invoked numerical solutions of the linearized shallow-

water equations to study the spectrum and structures of

VRWs and IGWs propagating in TC-like vortices. In

addition, they examined the nature of ‘‘balanced’’ and

‘‘unbalanced’’ flows dominated by the respective rota-

tional and divergent components of barotropic vortices.

The divergent flows account for the adjustment of the

mass and wind fields, depending upon the time scale

of the motions. Recent studies have revealed the pres-

ence of quasi-balanced flows in intense TCs and other

mesoscale convective systems (Davis and Weisman

1994; Wang and Zhang 2003; Zhang and Kieu 2006;

Zhong et al. 2008). This implies that both divergence

and rotation are important in these weather systems.

Zeng et al. (1990) studied the wave spectrum and ei-

genfunction of two-dimensional shallow-water equa-

tions under the influences of westerly wind shears and

found that the wave spectrum can be easily separated

into two classes in the presence of weak flows: low-

frequency Rossby waves with a continuous spectrum

and high-frequency IGWs with a discrete spectrum;

continuous versus discrete spectra will be discussed in

section 3a. However, the spectrum of IGWs could ex-

tend into the continuous spectrum and overlaps with

Rossby wave spectrum in the presence of strong westerly

flows.As a result, low-frequency IGWswould resemble in

many aspects those of Rossby waves, including those

typical characteristics of low-frequency waves (e.g., quasi-

balanced features).

The objectives of this study are (i) to examine the

spectral andpropagation characteristics ofmixedVRIGWs

in relation to VRWs and IGWs in rapidly rotating

TC-like vortices and (ii) to provide a more complete

understanding of wave spectrum using a linearized,

finite-differenced shallow-water equations model, the

so-called shallow-water vortex perturbation analysis

and simulation (SWVPAS), developed by Nolan et al.

(2001, hereafter NMG). They are achieved by numeri-

cally solving the shallow-water normal-mode equations

and then examining their wave spectrum distribution for
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given TC-like vortices. A third objective is to compare

the wave propagation characteristics from the numerical

solutions to those from the mixed-wave theory of ZZL.

The next section shows discretized normal-mode

shallow-water equations (i.e., SWVPAS), discusses

two different vortices used for VRIGWs studies, and

then presents their frequency–WN relations for differ-

ent signs of Q. Section 3 performs an eigenfrequency

analysis of mixed VRIGWs, VRWs, and IGWs in

SWVPAS, following ML and Zeng et al. (1990). Section

4 shows the structures and evolution of each class of

the waves on a monopolar vortex with SWVPAS,

and then compares the numerical solutions of propa-

gating waves on a TC-like vortex to the analytical so-

lutions of ZZL.

2. Numerical model and basic states

Consider the propagation of small-amplitude gravi-

tational oscillations in a rapidly rotating shallow-water

system allowing for the coexistence of rotational and

divergent flows. The simplest governing equations used

to describe these wave motions are the linearized,

f-plane, shallow-water equations in polar (r, l) co-

ordinates (ML; ZZL), which is also the basic framework

of SWVPAS, given by

�
›

›t
1V

›

›l

�
u0 2 ~f y01 g

›h0

›r
5 0, (2a)

�
›

›t
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›
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�
y0 1hu0 1 g

›h0

r›l
5 0, (2b)

�
›

›t
1V

›

›l

�
h0 1HD0 1 ku0

dH

dr
5 0, (2c)

where u0 and y0 are the radial and azimuthal perturba-

tion velocity, respectively; h0 andH are the perturbation

height and the mean equivalent depth, respectively;

V(r) is the mean azimuthal wind, and V(r) 5 V(r)/r

is the mean angular velocity; ~f 5 f 1 2V is the mod-

ified Coriolis parameter ( f) varying with radius; h5
f 1 2V1 rdV/dr is the mean vertical absolute vorticity;

D0 5 ›ru0/r›r1 ›y0/r›l denotes the perturbation diver-

gence; and the parameter k, set to either 1 or 0, is used to

indicate the effect of the radial advection of H by per-

turbation flows. In ZZL, k was set to null in order to

obtain a second-order ordinary differential equation

with constant coefficient, but k 5 1 is used herein.

As in ZZL, the basic state is in gradient wind balance;

that is,

fV1V 2/r5 gdH/dr . (3)

Assuming the following harmonic form of wave

solution,

fu0, y0, h0g5 fun(r, t), yn(r, t), hn(r, t)g exp(inl)
5 fi~u(r), ~y(r), ~h(r)g exp[i(nl2 ~vt)] , (4)

where un, yn, and hn denote the perturbation amplitudes

in terms of complex functions of radius and time, as in

NMG, and ~u, ~y, and ~h are the radial distribution of the

perturbation amplitudes; n denotes the azimuthal WN;

and ~v is the Doppler-shifted wave frequency (s21), we

obtain the azimuthal Fourier spatial version of the lin-

earized perturbation equations [Eqs. (2a)–(2c)], as in

SWVPAS; that is,

›un
›t

52i~v(i~u) exp(inl)

5 2inV(i~u)1 ~f~y2 g
d ~h

dr

" #
exp(inl) , (5a)

›yn
›t

52i~v~y exp(inl)5 2inV~y2h(i~u)2 ig
n ~h

r

" #
exp(inl) ,

(5b)

›hn
›t

52i~v ~h exp(inl)

5

(
2inV ~h2

H

r

›

›r
[r(i~u)]2

dH

dr
(i~u)2

inH

r
~y

)
exp(inl) .

(5c)

To ensure the finite amplitudes of perturbation quanti-

ties, we require that ~h5 0 at r5 0 and as r/‘ for n$ 1.

Because of the strong radial dependence of the dy-

namical variables in Eqs. (5a)–(5c), it is not possible to

obtain analytical normal-mode solutions without mak-

ing the following two assumptions as given in MK and

ZZL: (i) the radial slow variation of all the dynamical

variables and (ii) the nonzero local Doppler-shifted fre-

quency. Thus, a numerical procedure has to be invoked.

Here, the numerical solution technique of Flatau and

Stevens’ (1989) is used to solve Eqs. (5a)–(5c), with the

same staggered grid configurations as those used byML

and NMG. That is, we first divide the domain [0, rb]

equally into 2N pieces, giving the grid distance of dr 5
rb/2N, and then define the horizontal winds at even

grid points and the mass variables at odd grid points;

namely,

~v2k
~u2k 5 n(V~u)2k1 ( ~f~y)2k 2 g

~h2k112
~h2k21

dr
, (6a)
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~v2k~y2k 5 n(V~y)2k 1 (h~u)2k 1
ng

r2k

~h2k111
~h2k21

2
,

(6b)

~v2k
~h2k115 n(V ~h)2k111

1

r2k11

(rH~u)2k122 (rH~u)2k
dr

1
nH2k11

r2k11

~y2k121 ~y2k
2

,

(6c)

where k 5 1, 2, . . ., N. The radial domain [0, rb] is

truncated at an outer radius of rb 5 2000 km where ~h

vanishes. As shown by ML, this domain size has little

impact on the eigensolutions to be derived, provided

that rb is greater than the radius of Rossby deformation.

Since we are only interested in the cases of n . 0,

the boundary conditions are simply ~h1 5 0 at r 5 0 and
~h2N11 5 0 at r 5 rb. Then, the discretized system [Eqs.

(6a)–(6c)] can be considered as a standard matrix ei-

genvalue problem; that is,

~vX5AX , (7)

where ~v can also be understood as eigenfrequency,

X5 (~u2, ~y2, ~h2, . . . , ~u2N , ~y2N)
T is the eigenfunction of the

discretized system, and A is a (3N 2 1) 3 (3N 2 1)

matrix representing discretization of the differential

operator of Eqs. (6a)–(6c) with the boundary conditions

included. The matrix eigenvalue problem is numerically

solved using SWVPAS, whose functions have been im-

proved herein to include all resolvable eigenvalues.

It is evident from Eq. (7) that each ~v of A represents

one frequency of the discretized, linearized shallow-

water equations, and that a full spectrum of wave fre-

quencies can be obtained by solving this eigenequation.

By varying the size of N, we can minimize the distortion

of frequency spectrum caused by numerical discretiza-

tion. We find that the use of N5 2000 with dr5 1 km is

satisfactory for this purpose.

Next, we need to consider the impact of a basic-state

or mean vortex on wave frequencies and structures. Two

types of vortex profiles—that is, monopolar and hollow

FIG. 1. Radial distribution of (a) absolute vorticity (1023 s21), (b) angular velocity (1023 s21), (c) azimuthal

velocity (m s21), and (d) fluid depth (m) associated with a monopolar vortex (solid) and a hollow (dashed) vortex

as the basic state.
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in terms of h (Fig. 1a)—have been previously used for

wave-motion studies. In a monopolar vortex, both h and

V are peaked at the center and they decrease outward

with radius, thus exhibiting large negative radial gradi-

ents in V (Fig. 1b) within the radius of maximum wind

(RMW or rm). Figure 1c shows the radial distribution of

azimuthal flow, V5 [2R/(11R2)]Vmax, as used by MK,

where Vmax 5 40m s21 is the maximum azimuthal flow

at the RMW and R5 r/rm is the nondimensional radius.

Figure 1d shows the corresponding height field that is in

gradient balance with the azimuthal flow. This type of

vortex profile has been shown by MK and ML to favor

the generation and propagation of VRWs, and it will be

shown herein to also allow for the generation and

propagation of mixed VRIGWs.

In contrast, a hollow vortex is characterized by a

minimum in h at the vortex center and a maximum at

the radius of maximum vorticity (RMz) that is located

slightly inside the RMW. Hollow vortex profiles have

been used to examine the local frequency relation of

IGWs, VRWs, and VRIGWs by ZZL and the dynamics

of barotropic or algebraic instability in TCs by Schubert

et al. (1999), NMG, Nolan andMontgomery (2002), and

Zhong et al. (2010). Figure 1 shows an example of

a hollow vortex, with rm 5 57.5 km, that is based on the

simulation of Hurricane Andrew (1992) by Liu et al.

(1997). Note that its peak h, shown in Fig. 1a, has been

significantly reduced from that used by ZZL in order to

obtain Vmax at the RMW that is similar in magnitude to

that of MK’s monopolar vortex (Fig. 1c) for the sub-

sequent comparison of wave motions on the two dif-

ferent basic states. This alteration in the basic-state

intensity is necessary because the generation and prop-

agation of VRWs and VRIGWs differ from the other

typical linear oscillators whose ‘‘natural frequency depends

only on the physical characteristics of the oscillator, not

on themotion itself’’ (Holton 2004). Specifically, although

the propagation of VRWs is described as an analogy to

that of Rossby waves, their restoring forces are essen-

tially determined by the mean flow. This is because the

latter owes its existence to themeridional gradient of the

Coriolis force, which has little to do with the large-scale

mean flow. By comparison, VRWs are determined by

the radial gradients of h in TCs, implying that the radial

distribution of the mean rotational flow governs the

natural frequency of VRWs, and similarly for VRIGWs.

Note the two distinct h radial structures that corre-

spond to the two seemingly similar V profiles, especially

within the RMW (cf. Figs. 1a and 1c). A close scrutiny of

Fig. 1c reveals that theV slope for the monopolar vortex

begins with a finite value at r5 0 and then decreases with

radius, whereas for the hollow vortex, it manifests an

outward increasing tendency at r5 0 and attains a peak

value before reaching the RMW. Although both V

profiles may be common in TCs, they have quite dif-

ferent dynamical implications in terms of wave propa-

gation and stability, as will be shown herein.

Figure 1d compares the height fields between the

monopolar and hollow vortices. Because of the larger

amplitude ofV and thus dH/dr outward from the RMW,

the mean height field in the hollow vortex is lower than

that in the monopolar vortex (cf. Figs. 1c and 1d), except

in the core region where an opposite occurs.

At this point, one may wonder if the monopolar vor-

tex would also allow the development of VRIGWs. For

this purpose, we have repeated all the calculations as

those in ZZL, including the radial distribution of the

Bessel parameter and several nondimensional parame-

ters given in Eq. (1) and found little qualitative differ-

ences in these parameters between the monopolar and

hollow vortices (not shown), except that the former has

no singularity near R0 (see Fig. 2b in ZZL for an ex-

ample at the RMz associated with a hollow vortex).

Figure 2 shows that the existence of such a singularity

does affect the radial distribution and magnitude of Q

between the two types of vortices but affects little the

theoretical implication of mixed-wave motions. That is,

the condition of Q # 0 takes place in the core region of

the monopolar vortex, albeit with much smaller mag-

nitudes, as compared to the eyewall region near the

RMW of the hollow vortex. Note that the value of Q in

Fig. 2, calculated withm5 0.8, is one order ofmagnitude

smaller than that calculated with m 5 1.5 in Fig. 7 of

ZZL. This difference could be attributed to the use of

FIG. 2. Radial distribution of discriminantQ (1022) for the cubic

frequency equation [Eq. (1b)], given the values ofm5 0.8 andWN

n5 1, 2, associated with the monopolar and hollow vortices shown

in Fig. 1. Solid (WN 1) and dotted (WN 2) lines are for the mo-

nopolar vortex, and dashed (WN 1) and dotted–dashed (WN 2)

lines are for the hollow vortex.
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large h for the hollow vortex. Nevertheless, it follows

that monopolar vortices could also support the devel-

opment of mixed VRIGWs and mixed-wave instability,

although they tend to occur more readily in hollow vor-

tices in the vicinity of large h. The mixed-wave instability

will be a separate subject for a future study. Thus, wemay

state that VRIGWs can develop in both monopolar and

hollow vortices, provided that the condition of Q # 0 is

met, depending upon the combination of their basic-state

parameters and m [see Eq. (1b)].

To see further the generation of VRIGWs in relation

to the other two classes of pure waves in the monopolar

vortex, Fig. 3 shows a frequency–WN diagram for three

different values of Q, based on Eq. (1), in which v de-

notes the nondimensional intrinsic wave frequency; see

Fig. 6 in ZZL for a similar diagram associated with

a hollow vortex. When Q . 0, there are a pair of high-

frequency IGWs propagating in opposite directions and

a low-frequency VRW propagating against the mean

flow. The two classes of waves have fundamentally dif-

ferent frequency distributions with WN n. That is, the

frequencies of IGWs increase rapidly from the value of

f atWN 0, whereas the VRW frequency increases slowly

from the origin and reaches a peak at WN 1 and then

decreases slowly withWN n. In the case ofQ5 0, we see

two allowable waves with frequencies increasing slowly

at higher WNs but faster at lower WNs, which are sim-

ilar in physical characteristics to those of VRWs and

IGWs, respectively; they are so-called mixed VRIGWs.

The mixed waves occur in the vicinity of the peak h,

regardless of a monopolar or hollow vortex, making

rotation as the primary factor for lower-WNwaves. This

differs from the equatorial Rossby–gravity waves, in

which gravitation acts as the main restoring force for

lower-WN waves, especially at the equator where the

planetary vorticity vanishes. When Q , 0, there are

a mixed VRIGW propagating in the same direction as

the mean flow (dashed–dotted lines in Fig. 3) and a pair

of growing (decaying) mixed waves (not shown). All of

these properties are similar to those of a hollow vortex

shown in Fig. 6 of ZZL.

3. Spectrum and eigenmode structures of free
waves

In this section, we examine the wave spectrum and

eigenmode structures in the discretized system [Eqs. (6)]

with the monopolar and hollow vortices as the basic

state, respectively.

a. Wave spectral analysis

Wave spectrum represents the aggregation of eigen-

values for A in Eq. (7), and each spectral point can be

viewed as one eigenvalue or one wave frequency in the

wave dynamics of TCs. Similarly, an eigenfunction

represents the spatial distribution of a wave’s pertur-

bation fields. By analyzing the eigenvalue and ei-

genfunction of Eq. (6) with SWVPAS, we may gain

insight into the spectral distribution of various classes of

free waves propagating as described by Eq. (2).

By definition (Zeng et al. 1990; Eidelman et al. 2004),

when the resolvent (AX 2 ~vI)21, where I is an identity

matrix, is bounded, ~v has a set of eigenvalues for A in

Eq. (7) that can be characterized by point spectrum.

When the resolvent is infinite or A has a singularity with

the spatial dependence of basic-state flows, ~v is char-

acterized by continuous or dense spectrum. It is evident

that when the basic state is at rest, all free waves de-

scribed by Eq. (6) are in the point spectrum of A with

sparse distribution, and VRWs should be absent in

a resting basic state. Figure 4a shows the wave spectral

distribution for such a resting flow, following ML. Ob-

viously, the sparsely distributed spectral points on both

sides of the ~v 5 0 solution should be associated with

IGWs, with the two spectrum points at ~v 5 65 3
1025 s21 corresponding to a pair of pure inertial waves.

In addition, the frequencies of IGWs increase with WN

n, which is consistent with the theory of IGWs (Pedlosky

2003) and the eigenmode analysis of ML.

However, the wave spectral structures become com-

plicated in the presence of nonvanishing mean flows. If

Vmax and Vmin are defined as the respective upper and

lower limit of the basic-state angular velocity, we can see

different wave spectral characteristics over the following

two frequency ranges: (i) ~v . nVmax or ~v , nVmin, and

(ii) nVmin # ~v # nVmax. In the first scenario, we must

FIG. 3. Nondimensionized intrinsic frequency as a function of

azimuthalWN, based onEq. (1a), in association with themonopolar

vortex given in Fig. 1 forQ 5 0.1 (solid), Q5 0 (dashed), andQ 5
–0.1 (dotted–dashed).
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have ~v2 nV 6¼ 0, implying that there is no singularity

after plugging the wave frequencies into Eqs. (6), and

the resulting eigenvalues must be in the point spectrum

of A. A comparison of the wave spectrum between Figs.

4a and 4b indicates that the frequency ranges of ~v .
nVmax or ~v , nVmin must be associated with IGWs. In

contrast, when nVmin # ~v # nVmax, there must exist a

point r 5 rc, at which ~v2 nV (rc) 5 0, implying that a

singularity occurs at rc—the so-called critical radius

(ML). In this case, only an integration of its eigenfunc-

tion over the spectrum range can constitute the partic-

ular solution of Eqs. (6) (Zeng et al. 1990). Thus, the

pertinent eigenvalues are distributed in the continuous

spectrum of A, and associated with VRWs (Fig. 4b).

The above discussion is consistent with theories of

VRWs and IGWs. For the former, MK derived the fol-

lowing Doppler-shifted frequency ~vR relation near the

radius of r 5 r0 from the nondivergent barotropic vor-

ticity equation,

~vR5 nV01vR5 nV01
ndh0/dr

r0(l
2 1n2/r20)

, (8)

where vR is the dimensional intrinsic frequency of

VRWs; V0, dh0/dr, and the other variables with the

subscript 0 will be treated as constant in the vicinity of

r 5 r0 as assumed in MK and ZZL; and l is the radial

WN. Clearly, VRWs owe their existence to the radial

gradient in h. According toWang (2001), bothWN1 and

WN 2 waves propagate against the mean flows of TCs at

the phase speed of about 34m s21, which corresponds to

a frequency range of 1023–1024 s21. It is apparent from

Figs. 1 and 4b that VRWs occurmostly within r5100 km

where the radial gradient in h is much greater than

that in the outer region, and that the wave frequency

decreases with WN. Since VRWs propagate against the

mean flow, their Doppler-shifted frequencies should

have the range of ~vR 2 [0, nVmax] in amonopolar vortex.

This suggests that the maximum mean angular velocity,

occurring near the TC center, determines the upper limit

of ~vR with a critical radius rc. In addition, Schecter and

Montgomery (2004) indicated that VRWs tend to be

damped at r 5 rc, so little perturbation structures of

VRWs could be seen beyond r 5 rc. We can also see

from the above scale analysis that ~vR at lower WN should

have a magnitude of 1024–1025 s21, and ~vR would ap-

proach nV0 at higher WN. In contrast, for a hollow

vortex, the sign change of dh0/dr may cause ~vR to ex-

ceed the magnitude of nVmax, and wave breaking may

occur in the presence of barotropic instability. It follows

thatVRWs can only take place in the continuous spectrum

with ~vR 2 [0, nVmax] for monopolar vortices (Fig. 4b), but

the wave frequencymay exceed nVmax for hollow vortices.

Next, let us examine the spectral characteristics of

IGWs in the presence of strong rotational flows. ZZL

have given the following frequency relation for IGWs,

~vG 5nV01vG 5 nV0 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20m

2
0
2h2

0V
2

0

q
, (9)

wherem5m/Rm is the dimensional form ofm(n), and c20
is the phase velocity of surface gravity waves and is

considered as a constant.

Evidently, the IGW frequencies are closely associated

with vortex intensity. It can be shown that when the

rotational flow is weak, Vmax will be smaller than the

threshold value of Vl 5 c0m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 1 3

p
(see appendix).

Thus, we may have ~vG . nVmax, which is distinct from

FIG. 4. Eigenfrequency scatterplots as a function of WN (n 5 1–3) associated with (a) a resting basic state

(i.e., Vmax 5 0 s21) and (b) a weak monopolar vortex (i.e., Vmax 5 4.17 3 1025 s21).
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the continuous spectrum of low-frequency VRWs. This

analysis confirms the earlier result that IGWs are in

the discrete spectrum of A. With the typical values of

c0 ; 102m s21, m ; 1021, m 5 m/Rm ; 1026, and n ;
100, the threshold value of Vl is about 1024–1025 s21,

and it decreases with increasing WN n. Thus, the IGW

frequencies tend to move toward the lower-frequency

range for strong TCs and enter the range of continuous

spectrum when the basic-state rotation exceeds Vl. As

a result, these waves may increasingly be influenced by

rotation, leading to the development of mixed charac-

teristics of IGWs and VRWs.

Based on the above analysis, we may see the following

three scenarios. First, for a monopolar vortex, when

its intensity satisfies Vmax , Vl 5 c0m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 1 3

p
, high-

frequency IGWs and low-frequency VRWs can be

clearly separated with the presence of mixed VRIGWs.

IGWswill be distributed discretely in the spectral region

of ~vG . nVmax and ~vG , 0, whereas VRWs will appear

in the continuous spectrum range [0, nVmax]. Second,

when the vortex intensity exceeds a threshold value, the

frequency of IGWs would ‘‘red shift’’ into the continu-

ous spectral region, especially at higher WNs. Then,

mixed VRIGWs and mixed-wave instability may occur

in the case of Q # 0 (ZZL). This is the main reason for

the generation of mixed VRIGWs in both monopolar

and hollow vortices. Third, the sign change of dh0/dr

across the RMz in a hollow vortex could generate two

oppositely propagating VRWs on each side, making ~vR

exceed nVmax. Thus, the ‘‘violet shift’’ of VRWs, as

a result of the increased influence of gravitation, is an-

other reason for the development of mixed VRIGWs.

Figure 4b does show three wave spectral regions on

a weak monopolar vortex (Vmax 5 4.17 3 1025 s21) for

WN n 5 1–3: the continuous spectrum between 0 and

nVmax, and two discrete spectra outside, which corre-

spond to a low-frequency VRW and two high-frequency

IGWs, respectively.

However, Fig. 5a shows that the wave spectral struc-

tures change substantially when the vortex intensity

exceeds a threshold. Although the wave spectrum still

exhibits continuous and discrete distributions inside and

outside the range [0, nVmax], respectively, much less

distinction occurs between the two. In particular, higher-

frequency waves tend to red shift into the continuous

spectrum for both monopolar and hollow vortices. It

should be mentioned that ML have shown some similar

results for an intensemonopolar vortex (see their Fig. 4),

but they focused on the balanced and unbalanced as-

pects of VRWs and IGWs, respectively. For an intense

hollow vortex, lower-frequency waves also show a violet

shift into the discrete spectral region (Fig. 5b). In this

case, IGWs have frequencies similar to those of VRWs

such that one cannot clearly distinguish the ‘‘fast’’

propagating IGWs from ‘‘slow’’ propagating VRWs.

Thus, we may consider these waves as being influenced

by both rotation and gravitation, leading to the forma-

tion of mixed VRIGWs. Because their frequencies de-

crease with increasing WN n, shorter VRWs tend to

have more mixed VRIGWs properties.

b. Eigenmode analysis

Since both observational and modeling studies show

the slower-than-mean-flow propagation of disturbances

in the eyewall (i.e., with positive Doppler-shifted fre-

quencies), we may simply examine the eigenstructures

of the three classes of waves as being characterized by

their amplitudes: high, intermediate, and low frequencies,

FIG. 5. As in Fig. 4b, but for (a) the monopolar vortex with Vmax 5 1.4 3 1023 s21, and (b) the hollow vortex with

Vmax 5 7.97 3 1024 s21, as given in Fig. 1.
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respectively. High-frequency waves include discrete spec-

tral points that are greater than nVmax, whereas both the

intermediate- and low-frequency waves appear in the

advective frequency range [0, nVmax]. However, at WN

1, almost all the eigenstructures can be grouped into two

classes as separated by the advective frequency nVmax.

So we choose ~v5 4.123 1023 and 7.133 1024 s21 as two

representative waves and plot their radial structures in

Figs. 6a and 6b and in Figs. 6c and 6d, respectively.

It is apparent that the high-frequency WN-1 wave

exhibits radial wavelike structures for the perturbation

variables ~u, ~h, and ~D with slow decreases in amplitude

(Figs. 6a,b). But the wavelike structures for the pertur-

bation variables ~y and ~z are only notable in the inner-

core region with their amplitudes decrease sharply

outward (e.g., for ~z from 1027 to 1028 s21 inside r 5
100 km and then to 1029 s21 outside r 5 100 km). Al-

though divergence is slightly smaller than ~z within r 5
30 km, it is one to two orders of magnitude greater than ~z

outside because of its slow outward decreases. Thus, the

high-frequency wave on amonopolar vortex exhibits the

typical characteristics of IGWs. In particular, divergence

is well correlated with ~h field, with a convergent (di-

vergent) flow corresponding to a lower (higher) free

surface. In addition, ~h is in phase with ~z in the core re-

gion [i.e., with positive (negative) ~h corresponding to

cyclonic (anticyclonic) flows], implying that the high-

frequency wave is unbalanced. Other high-frequency

WN-1 waves behave similarly (not shown), except for

possessing shorter radial wavelengths than those shown

in Figs. 6a and 6b.

In contrast, the low-frequency wave has little radial

wavelike structures (Figs. 6c,d), which confirms the

earlier analysis of the dispersion relation of VRWs. As

mentioned before, each VRWmode has a critical radius

rc, at which the Doppler-shifted frequency vanishes. In

fact, rc is determined by wave frequency, and it is smaller

for higher frequency. At rc, ~y is discontinuous, and a cusp

appears for both ~u and ~h. More importantly, all pertur-

bation variables show wavy structures only within rc,

suggesting that VRWs can develop only in themonopolar

core region. Unlike IGWs, ~z has a sharp change in

FIG. 6. Radial distribution of (a),(c) the perturbation radial and azimuthal wind speeds (m s21) and the pertur-

bation height (m) and (b),(d) relative vorticity (s21; solid) and divergence (s21; dashed) for WN 1 waves on the

monopolar vortex given in Fig. 1, with (a),(b) a high frequency (~v5 4.123 1023 s21) and (c),(d) a low frequency (~v5
7.13 3 1024 s21).
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sign and magnitude near rc and is about two orders of

magnitude greater than that of divergence. In addition, ~h

and ~z are opposite in phase, with positive (negative) ~h

corresponding to negative (positive) ~z except at rc, in-

dicating that the low-frequency wave is balanced and

rotationally dominated. All of these are the typical

characteristics of VRWs.

A critical radius also occurs for the intermediate-

frequency WN-1 wave, whose Doppler-shifted fre-

quency is close to nVmax, but on average about twice

greater than that of the low-frequency wave. Of im-

portance is that the intermediate-frequency wave be-

haves in the same way as a VRW, with ~z being at least

one order of magnitude greater than divergence within

rc. Outside it, however, the wavelike structures are

similar to those of IGWs, with much smaller ~z than

divergence. Thus, the intermediate-frequency waves

are of the mixed-VRIGW class in the continuous spec-

trum that is caused by the red shift of IGWs. Never-

theless, this class of mixed wave differs from the

theoretical mixed VRIGWs in ZZL, and it appears only

at a small number of spectral points. So, we do not con-

sider this class of WN-1 mixed waves herein as they are

not as common as VRWs and IGWs in monopolar

vortices.

However, as the azimuthal WN increases, the de-

creased frequency of VRWs and the extended fre-

quency range of IGWsmake some of their radial wave

structures differ from those of WN-1 waves. Figure 7

shows WN-2 wave structures associated with a high-

frequency wave at ~v5 5.263 1023 s21 (Figs. 7a,b), an

intermediate-frequency wave at ~v 5 1.54 3 1023 s21

(Figs. 7c,d), and a low-frequency wave at ~v 5 3.25 3
1024 s21 (Figs. 7e,f). Although the radial structures of

the high-frequency WN-2 wave are similar to its cor-

responding WN-1 structures (cf. Figs. 7a,b and 6a,b),

its ~z becomes much smaller than divergence outward

from r 5 30 km, indicating an important gravitational

impact at higher WNs.

Figures 7c and 7d show an example of intermediate-

frequency wave with rc 5 50 km. Its perturbation

structures within and near rc are similar to those shown

in Figs. 6c and 6d except for the half- versus one-quarter

wavelength oscillation of ~u and ~y owing to the null value

of ~u and ~y at r 5 0. The presence of very high ampli-

tude of ~z and the antiphased relationship between ~z

and ~h suggests that this intermediate-frequency wave

has the typical characteristics of VRWs. The frequency

shift of VRWs—for example, from the low frequency

at WN 1 (Figs. 6c,d) to the intermediate frequency at

WN 2 (Figs. 7c,d)—can be easily understood from

Eq. (8), indicating that the intrinsic frequency of pure

VRW sharply decreases asWN increases. As a result, its

Doppler-shifted frequency approaches to the advective

frequency at higher WNs with decreasing rc.

The low-frequency WN-2 wave also has a critical ra-

dius, at which ~y is again discontinuous whereas ~h and ~u

are minimized and maximized, respectively (Figs. 7e,f).

However, this rc appears in the outer region, near r 5
180 km, rather than in the inner-core region. Just like the

VRW in Fig. 7c, the discontinuity of ~y and a jump in ~z

also occur near rc. Despite the outward shift of rc, the

inner-core region is dominated by convergence with its

magnitude decreasing rapidly toward rc. Although the

magnitude of ~z is small and similar to that of ~D in the

inner-core region, it is large and much greater than that

of ~D near rc. Moreover, ~z keeps positive while ~h fluctu-

ates within rc, indicating that the cyclonic flows corre-

sponds to a low pressure region, like VRWs, and to

a high pressure region, like IGWs, respectively, inside

and outside r 5 60 km. Thus, this mode should be re-

garded as a mixed VRIGW in the core region. Similar

features can also be found for higher-WN waves (not

shown). It follows that at higher WN, low-frequency

waves tend to exhibit more mixed-wave characteristics.

ML also examined the low-frequency waves at WN 2

and higher, and found this ‘‘unexpected’’ mixed-wave

structure in their Rossby shear modes. However, the

theoretical framework ML used to understand VRWs,

which is based on nondivergent absolute vorticity

equation, cannot describe the fundamental properties

of mixed VRIGWs. So ML could only speculate the

existence of some commonalities with equatorial mixed

Rossby–gravity waves found by Matsuno (1966).

Figure 8 shows the WN-2 eigenmodes of intermediate-

and low-frequency waves on the hollow vortex for the

purpose of comparing them to those on the monopolar

vortex given in Figs. 7c–f. Only their propagation solu-

tions are selected because of the presence of mixed-

wave instability near the RMz where dh0/dr changes

sign leading toQ, 0 (see Fig. 5 in ZZL). In this regard,

use of monopolar vortices may be more suitable for

theoretical studies of wave motions. We see that the

general wave structures, the larger magnitude of ~z near

the RMW, and the phase configuration of ~h and ~z asso-

ciated with the hollow vortex are similar to those given in

Figs. 7c–f, except for more local singularities near the

RMW and rc. This indicates that these intermediate-

(Figs. 8a,b) and low- (Figs. 8c,d) frequency waves corre-

spond to VRWs and mixed VRIGWs, respectively.

This mixed-wave mode could play an important role

in geostrophic adjustment as discussed by ML, but in

different ways over different regions of a hollow vor-

tex. Here, let us consider a rapidly rotating vortex by

defining f̂ 2 5 ~fh as the rotation intensity. Following

ML, we define the ratio of wave intrinsic frequency to
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rotation intensity as the nondimensional adjustment

criterion, i.e., S2 5 v2/f̂ 2. When S2, 1, the wave motion

is more balanced, like VRWs, with positive (negative) ~h

coinciding with negative (positive) ~z. However, when

S2 . 1, the mass and wind fields are unbalanced, and

IGWs should exert more influences on the adjustment.

To help visualize the above points, Fig. 9 shows the ra-

dial distribution of S2 associated with the low-frequency

modes for themonopolar (as in Figs. 7e,f) and hollow (as

in Figs. 8c,d) vortices. Both contours exhibit wavelike

radial distributions of S2. Of particular relevance is that

S2 is less than unity in the core region (i.e., 0–50 km) and

near rc (i.e., 100–200 km), whereas it is greater than unity

elsewhere. Clearly, these features reflect the balanced

and unbalanced characteristics of the mixed-wave

mode, corresponding to the respective roles of VRWs

and IGWs at different radii of the vortices. Thus, this

mode should not be classified as a VRW mode as ML.

FIG. 7. As in Fig. 6, but for WN-2 waves with (a),(b) a high frequency (i.e., ~v 5 5.26 3 1023 s21); (c),(d) an

intermediate frequency (i.e., ~v 5 1.54 3 1023 s21); and (e),(f) a low frequency (i.e., ~v 5 3.25 3 1024 s21).
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4. Propagation of WN-2 waves on the monopolar
and hollow vortices

After showing the single wave structures of eigen-

modes associated with the monopolar and hollow vor-

tices, it is of interest to compare the propagation

characteristics of the three classes of waves on the two

different types of vortices. In addition, it is desirable to

compare the wave solutions obtained herein to the an-

alytical solutions derived in ZZL. Given initial pertur-

bations, two additional approaches can be used, besides

the analytical solutions, to examine the wave propaga-

tion characteristics for a set of discretized eigenmodes at

an azimuthal WN: One is to linearly superimpose them

via the wave solutions equation [Eq. (4)], and the other

is to numerically integrate them using SWVPAS. Spe-

cifically, in the former case, with the staggered grid ar-

rangements used herein, we may rewrite Eq. (4) as MK

with the form of

u0(rk, t)5 �
3

a51
�
B

a

b51

Cb
~uk,b exp(2i~vbt) , (10a)

y0(rk, t)5 �
3

a51
�
B

a

b51

Cb~yk,b exp(2i~vbt) (10b)

at N wind grid points (k 5 1, 3, 5, . . ., 2N 2 1), and

h0(rk, t)5 �
3

a51
�
B

a

b51

Cb
~hk,b exp(2i~vbt) (10c)

at the N2 1 height grid points (k5 2, 4, 6, . . ., 2N2 2).

Here, a is the wave index, whose value of 1–3 represents

IGWs, VRWs, and mixed VRIGWs, respectively; b is

the eigenfrequency index ranging from 1 toB1, from 1 to

B2, and from 1 to B3; B1, B2, and B3 are the total ei-

genmodes of IGWs, VRWs, and mixed VRIGWs, re-

spectively, as classified by eigenfrequencies in Fig. 5 and

wave characteristics in Fig. 7 or Figs. 8c and 8d, and they

satisfyB11B21B35 3N2 1; (~uk,b, ~yk,b, ~hk,b) represent

the radial component of an eigenvector atWN-2; k is the

radial index; and the coefficient Cb should be typically

inverted from Eq. (10) for the given initial perturbations

u0(rk, 0), y0(rk, 0), and h0(rk, 0). Clearly, the propagation

FIG. 8. As in Fig. 6, but for (a),(b) a WN-2 VRW with ~v 5 1.563 1023 s21 and (c),(d) a WN-2 mixed VRIGW with

~v 5 2.51 3 1024 s21 on the hollow vortex given in Fig. 1.
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of a pure class of waves can be examined by super-

imposing the same class of eigenvectors and eigenvalues

obtained through SWVPAS and then composited by

Eq. (10), like the analytical solutions of ZZL.

In contrast, numerical integrations of the SWVPAS

model from the initial composite perturbations cannot

guarantee the propagation of a pure class of waves, even

started from a pure one, because the model contains

the dynamical mechanisms for the generation of all the

three classes of waves, as indicated by Eq. (2). Thus, this

model property has some limitations on the above-

mentioned comparative analyses.

a. Propagation of WN-2 waves on the monopolar
vortex

Figure 10 compares the propagation characteristics of

the three classes of waves, based on the linear super-

imposition and numerical integration approaches. Eight

eigenmodes from each wave class are selected with

their eigenfrequency indices b and wave characteristics

determined from the knowledge of Figs. 5 and 7, re-

spectively; their summations for each wave class at t 5
0 are then defined as the initial (composite) perturba-

tions. Note that for each wave class the coefficient Cb

should be set to be either 1 for selected eigenmodes or

0 for unselected eigenmodes when the summations in

Eq. (10) are executed at t 5 0 or any subsequent time

using the linear superimposition method.

We see that the initial composite perturbations rep-

resent well the WN-2 characteristics of IGWs (Figs. 10a,j),

VRWs (Figs. 10b,k), and VRIGWs (Figs. 10c,l) in terms

of rotation and divergence, and the mass–wind relation;

their radial structures and wave amplitudes [as well as

vorticity and divergence (not shown)] are similar to

those associated with single waves shown in Fig. 7.

Moreover, we can still see a wide radial range of the

IGWs and VRIGWs activity (i.e., greater than 200 km)

but a limited radial range of the VRWs activity (i.e., less

than 50 km), as determined by their rc (cf. Figs. 10 and 7).

Because of its fast azimuthal propagation, the IGWs

from both approaches develop lengthy spiral bands after

60min (Figs. 10d,g). By comparison, the VRWs exhibit

slow clockwise propagation within rc, only having slight

shape changes even after 120min (Figs. 10e,h). Large

cross-isobaric (divergent) and nearly isobaric (rota-

tional) flows can be clearly seen from the IGWs and

VRWs, respectively. However, numerical integrations

tend to inevitably produce slightly more rotational and

divergent components associated with the respective

IGWs and VRWs than those from the linear superim-

position, as expected from the earlier discussion. The

modeled flows are also stronger (weaker) in the central

area for the IGWs (VRWs) than those superimposed

(cf. Figs. 10d,e and 10g,h) because of the influences of

the other waves, similarly for the faster clockwise move-

ments of the VRWs. So, strictly speaking, the waves

shown in Figs. 10g and 10h are not pure ones.

The right column of Fig. 10 displays the mixed-wave

characteristics of the IGWs and VRWs with compli-

cated mass and wind relations. That is, the initial per-

turbations (Fig. 10c) exhibit rotational (divergent)

characteristics of VRWs (IGWs) within r 5 50 km

(outside roughly rc 5 130 km), with their structures

similar to those shown in Fig. 10b (Fig. 10a). Between

the two radii, we see the coexistence of both rotation and

divergencewith 458 phase shift, as indicated by local flow
vectors with respect to isobars, which are the exact

characteristics of mixed VRIGWs. At t 5 120min, Fig.

10f shows well-structured spiral bands within r5 200 km

of the linear superimposed mixed VRIGWs, like the

IGWs, but with the major highs and lows trapped within

rc 5 130 km, like the VRWs (Fig. 10f). Of importance is

that like the equatorial mixedRossby–gravity waves, the

mixed VRIGWs are characterized by near-isobaric cir-

culations associated with the highs and lows, but cross-

isobaric flows outside rc. Of further importance is that

their height and wind perturbations attenuate at rates

(Figs. 10c,f) that are much slower than those of the

IGWs (Figs. 10a,d) and VRWs (Figs. 10b,e), implying

that such quasi-balanced wave properties may have

more significant impact than the other waves on the

maintenance of rainbands in TCs.

By comparison, numerical integrations produce more

pronounced distortions of the mixed VRIGWs than the

VRWs (Figs. 10h,i). They can be seen from the height

FIG. 9. Radial distribution of the nondimensional adjustment

parameter for WN-2 low-frequency waves on the monopolar vor-

tex (~v 5 3.25 3 1024 s21, solid) and hollow vortex (~v 5 2.51 3
1024 s21, dashed) (see Figs. 1, 7e,f, and 8c,d).
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FIG. 10. The evolution of perturbation height (m; shaded, red is positive and blue is negative) and horizontal flow vectors (m s21) for

(a),(d),(g)WN-2 IGWs, (b),(e),(h) VRWs, and (c),(f),(i) mixed VRIGWs on themonopolar vortex given in Fig. 1 at (top) t5 0, and t5 60min

for the IGWs and t5 120min for theVRWs andmixedVRIGWsobtained from (middle) the linear-superimposedwaves and (bottom) the

SWVPASmodel. Eight eigenvectors are selected from Eq. (10) with the eigenfrequency indices of b5 3936, 3938, 3940, 3942, 3943, 3945,

3947, 3949 for the IGWs, b5 4031, 4033, 4038, 4040, 4045, 4048, 4055, 4051 for theVRWs, and b5 4156, 4164, 4175, 4180, 4193, 4208, 4235,

4242 for the mixed VRIGWs, corresponding to the eigenfrequencies of (5.60, 5.43, 5.26, 5.09, 4.92, 4.75, 4.58, 4.41)3 1023 s21, (1.65, 1.59,

1.54, 1.46, 1.36, 1.32, 1.25, 1.19)3 1023 s21, and (3.25, 2.98, 2.68, 2.55, 2.24, 1.96, 1.56, 1.47)3 1024 s21, respectively. The wave structures

are displayed within the radial range of 200 km for the IGWs and mixed VRIGWs but only 100 km for the VRWs. The inner circle has

a radius of 50 km for the IGWs andmixedVRIGWs and 40km (where the RMz is located) for the VRWs. For each variable a, seven color

scales as determined by (amax 2 amin)/7 are used, where amax and amin are the maximum and minimum value of a, respectively.

JUNE 2014 ZHONG AND ZHANG 2199



and wind perturbations that are completely out of phase

outside r 5 100 km, with more cross-isobaric compo-

nents over wide regions. As will be shown next, these

features are transient during this adjustment period in

which all the three classes of waves interact.

b. Propagation of WN-2 waves on the hollow vortex

Adifferent set of eight eigenmodes is also selected for

each wave class propagating on the hollow vortex in

order to see individually different WN-2 wave charac-

teristics from those associated with the monopolar vor-

tex. It is necessary to select such a different set of

eigenmodes, although it is still close to the one used in

Fig. 10, because the distribution of the wave classes

differ under different basic states, as shown in Fig. 5.

Indeed, Figs. 11a–c exhibit similar composite perturba-

tion structures to those shown in Figs. 10a–c at t 5 0, if

viewed within r 5 70 km, except for nearly vanishing

flows in the central region and the elongated h0 pattern
associated with the VRWs (cf. Figs. 11b and 10b).

Moreover, to facilitate comparisons to the analytical

solutions of ZZL in which the critical radius is absent

after assuming nonzero intrinsic frequency (i.e., v 5
~v2 nV0 6¼ 0), we have eliminated the singularity in the

vicinity of rc (50 km for the VRWs, and 300 km for the

VRIGWs, as shown in Figs. 8b and 8d) by performing

nine-point smoother. As a result, the initial composite-

wave structures resemble quite well the analytical

solutions shown in Fig. 9 of ZZL, albeit with some

differences in detailed structures.

Like in the monopolar vortex, the linear superimpo-

sition also produces well-structured spiral bands in the

hollow vortex for the IGWs at t5 60min, and the other

twowaves t5 120min. However, because of the reduced

vortex intensity, their azimuthal propagations are slower

than those in ZZL (cf. Figs. 9b,e,h in ZZL and Figs. 11d–f

herein). Of significance is that after 120min, the mixed

waves develop more rotational characteristics inside the

RMW, like theVRWs, because of the presence of strong

inertial stability, but more divergent characteristics

outside, like the IGWs (Fig. 11f). This can also be seen

from the distribution of S2 in Fig. 9 showing a balanced

regime within r 5 50 km (i.e., S2 , 1), and unbalanced

regimes beyond the RMW (i.e., S2 . 1). This in-

separable property is unique for mixed VRIGWs com-

pared to IGWs. Despite the presence of the IGW

characteristics, the peak h0 amplitude of the mixed

waves only attenuates 40% after 120min, as compared

to the 50% reduction of the VRWs.

Because of the unstable basic state of the hollow

vortex, as also indicated by their h0 amplitudes (cf. Figs.

11g–i and 11d–f), numerical integrations produce more

significant distortions of all the three waves than those

associated with the monopolar vortex (cf. Figs. 11g–i

and 10g–i), such as the radially coupled h0 within r 5
40 km for the IGWs, and the more circular motions with

an opposite phase relationship between the wind and

height perturbations for both the VRWs and VRIGWs.

In particular, the numerically integrated waves exhibit

little spiral structures for the lower-frequency waves

(Figs. 11h,i), as compared to the results of ZZL and

linear superimposition. These waves also show sharp

intensification within the RMW (Figs. 11h,i) and out-

ward dispersion of the VRIGWs outside the RMW (Fig.

11i). In this regard, NMG indicated the growth of VRWs

on a hollow vortex from numerical integrations using

SWVPAS. Nevertheless, the long period of integrations

shows little unbalanced flow, but balanced circulation of

VRWs within the RMW (Figs. 11j–l); this is clearly de-

termined by the SWVPAS dynamics, since the influ-

ences of the initial conditions decrease with time.

5. Summary and conclusions

In this study, the SWVPAS numerical model is used as

a tool to study the matrix eigenvalue problems associ-

ated with the propagations of IGWs, VRWs, and mixed

VRIGWs on the monopolar and hollow vortices. An

eigenfrequency analysis indicates that as long as

Vmax ,Vl 5 c0m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 1 3

p
, the low-frequency VRWs and

the two oppositely propagating high-frequency IGWs

are well separated, which correspond to a continuous

spectrum between 0 and nVmax and two discrete spectral

regions on both sides, respectively. However, as the

vortices reach hurricane intensity, part of the high-

frequency IGWs will be ‘‘red shifted’’ to the continu-

ous spectral region.On the other hand, the low-frequency

VRWs on the hollow vortex will be ‘‘violet shifted’’ into

the discrete spectral region because of a sign change

in the radial gradient of the mean absolute vorticity.

Thus, the mixed VRIGWs emerge from the frequency

shifts in the presence of intense rotational flows.

An eigenfunctional analysis reveals three distinct ra-

dial wave structures associated with three classes of

waves in the SWVPAS model: (i) IGWs exhibit more

wavelike structures with dominant divergent flows, and

their ~h and ~z fields in the core region are in phase, with

unbalanced characteristics. (ii) VRWs have little radial

wavelike structures, but with dominant vortical flows,

and their ~h and ~z fields are antiphased, implying their

balanced nature. In addition, the waves have a critical

radius in the core region at which the inflexion points of

the radial ~h and ~u profiles are located and y becomes

discontinuous. (iii)MixedVRIGWs, possessing both the

IGW and VRW characteristics at higher WNs, exhibit

both vortical and divergent flows at a similar order of
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FIG. 11. As in Fig. 10, but for (d)–(f) the linear-superimposed waves and (g)–(i) the SWVPAS model at t 5
60 (120) min for (j)–(l) the IGWs (VRWs and mixed VRIGWs) and t 5 1440min with eigenfrequencies of (left) (5.3,

5.2, 5.0, 4.9, 4.6, 4.3, 3.9, 3.7)3 1023 s21 for IGWs, (middle) (1.61, 1.57, 1.56, 1.53, 1.52, 1.46, 1.45, 1.40)3 1023 s21 for

VRWs, and (right) (2.65, 2.62, 2.60, 2.53, 2.51, 2.46, 2.37, 2.34) 3 1024 s21 for mixed VRIGWs on the hollow vortex

given in Fig. 1. The wave structures are displayed within the radial range of 70 km given by the outer circle (i.e., as in

Fig. 9 of ZZL). The inner circles have a radius of 40 km.
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magnitude. They also have critical radii, but in the outer

regions. Moreover, their ~h and ~z fields are out of phase

in the core region, like VRWs, while changing to an

in-phase relationship in the outer region, like IGWs,

implying different geostrophic adjustment mecha-

nisms between the inner and outer regions. These

mixed-wave characteristics are more pronounced in

hollow vortices than those in monopolar vortices be-

cause of the development of inflexion instability in

the former.

Eight eigenmodes for each wave class are selected and

linearly superimposed in time to gain insight into dif-

ferent propagation characteristics of the three wave

classes on the monopolar and hollow vortices. Results

show that cross-isobaric flows and isobaric flows asso-

ciated with the IGW and VRWs, respectively, as

expected, whereas the VRIGWs exhibit more balanced

flows, like the VRWs, inside the RMW, but more un-

balanced characteristics outside, like the IGWs. More-

over, the IGWs propagate rapidly outward as spiral

bands, in significant contrast to the slow propagation of

the VRWs and VRIGWs. The latter two waves tend to

be trapped within their critical radii. On the other hand,

the IGWs weaken rapidly with time, whereas both the

VRWs and VRIGWs show slow reductions in ampli-

tude. This indicates the potential importance of the

VRWs and VRIGWs in maintaining spiral rainbands

and organizing deep convection in the eyewall.

It is shown that numerical solutions of pure classes of

the composite waves on the hollow vortex are generally

similar to the analytical results of ZZL, except for some

differences in small-scale details owing to the use of

Doppler-shifted frequencies and the existence of rc.

Thus, we may conclude that VRIGWs, at least at WN 2,

containing both intense vortical and divergent flows,

should be common in TCs, especially in intense hurri-

canes. In a forthcoming study, we will examine the

structural evolution of these waves using real-data-

simulated hurricane cases and investigate their roles in

the formation of spiral rainbands and the eyewall re-

placement cycle.
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APPENDIX

Frequency Separation between IGWs and VRWs

Starting from the dispersive relation of IGWs in the

linearized shallow-water equations (ZZL),

~vG 5 nV01vG 5 nV06
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20m

2
0
2h0V0

q
, (A1)

the IGWs frequency must satisfy ~vG . nVmax or ~vG , 0,

which can be written in a general form,

~v2
G . (nVmax)

2 . (A2)

We may have the following inequality after combining

Eqs. (A1) and (A2),

c20m
2
02h0V0. c20m

2
0 2hmaxVmax. (nVmax)

2 . (A3)

By definition, we may assume hmax . 3Vmax, and

then substitute it to Eq. (A3). This will give the

threshold value of the basic-state angular velocity,

Vl 5 c0m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 1 3

p
, which can be used to distinguish the

high-frequency IGWs from the low-frequency VRWs

(see text).
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