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ABSTRACT

A two-way interactive, nested-grid system tested with The Pennsylvania State University/NCAR three-
dimensjonal mesoscale model is described. A mesh structure, designed to minimize numerical noise, together
with a procedure for obtaining compatible coarse grid mesh (CGM) and fine grid mesh (FGM) terrain conditions,
is presented. Also, a method to initialize the nested-grid meshes is proposed. The nested-grid system has been
tested with real data and raw terrain under different severe conditions. A 12-h simulation of a propagating jet
streak over complex terrain is presented; the results indicate relatively noise-free solutions on both the CGM

and FGM domains.

1. Introduction

This paper describes a two-way interactive nesting
procedure that has been tested with the Pennsylvania
State University/National Center for Atmospheric Re-
search* (PSU/NCAR) mesoscale model originally de-
veloped by Anthes and Warner (1978). The primary
reason for adding the nesting capability to a numerical
model is to improve the horizontal resolution in model
forecasts of small-scale atmospheric phenomena or to
better resolve large gradients of meteorological vari-
ables, without requiring a fine grid mesh (FGM)
throughout the entire model domain. The improve-
ment is achieved by resolving smaller-scale features in
the FGM, and thereby reducing phase speed errors of
medium- and large-scale disturbances and improving
the representation of nonlinear transfer processes.
However, a compatibility problem exists at the interface
where the two grid systems meet. For instance, a dis-
turbance propagating from a coarse grid mesh (CGM)
to the FGM may undergo false reflection back to the
CGM and scattering into the FGM. On the other hand,
a disturbance propagating from the FGM to the CGM
may also experience false reflection back onto the FGM
or aliasing as it enters the CGM. These interface-gen-
erated problems may lead to numerical instabilities that
can seriously affect the forecast over the entire domain.,
This is known as the interface condition problem. An
optimal interface procedure that eliminates this prob-
lem should have the following properties: 1) all resolv-
able waves propagate across interfaces smoothly with
only minimal changes in amplitude and minimum re-
flection of energy, and 2) mass, momentum and total
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energy exchanged between the two grid systems should
be conserved. Because of the numerical difficuities in-
volved in the design of a nested grid, procedures which
fully satisfy the foregoing two requirements have yet
to be described in the literature,

To satisfy the first condition, which is important to
allow the nested-grid system to operate effectively, spe-
cial noise control techniques have to be utilized. De-
pending on the nature of the modeling problem, noise
control techniques used for a two-way system (Phillips
and Shukla, 1973) may differ from those used for a
one-way approach. For the latter (see Miyakoda and
Rosati, 1977), one may employ a radiation condition
(Orlanski, 1976) or sponge-type damping (Perkey and
Kreitzberg, 1976). Moreover, methods used for a two-
way system generally can be applied to the one-way
system, but not necessarily vice versa. Methods em-
ployed for two-way systems include: (i) selection of a
damping time-integration scheme (Phillips, 1978; Ku-
rihara et al., 1979; Ookochi, 1972); (ii) utilization of
spatial smoothing operators (Jones, 1977a; Sobel,
1976); (iii) interface adjustment to remove over-spec-
ification (Jones, 1977b); (iv) introduction of numerical
dissipation into the differencing equation (Kurihara
and Bender, 1980; Harrison and Elsberry, 1972) or a
combination of these techniques. In a series of three-
dimensional experiments, Jones (1977b) found that the
spatial smoothers are the most effective method of noise
control compared to others he tested. Another ap-
proach to efficiently reducing the interface noise is to
physically separate the dynamic interface from the
mesh interface (e.g., Kurihara et al., 1979; Phillips,
1978). Table 1 presents a summary of features of some
existing two-way interactive, nested-grid models. Els-
berry (1978) provides further discussions of some
nested-grid meshing techniques.
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The assurance of mass and energy conservation
across interfaces is a more difficult and challenging
problem, It requires that the FGM boundary points be
treated as calculation points (i.e., tendencies are com-
puted at the boundary points) and that all fluxes be
accumulated with time. Only a few models, such as
those developed by Koss (1971), Sobel (1976) and Ku-
rihara et al. (1979) conserve the first-moment prop-
erties. By applying the “box” method of Kurihara and
Holloway (1967), they developed an appropriate finite
difference approximation for the mesh interface. The
box method for a staggered grid, as illustrated by Sobel
(1976), is extremely complicated because of the irreg-
ular shape of “boxes” for momentum points at the
mesh interface. Bryan (1966) and Koss (1971) argued
the importance of conserving fluxes across interfaces
for total energy conservation and control of nonlinear
instability. Nevertheless, it may still be necessary to
give up the use of a conservative scheme at the interface
in order to obtain a smooth solution for the two mesh
systems (e.g., Jones, 1977a; Ookochi, 1972). This is
particularly true for short-term numerical forecasts in
which the use of appropriate model physics and the
patterns to be forecast may be more important than
exact mass and energy conservation (as long as the
mass or energy discrepancy at interfaces is small).

Therefore, the basic strategy adopted was to develop
a two-way interactive, nested-grid meshing procedure
that is as simple as possible. While the technique de-
scribed in the following was developed for the PSU/
NCAR mesoscale model, the general procedure should
be applicable for most primitive equation models. The
exact conservation of mass and energy at the interface
was sacrificed to circumvent the complicated design
for the interface conditions. But this should not be a
problem because the finite difference scheme applied
on the uniform portion of the grid has been shown to
conserve mass and total energy (Anthes and Warner,
1978). The following sections present a simple, but rel-
atively “noise-free,” nested-grid meshing technique
tested with the PSU/NCAR mesoscale model.

2. Basic model system

The governing equations used in this testing are the
same as discussed by Anthes and Warner (1978). The
system is hydrostatic in the primitive equations and
uses a terrain-following vertical coordinate defined as

o = (p — p)/p*, (D

where p is pressure, p, pressure at the top of the model,
p* = ps — p, and p; the surface pressure. The system is
integrated over a staggered grid (lattice B as described
by Mesinger and Arakawa (1976)) with horizontal mo-
mentum, u, v, defined at dot points and other variables
defined at cross points (see Fig. 1). A choice of Lambert
conformal, Mercator, or polar sterographic map pro-
jections is available.
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There are several important additions and improve-
ments of model numerics that have been incorporated
into the basic model version described by Anthes and
Warner (1978). They are summarized as follows.

e For any variable «, the second-order diffusion
VKyVa was replaced by a more scale-selective, fourth-
order operator VA(KV?a), where the horizontal eddy
viscosity

K = KyAx?
= Asz(KHo + %(kAx)ZlDI) , (2

where k is von Karman’s constant (0.4) and the de-
formation of wind D is given by

du  aw\: [(ov  ou\*?
p=|l1=Z-Z L
I:(ax ay) * (ax * 6y) ] ) )

The constant Ky depends on mesh size and allows for
a background diffusion, and the quantity A4 is an am-
plification factor that permits stronger smoothing close
to the lateral boundaries. It is defined by

1, : r<rg
4= { 4)
1+ 3(r—r)/Ax, r=rn,

where r is the radial distance from the center of the
model domain and r; is the circular or elliptic radius
such that only the four grid points closest to the lateral
boundaries sustain an increase of smoothing toward
the boundaries. Near lateral boundaries, a second-order
diffusion operator is used.

e An implicit vertical diffusion scheme (Richtmyer,
1957) was used under stable conditions, while under
conditions of free convection, the Blackadar convective
plume model was employed (Zhang and Anthes, 1982).
The vertical K-coefficient (K,) is determined by the
Richardson number (Ri) (see Blackadar, 1976; Zhang
and Anthes, 1982). This coefficient is given by

K= K+ [T ®FAR - RYR. )

where K}, is a background value (1 m?s™!), /is a constant
scale of mixing length (100 m), and R, is the critical
Richardson number

R, = aAzb (6)

where a = 0.257, b = 0.175 and Az is the vertical grid

increment in meters (see McNider and Pielke, 1981).
¢ A time-filter (Asselin, 1972) is applied at each time

step to all the prognostic variables. It is defined by

a"= (1 —r)a"+ % o™ + &) )

where & is the filtered variable and the coefficient »
is 0.1.
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e A porous sponge boundary condition (Perkey and
Kreitzberg, 1976) was incorporated. It is given by

do

da
al = w(n) —

5 )

d
+l =Wl |

n MC

where the subscript MC denotes the model calculated
tendency and LS the larger-scale tendency which is
specified from observations. The weighting coefficients,
w(n), for cross point variables from the CGM boundary
inward are 0, 0.4, 0.7, 0.9 and 1, while for dot point
variables, they are equal to 0.2, 0.55, 0.8, 0.95. All
other interior points for the CGM have w(n) = 1.

3. Grid-nesting procedures
a. Mesh structure

Figure | shows a schematic of the nested-mesh
structure for a two-dimensional (x, y) computational
domain. The ratio of grid length and time-step of the
CGM to the FGM is 3:1. Because of the staggered-grid
structure of the PSU/NCAR model, the next ratio that
is geometrically possible is 9:1. However, ratios ex-
ceeding 4:1 are generally not recommended for use in
two-way interaction since too many FGM points are
required to adequately resolve physically meaningful
waves on the CGM, and because of the aliasing prob-
lem. Vertical levels are identical for the two meshes,
but their number and positions can be changed from
case to case.

For this nested system, two types of dynamic inter-
faces are defined: one is the input dynamic interface
at which the CGM provides the time-dependent
boundary tendencies for the FGM, and another is the
feedback dynamic interface at which the predicted
FGM values are used to continually update the CGM

@—¢~s— ®—o—0- [ Ry Oy
—R——

INPUT INTERFACE
X ey

........

.......... FEEDBACK INTERFACE

..........

X X

[ ] . -
CoMe—{—+FoM [x X MASS POINTS
MESH INTERFACE Le_: MOMENTUM POINTS

Fi1G. 1. Portion of nested grid with coarse grid points denoted by
large symbols and fine grid points (not coincident with coarse) by
small symbols. Letters O,-M and I denote the CGM points used to
obtain the input interface tendency for the FGM by interpolation
(see text).
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fields. The input dynamic interface is intentionally
separated from the feedback dynamic interface, with
the momentum input dynamic interface located coin-
cident with the mesh interface. More details are given
in the following subsections. The CGM and FGM do-
mains do not have to be concentric, although the FGM
does not move during the forecast. The sizes of the
CGM and FGM can be chosen independently.

Integrations proceed from the CGM to the FGM.
At the outermost CGM lateral boundaries, the time-
dependent tendencies are obtained from the Perkey/
Kreitzberg one-way nesting approach. At the input dy-
namic interface, interpolated CGM tendencies, as will
be shown in the next section, are saved for the FGM.
Then the FGM fields are advanced three successive
time steps until reaching the same time level as the.
CGM. At this same time level, the computed FGM
fields are used to specify CGM field values at coincident
points within the feedback dynamic interfaces (see
Fig. 1).

b. Interface conditions.

The interface conditions are designed to maintain
continuity and compatibility of solutions between the
two meshes. Following computation of tendencies on
the CGM domain, all flux tendencies around the input
dynamic interface are saved (one row for momentum
along the mesh interface; three rows for mass, labeled
O, M and I in Fig. 1). These tendencies are then in-
terpolated along input interfaces for the FGM bound-
ary solution. Because of the nature of the staggered
grid, the spatial relationships between CGM and FGM
points are different for the mass and momentum vari-
ables. For mass points (i.e., p*, p*T and p*q) at the
input dynamic interface, tendencies are obtained from
a two-step interpolation. First, a Lagrangian interpo-
lation of the CGM tendency between three points per-
pendicular to the mesh interface (e. g., the points along
rows O, M and I in Fig. 1) is made for points at the
mass input interface. This is followed by a cubic-spline
interpolation along the interface. For momentum
points at the FGM boundary, only a cubic-spline in-
terpolation along the interface is necessary. At corners,
the FGM tendencies are obtained from a bidirectional
interpolation. At first sight, the above process seems
to be an overspecification of the FGM boundary con-
ditions. However, the overspecification apparently is
slight because the interface solutions for the FGM are
almost compatible with solutions over the interior
points in terms of physical and dynamic characteristics.

The feedback of FGM fields to CGM fields is ob-
tained at every third time step of the FGM by applying
a nine-point operator (Shapiro, 1970) to points interior
to the feedback dynamic interface, wherever a CGM
point coincides with a FGM point. At this time, the
FGM and CGM are at the same time level (i.e., n + 1).
The nine-point operator is given by
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Fii=fiy+ 50— 8
X (fietj + fojer + firry + fijor — 4£)

2
+ E4‘ (fimrjr1 T firrjrr T firrgm + firjor — 4)) (9)

where F denotes the value of the coupled variables (e.g.,
P*T, p*V and p*q) and p* at CGM points, f'is their
values at FGM points and the subscripts 7, J define the
same CGM position as i, j on the FGM. A value of 0.5
is used for u. ‘

Therefore, the preceding formulations of interface
conditions allow two-way interaction of physical pro-
cesses to be accomplished: The CGM system provides
the FGM with the larger-scale forcing through the input
dynamic interface and then the FGM affects the larger
scale through the feedback dynamic interface.

It is important here to point out the necessity for
‘separating the input from the feedback dynamic inter-
face. In the first place, the FGM boundary values
should not be used for feedback from the FGM to the
CGM since the FGM boundary tendencies are specified
externally by interpolation from the CGM. By sepa-
rating the feedback interface, only internally forecast
values are used for the feedback calculation. In the
second place, if the slight overspecification of the FGM
boundary conditions does generate some numerical
noise, it will be greatest at points next to the FGM
boundary, and thus those points must not be included
in the feedback processes.

¢. Treatment of terrain

Proper treatment of the lower boundary elevation is
very important for a nested-grid model since the terrain
heights are directly related to mass (p*) and fluxes (e.g.,
p*T, p*V and p*g). In previous applications of a two-
way nested grid to meso- or larger-scale dynamics, only
Phillips’ (1978) model incorporated terrain effects (see
Table 1). However, the terrain he used was filtered with
a cutoff wavelength of 560 km. In a one-way nested-
grid model, Miyakoda and Rosati (1977) found that
the model atmosphere was very sensitive to the inclu-
sion of mountainous terrain and that errors and noise
tended to be larger in the vicinity of interfaces when
complex terrain was used. Numerous tests of the PSU/
NCAR nested-grid model not only confirm Miyakoda
and Rosati’s findings,- but show that without special
processing of raw terrain data, the noise level increases
very rapidly during the first few hours of model inte-
gration.

One simple solution to the terrain problem is to use
interpolated CGM terrain height for the FGM. How-
ever, this approach may not be appropriate in cases
where the fine-mesh terrain forcing plays an important
role in generating meteorological features of interest.
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If both coarse-grid and fine-grid terrain data are intro-
duced separately, the resulting FGM terrain field may
produce incompatible CGM solutions for mass fields
when the feedback processes in the model integration
are computed by operator (9). Thus, the problem is
how to obtain compatible terrain for the CGM and
FGM in the overlap region and also satisfy all com-
putational operations.

A starting point for solving this problem is to require
that the final adjusted CGM and FGM terrain values,
HY; and h{;, respectively, be identical at coincident
points in the overlap region (i.e., Hf, = h{ /). An ad-
ditional constraint is to require that both the CGM
and FGM terrain in the entire overlap region simul-
taneously satisfy the operator (9), i.e., both H {,, and
hi - jat the coincident points are equal to the same nine-
point averaged value, /; j» of the FGM terrain about i,
J. At the surrounding eight points, the adjustment of
the terrain height is accomplished as follows.

First, the nine-point operator (9) is applied to the
FGM terrain field to determine the averaged values at
coincident points,

’;,',j = 0.25h?J + 0.125(}1?4.1’]' + h?_l,j + hgf‘“ + h?,j—l)
+ 0.0625(A% 1 js1 + hferjm1 + &y jsr + By 1),
: (10)

where the superscript “0” denotes an_original FGM
value. In general, the averaged value 4;; is not equal
to the original FGM value at the coincident points,

i.e., h;; ¥ hi;. The difference is defined by

Ah = hj— b a1
Next, a constant, c, is applied to 4; ; and A}, so that
Hjl.,l = h{,},
where _
Hiy= hij— cAh, (12)
hi;=he+ (1 — 0)Ah. (13)

The terrain at surrounding FGM points is adjusted by
an equal increment, Az, which is determined as follows

i — cAh = 0.25[h; + (1 ~ c)Ak]
+ 0.125(h% 1 + hi-1j + hijr + hi-y — 4A2)
+ 0.0625(h:?+]J+1 + h‘?-l-l,j—l

+ h?_1J+1 + h?—l,j——l - 4AZ) (14)
Using relation (10), and rearranging, one gets
Az = (c + %)Ah. (15)

Several choices can be derived from the above relation
(see Zhang, 1985). We choose ¢ = 0, and Az = A~/3.
That is, the FGM and CGM terrain heights at the coin-
cident points are adjusted to the nine-point smoothed
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value, A, j, while the surrounding eight FGM points are
altered by amount —Ah/3. Comparisons of the FGM
terrain after the above manipulation with that before
the processing show small differences in magnitude. In
fact, the mean and the standard deviation of height
changes for a typical Appalachian case are 0 and 3.9
m, respectively. These modest changes are not impor-
tant compared to the uncertainties associated with the
original terrain data and objective analysis processes.

d. Noise control

Most finite-differenced primitive equation models
require some means of controlling spurious growth of
short-wavelength energy. In the unnested PSU/NCAR
model, implicit vertical diffusion is very effective in
damping large vertical gradients or discontinuities, and
high frequency noise is controlled by the use of the
Asselin time filter. Horizontally oriented short-wave
oscillations are removed by a diffusion operator [see
Egs. (2)-(4)}.

However, nested-grid models usually exhibit addi-
tional numerical noise near interfaces due to the non-
uniform nature of the meshed grid. In this model, the
fourth-order horizontal diffusion [Eqs. (2)-(4)] with the
diffusion coefficient increasing toward lateral bound-
aries is used to suppress quasi-stationary short-wave
noise on both grids. Also, the technique described in
section 3¢ minimizes noise produced by terrain-char-
acter incompatibilities between the CGM and FGM.
Nevertheless, in early tests of a prototype nesting tech-
nique using the 10-11 May 1973 jet streak case (Uccel-
lini and Johnson, 1979; Brill et al., 1985), in which an
upper-level jet was allowed to propagate across the nest
interface, the solution was noisy near the interface. This
noise was significantly reduced by physical separation
of the input from the feedback dynamic interfaces.
However, owing to the slight overspecification of the
surface pressure tendency at the input dynamic inter-
face when used to compute the vertical motion in o
coordinates, o, there tends to be positive feedback be-
tween the ¢ and momentum convergence in the FGM
domain. The consequent noise in the three-dimen-
sional winds increases with height and eventually can
lead to numerical instability.

In order to control the effects of the incompatibility
of the CGM and FGM solutions at the interface, a
Newtonian-type damping scheme, similar to the one
used by Kurihara and Bender (1980), is applied to the
FGM momentum points next to the nest interface.
That is,

p*V
ot

where 740c) is the relaxation time as a function of
height. The relaxation time has a magnitude of 20A¢
at the topmost layer and 100A¢ at the lowest layer.

<o —(p*V — PPy rf6)  (16)
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Using the latest time level, we obtained the reference
value, p*V, from a two-point average, using values at
the points on either side of the point being adjusted
and along the line normal to the interface (e.g., the
FGM input dynamic interface point and the third point
from the interface).

Very little noise is generated over the domain of the
CGM and is easily controlled by the conventional
techniques. This is partly because of the relatively weak
convergence-divergence which develops on the CGM,
and partly because the inertial-gravity waves associated
with any noise in the CGM tend to dissipate before
they reflect at the CGM boundary. Also, the nine-point
operator used for feedback from the FGM [Eq. (9)]
helps to prevent noise that could occur when FGM
short waves are represented on the CGM.

4. Initialization

It is highly desirable that the initial conditions of the
FGM and the CGM be determined in such a way that
the fields in the overlap region are compatible when
integration begins. When sufficient observations are
available, it is also desirable that the initialization pro-
cedure retain as much detail as possible over the entire
FGM domain (Elsberry and Ley, 1976). The procedure
for obtaining the grid point values starts with the CGM.
A first guess is obtained from the operational analysis
fields from the National Meteorological Center (NMC).
Specifically, the NMC global or northern hemispheric
octagonal grid data are horizontally interpolated to the
grid points of the CGM domain using a 16-point Bessel
formula. These data include sea-level pressure and sur-
face temperature plus mandatory level horizontal wind,
temperature and relative humidity. These fields are
then vertically interpolated to an arbitrary selection of
“model” significant levels. All these “first guess™ fields
at both mandatory and significant levels are then en-
hanced with the standard rawinsonde station soundings
and bogus soundings using a successive-correction type
of objective analysis technique (Benjamin and Seaman,
1985).

The next step in obtaining the CGM grid point val-
ues is to interpolate all three-dimensional fields from
pressure surfaces to model sigma surfaces. If desired,
the mass field can be balanced to the rotational com-
ponent of the wind field, or the vertically integrated
divergence in a column can be removed from the wind
field (Washington and Baumhefner, 1975) in order to
minimize noise early in the forecast. At this stage, the
initial conditions for the CGM are complete except for
the region where the CGM overlaps with the FGM.
For that region, all CGM initial conditions need to be
determined after the FGM initialization is complete.

For the FGM, a first guess at all pressure levels is
obtained directly from horizontal interpolations of the
enhanced CGM fields using a two-dimensional bicubic
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spline. When there are few or no additional data for
fine-resolution analysis on the FGM, this first guess is
acceptable as the final FGM initial analysis. For cases
in which finer resolution data are available, this first
guess is then enhanced with the observations and bogus
soundings occurring in the FGM domain. In order to
attain better quality interface conditions, the FGM do-
main is temporarily extended for the objective analysis
phase (i.e., three grid lengths outward from the perim-
eter of the original FGM). The same objective analysis
procedures as for the CGM are then followed. For cases
in which a new FGM mesoscale analysis is performed,
the final step is to obtain the CGM fields in the overlap
region. They are determined from the FGM counter-
parts using the nine-point operator, in the same way
as the feedback computation described in Section 3b.
Meanwhile, the extended parts of the FGM are re-
moved before numerical integration proceeds.

5. Example of nesting tests

While detailed case applications of this nested-grid
model will appear in subsequent publications, it is nec-
essary to demonstrate its general response, especially
in the region of the nest interface. Figures 2-5 show
some preliminary results from a 12-h nested-grid sim-
ulation of the 10-11 May 1973 jet streak. The coarse
grid consisted of 37 X 37 points spaced at 120 km and
the fine grid had 37 X 37 points at intervals of 40 km,
The model was run with 10 equally spaced layers with
the top at 100 mb. This experiment was conducted
with a one-layer bulk aerodynamic boundary layer and

FIG. 2. Terrain field of the CGM used for the jet streak case (con-
tour interval 100 m). The interior thick solid lines denote the nest
interface.
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FIG. 3. Twelve hour forecast conditions of 325 mb horizontal wind
(V, m s™') at 0000 GMT 11 May 1973 for (a) the CGM and (b) the
FGM.

with an R. A. Anthes/H. L. Kuo type cumulus param-
eterization scheme (see Anthes and Keyser, 1979). The
reader is referred to Uccellini and Johnson, 1979; Brill
etal., 1985; and Seaman et al., 1985, for a more detailed
description of this case. In this experiment the nest
interface was purposely chosen to lie near the highest
terrain of the Rocky Mountains in Colorado (see Fig.
2). An upper-level jet streak crossed the inflow interface
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F1G. 4. Twelve-hour forecast of (a) the CGM and (b) FGM
sea-level pressure (P,,, mb) at 0000 GMT 11 May 1973.

and then approached the outflow interface. Thus, both
the meteorological and orographic forcing provide se-
vere tests for the nested-grid model, particularly for the
nest interface.

Comparisons of Figs. 3-5 with analyses and coarse-
resolution forecasts (see Uccellini and Johnson, 1979;
Brill et al., 1985; and Seaman et al., 1985) show that
the propagation of the jet streak and its associated fea-
tures were simulated well by the nested-grid model.

1337

There are no spurious distortions evident in the vicinity
of the interface. Because of the complex terrain, there
were local perturbations in most meteorological vari-
ables. These perturbations are considered to be more
or less physically consistent with orographic distur-
bances of stable flows. In particular, a meschigh-
mesolow couplet developed at the southwestern corner
of the FGM (see Fig. 4b). This is physically associated
with the upwind-blocking and lee-troughing commonly
observed in the vicinity of the Rocky Mountains. As-
sociated mountain-wave perturbations can also be seen
in the horizontal and vertical winds (see Figs. 3b and
5). Similar, but weaker, orographically induced per-
turbations are found for an unnested experiment with
only the 120-km coarse mesh (not shown). It is im-
portant to point out that there was no significant noise
at the penultimate row of points which is frequently
the site of spurious wave disturbances in nested-grid
models with ill-posed interface conditions. Further ev-
idence of the numerical and physical consistency of
the nested-grid model can be found by examination of
the 500 mb vertical motion field w (see Fig. 5). This
variable is normally sensitive to both standing and
propagating wave energy. Notice that the only distinct
features are clearly associated with the mountain wave
in Colorado and the jet streak over the plains, even
though these are not very strong circulations. No im-
portant noise is apparent.

In addition to the foregoing jet-streak test, other se-
vere tests have been performed to check the feasibility
of the nesting techniques. These include a study in
which deep convection and associated strong conver-
gence developed near the interface (see Seaman et al.,

FIG. 5. Vertical motion (w, ub s™') at 500 mb for 12 h forecast
of the FGM at 0000 GMT 11 May 1973.



1338

1985). In another study, in which Ax in the FGM was
25 km, meso-g scale highs, lows and intense convection
approached the interface and a midtropospheric meso-
« scale short wave propagated across the interface (see
Zhang, 1985; Zhang and Fritsch, 1986). In all these
studies, all meteorological fields remained smooth on
both the CGM and FGM and wave distortions at the
interface remained small. Detailed illustrations of these
results will be published in forthcoming journal articles.

6. Summary

A two-way interactive, nested-grid system tested with
the PSU/NCAR mesoscale model has been described.
The mesh structure is designed with a feedback dy-
namic interface that is separated from an input dy-
namic interface. The momentum input interface is lo-
cated coincident with the mesh interface. A procedure
for obtaining compatible CGM and FGM terrain con-
ditions has been developed. This procedure permits
the successful incorporation of realistic complex ter-
rain, and allows mass to be conserved between the two
meshes. Because the vertical motion in ¢ coordinates,
g, is computed at the FGM boundary but the surface
pressure tendency needed to compute ¢ is specified
from the CGM computation, a weak Newtonian-type
noise-suppression scheme with coefficient increasing
with height is applied to the FGM momentum com-
putation at points next to the mesh interface. Other-
wise, the numerical noise control mechanisms used for
the unnested model are sufficient. The initialization

‘procedure begins by specifying the CGM. conditions
using the NMC analysis as a first guess and then en-
hancing this analysis with the standard rawinsonde ob-
servations and bogus data. The FGM is initialized using
the CGM interpolated values as a first guess and these
values are enhanced using observed and bogus sound-
ings.

" This nesting procedure has been tested with real data
under different severe conditions. In a typical case pre-
sented here, a 12-h simulation of a propagating jet
streak over complex terrain showed relatively noise-
free solutions for both the CGM and FGM. Preliminary
experiments indicate that the compatible CGM and
FGM terrain conditions, the separation of the feedback
from input dynamic interface and the use of a short-
wave filter at the nest interface made significant con-
tributions to the relatively noise-free solutions. More
experiments to severely test additional aspects of the
nesting techniques are under way and will be described
in a future paper.
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