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Despite recent major improvements in numerical weather prediction (NWP)

systems, operational NWP forecasts occasionally su↵er from an abrupt drop in

forecast skill, a phenomenon called “forecast skill dropout.” Recent studies have

shown that the “dropouts” occur not because of the model’s deficiencies but by the

use of flawed observations that the operational quality control (QC) system failed

to filter out. Thus, to minimize the occurrences of forecast skill dropouts, we need

to detect and remove such flawed observations.

A diagnostic technique called Ensemble Forecast Sensitivity to Observations

(EFSO) enables us to quantify how much each observation has improved or degraded

the forecast. A recent study (Ota et al., 2013) has shown that it is possible to detect

flawed observations that caused regional forecast skill dropouts by using EFSO with

24-hour lead time and that the forecast can be improved by not assimilating the

detected observations.

Inspired by their success, in the first part of this study, we propose a new



QC method, which we call Proactive QC (PQC), in which flawed observations are

detected 6 hours after the analysis by EFSO and then the analysis and forecast

are repeated without using the detected observations. This new QC technique is

implemented and tested on a lower-resolution version of NCEP’s operational global

NWP system. The results we obtained are extremely promising; we have found that

we can detect regional forecast skill dropouts and the flawed observations after only

6 hours from the analysis and that the rejection of the identified flawed observations

indeed improves 24-hour forecasts.

In the second part, we show that the same approximation used in the deriva-

tion of EFSO can be used to formulate the forecast sensitivity to observation error

covariance matrix R, which we call EFSR. We implement the EFSR diagnostics in

both an idealized system and the quasi-operational NWP system and show that it

can be used to tune the R matrix so that the utility of observations is improved.

We also point out that EFSO and EFSR can be used for the optimal assimi-

lation of new observing systems.
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NCEP. The dates correspond to the initial time of the forecasts. The
score shown is the spatial ACC of 500 hPa geopotential height. From
Rodwell and Coauthors (2013). . . . . . . . . . . . . . . . . . . . . . 8

3.1 Schematical flow chart of the two-way coupled hybrid GSI system.
This flow-chart is to be read from left to right. Adapted from Wang
et al. (2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Comparison of our 24-hour EFSO impacts from each observation type
with those of Ota et al. (2013). (a) 24-hour EFSO impacts (J kg�1)
from our experiment verified against the control analysis from GSI
measured with the moist total energy norm averaged over a one-
month period from 2012-Jan-08-00Z to 2012-Feb-07-18Z. (b) 24-hour
EFSO impacts measured with the moist total energy norm from Ota
et al. (2013) averaged over the same one-month period. (c) as in (a),
but with the dry total energy norm. (d) as in (b), but with the dry
total energy norm. Panels (b) and (d) are adapted from Ota et al.
(2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xiii



4.2 Comparison of the observational impacts to 24-hour forecast errors
(J kg�1) from our EFSO experiments with those from adjoint FSO
of NASA/GMAO’s GEOS-5 system. (a) 24-hour FSO impacts from
each observation type evaluated with the adjoint formulation of LB04
with NASA/GMAO’s GEOS-5 system. Shown are the impacts eval-
uated using the adjoint model with (red) only dry physics and (blue)
dry and moist physics. Both impacts are measured with the dry total
energy norm, and are averaged over a one-month period from March
17th, 2012 to April 17th, 2012, using only analyses of 00 UTC. (b)
as in (a), but (green) the impacts measured with the moist total en-
ergy norm using the adjoint model with dry and moist physics, and
(red) the impacts measured with the dry total energy norm using the
adjoint model with only dry physics (identical to the red bar in the
panel (a)). (c) As in Figure 4.1c, but averaged using only the anal-
yses of 00 UTC. (d) As in Figure 4.1a, but averaged using only the
analyses of 00 UTC. Panels (a) and (b) are adapted from Holdaway
et al. (2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Comparison of EFSO impacts for di↵erent evaluation lead times. Top
and bottom panels are, respectively, for the moist and dry total energy
norm. Left, middle and right panels are, respectively, for 6-, 12-
and 24-hour lead time. In all panels, the EFSO impacts are verified
against the control GSI analysis. (a) as in Figure 4.1a, but for 6-hour
lead time. (b) as in (a), but for 12-hour lead time. (c) as in (a), but
for 24-hour lead time. (d) as in (a), but measured with the dry total
energy norm. (e) as in (b), but measured with the dry total energy
norm. (f) as in (c), but measured with the dry total energy norm. . 74

4.4 6-hour EFSO impacts (J kg�1) of each observation plotted against the
height (in pressure; hPa). The impacts are evaluated for the entire
globe with 6-hour lead time and the moist total energy norm, and are
verified against the control GSI analysis. Shown are the observations
of (a) Aircraft, (b) MODIS wind and (c) AMSU-A, assimilated at 18
UTC of February 1st, 2012. For AMSU-A, the pressure is defined for
each channel as the maxima of the corresponding weighting function. 75

4.5 Percentage of beneficial observations (i.e., the number of observations
with positive impacts onto forecast divided by the total number of
observations and then multiplied by 100) classified by the observation
types. EFSO impacts are computed using the moist total energy
norm with the control GSI analysis as the verifying truth. Shown
are evaluated with lead time (a) 0 hours (i.e., analysis sensitivity to
observation), (b) 6 hours, (c) 12 hours, and (d) 24 hours. Statistics
are taken for a one-month period from 2012-Jan-08-00Z to 2012-Feb-
07-18Z, with total observation number of 218,025,941. . . . . . . . . . 80

xiv



4.6 Geographical and vertical distributions of EFSO impacts for individ-
ual MODIS wind (stattype 259; see Table 3.3) observations on one
of the “regional dropout” cases (18 UTC of February 6th, 2012 and
the area of 60 �N – 90 �N, 40 �E – 100 �E). Shown are (a) horizontal
distribution of 6-hour EFSO impacts (b) as in (a), but for 24-hour
EFSO, (c) vertical distribution of 6-hour EFSO, and (d) as in (c),
but for 24-hour EFSO. Red and blue circles represent, respectively,
negative and positive impacts (i.e., positive and negative EFSO val-
ues). The area encircled by each circle corresponds to the magnitude
of the EFSO impact. Wind barbs in panels (a) and (b) represent the
observed wind. Each MODIS wind observation is composed of a pair
of observations, one for u (zonal wind) and the other for v (merid-
ional wind), which are assimilated separately. Here, the impact for
each MODIS observation is defined as the sum of the impacts from
its u and v component. The EFSO is verified against the control GSI
analysis and is measured with the moist total energy norm restricted
to the above mentioned “rectangular region.” . . . . . . . . . . . . . 85

4.7 Scatter plot of (a) 0-hour and 6-hour EFSO, and (b) 6-hour and 24-
hour EFSO (in J kg�1) for the case and the observation type shown
in Figure 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8 As in Figure 4.3, but for the EFSO impacts verified against the en-
semble mean LETKF analysis. . . . . . . . . . . . . . . . . . . . . . 87

4.9 Scatter plots of the two EFSO values (in 10�3J kg�1) for individual
observations, one verified against the control GSI analysis (x-axis)
and the other verified against the ensemble mean LETKF analysis
(y-axis), for (a,b) Aircraft observations, (c,d) MODIS wind observa-
tions and (e,f) AMSU-A observations. The left panels ((a), (c) and
(e)) show the results for 6-hour EFSO; the right panels ((b), (d) and
(f)) show the results for 24-hour EFSO. All EFSO values are mea-
sured globally with the moist total energy norm. The observations
assimilated at 18 UTC of February 1st, 2012 are shown. . . . . . . . 89

5.1 (Top) 30 �⇥30 � cells and (bottom) Y 6

12

cells represented with (left)
orthographic and (right) cylindrical equidistant projections. To allow
for meridional overlaps, the two division approaches both have two
di↵erent ways to segment the latitude. The area of each cell in each
latitude band is shown by the width of gray boxes on the right edge
of the right panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xv



5.2 (a): Statistics of the normalized regional forecast errors and the re-
gional forecast error reduction by the analysis for (top) 6-hour lead
time and (bottom) 24-hour lead time. Errors are measured for each
cell of the 30 �⇥30 � cells with the moist total energy norm and are
verified against the control GSI analysis. The samples are taken from
all cells (global). Shown are (left) the histogram of the normalized
regional forecast errors, (middle) the histogram of regional forecast
error reduction by the analysis, and (right) the scatter plot of nor-
malized regional forecast errors (abscissa) and regional forecast error
reduction by the analysis (ordinate). The vertical and horizontal lines
in the scatter plot denote mean-plus-2� levels. (b): As in (a), but for
the Y 6

12

cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3 As in Figure 5.2, but verified against the ensemble mean LETKF

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4 Scatter plots of the estimated forecast improvement (%) with (a,b)

the normalized regional forecast errors, and (c,d) the regional forecast
error reduction by the analysis. Panels on the left (a,c) and the right
(b,d) are, respectively, for lead times of 6 hours and 24 hours. The
samples are taken from the 30 �⇥30 � cells. . . . . . . . . . . . . . . . 107

5.5 As in Figure 5.4, but for Y 6

12

cells. . . . . . . . . . . . . . . . . . . . . 108

6.1 The 6-hour EFSO values of individual observations plotted against
their ranks. Shown are (top) the observations of stattype 133 (Air-
craft) for Case #6, (middle) the observations of stattype 259 (MODIS
wind) for Case #8, and (bottom) AMSU-A observations from MetOp-
A satellite for Case #7. Positive and negative impacts (or negative
and positive values, respectively) are plotted with blue and red col-
ors. The units are 10�3J kg�1. The three arrows represent, from
left to right, the thresholds for rejection of “allneg,” “one-sigma” and
“netzero” criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Relative forecast improvement for each of the four data rejection cri-
teria based on 6-hour EFSO, for Case #17. Each column represents,
from left to right, the “allobs,” “allneg,” “one-sigma” and “netzero”
criteria. The first row represents the relative improvement of 6-hour
forecast; the second and third rows represent, respectively, the im-
provement of 12 and 24 hour forecasts. Red colors represent forecast
degradation; blue colors represent forecast improvement. The thick
black cone represents the target region. . . . . . . . . . . . . . . . . 129

6.3 As in Figure 6.2, but with observation denial based on 24-hour EFSO. 130
6.4 As in Figure 6.2, but for Case #5. . . . . . . . . . . . . . . . . . . . 136
6.5 As in Figure 6.3, but for Case #5. . . . . . . . . . . . . . . . . . . . 137

xvi



7.1 Analysis errors verified against the truth for the SPIKE experiment
displayed as a function of grid number. The analysis errors for each
grid point are averaged over the last 9 years of a 10-year DA cycling.
The analysis errors are smaller when the observation error variances
are correctly specified (blue line) than when they are mis-specified
(red line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 The forecast sensitivity gradient to observation error variances
@ef

t|0
@�o

j

2

for the SPIKE experiment estimated using (top) “EFSR-REUSE”
and (bottom) “EFSR-NEW” formulations. As in Figure 7.1, the
blue and red lines represent, respectively, the DA runs with correctly
specified observation error variances (correct-R run) and that with
mis-specified observation error variances (incorrect-R run). As in
Figure 7.1, the sensitivity gradients are averaged over the last 9 years
of each DA run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.3 As in Figure 7.2, but for estimation using the adjoint FSR formula-
tions: (top) “AFSR-REUSE” and (bottom) “AFSR-NEW.” . . . . . 160

7.4 As in Figure 7.1, but for the STAGGERED experiment. . . . . . . . 164
7.5 As in Figure 7.2, but for the STAGGERED experiment. . . . . . . . 165
7.6 As in Figure 7.3, but for the STAGGERED experiment. . . . . . . . 166
7.7 As in Figure 7.5, but for the forecast sensitivity to the tuning factor

soj of the observation error variances. . . . . . . . . . . . . . . . . . . 167
7.8 As in Figure 7.1, but for the LAND-OCEAN experiment. . . . . . . . 170
7.9 As in Figure 7.2, but for the LAND-OCEAN experiment. . . . . . . . 171
7.10 As in Figure 7.3, but for the LAND-OCEAN experiment. . . . . . . . 172

8.1 Forecast sensitivity to observation error variance scaling factors. Shown
are (a) 6-hour forecast sensitivity measured with the moist total en-
ergy norm, (b) as in (a), but for 24-hour forecast, (c) as in (a), but
measured with the dry total energy norm, and (d) as in (c), but for
24-hour forecast. All are verified against the control GSI analysis.
The units are J kg�1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.2 The one-month averages of the EFSO impacts from each observation
type before and after the tuning of observation error variances. The
EFSO impacts before the tuning are shown with blue bars; those
after the tuning are shown with red bars. The error bars represent
the confidence intervals at 95% level computed by a t-test for the
di↵erence of two paired data (see text for detail). Shown are (a) 6-
hour EFSO impacts measured with the moist total energy norm, (b)
as in (a), but for 24-hour EFSO, (c) as in (a), but measured with the
dry total energy norm, and (d) as in (c), but for 24-hour EFSO. All
are verified against the control GSI analysis. The units are J kg�1. . . 183

xvii



8.3 The EFSO impacts from MODIS wind observations for 6-hour lead
time measured with the moist total energy norm shown as a time
series. The verification is against the control GSI analysis. Note that
positive values correspond to negative impacts because they increase
the forecast errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.4 As in Figure 8.1, but the average is taken without using cases in
which the 6-hour EFSO impacts from MODIS wind measured with
the moist total energy norm was negative. . . . . . . . . . . . . . . . 186

9.1 Schematic of JMA’s global NWP system. The data dependency is
depicted by the thick lines: for example, the oblique dark-orange
line connecting CA06 and GA12 denotes that GA12 (early analysis
for 12UTC) depends on the short-term forecast from CA06 (cycle
analysis for 06UTC). Adapted from JMA (2013). . . . . . . . . . . . 198

A.1 The modulus of the average amplification factor per step |A| defined
by Eq. (A.24) for the Crank-Nicolson semi-implicit Lorenz N -cycle
schemes applied to the scalar split-frequency problem Eq. (A.22).
Panels (a)–(f) correspond, respectively, to N = 1, 2, 3, 4, 5 and 6. The
contour intervals are 0.1. However, regions with 1 < |A| < 1.01 are
filled with light gray to show where the schemes are slightly unstable.
Regions of instability with |A| exceeding 1.01 are filled with dark gray.
Red thick lines in each panel represent |!H | = |!L|; we are interested
in the region above these lines. . . . . . . . . . . . . . . . . . . . . . . 217

A.2 As in Figure A.3.3, but for the average phase error per step defined
by Eq. (A.25) for the Crank-Nicolson semi-implicit Lorenz (a) 3-
cycle and (b) 4-cycle schemes, applied to the scalar split-frequency
problem Eq. (A.22). The contour levels are ±50%,±10%,±5%,±1%
and 0. Non-negative and negative contours are drawn, respectively,
with solid and dashed lines. Regions where the magnitude of the
relative errors exceeds 1% and 10% are filled, respectively, with light
and dark gray. Red thick lines in each panel represent |!H | = |!L|;
we are interested in the region above these lines. Phase errors are
drawn only for areas where the modulus of the amplification factor
(shown in Figure A.3.3c,d) is smaller than 1.01. . . . . . . . . . . . . 219

A.3 Stability regions of semi-implicit Lorenz (a) 3- and (b) 4-cycles ap-
plied to the split-frequency damped oscillation problem Eq. (A.26)
for di↵erent values of !H�t. Each curve represent the contour of
|A = 1| for !H�t labeled in the legend. The scheme is stable in the
regions encircled by theses curves. . . . . . . . . . . . . . . . . . . . 221

A.4 Snapshots of surface pressure (in hPa) at the 9th day of integration.
(a) Reference solution produced from RK4 scheme with time step
�t = 10 s, (b) SPEEDY’s default ImLF+CN scheme with �t =
1200 s, (c) as in (b), but with�t = 10 s, and (d) ImL4+CN-A scheme
with �t = 1200 s. Contour intervals are 10 hPa. . . . . . . . . . . . 233

xviii



A.5 Errors of surface pressure measured with the l2-norm for various semi-
implicit temporal integration schemes plotted against time steps �t
on a log-log plane. Shown are the errors for �t = 1200, 600, 300, 180,
120, 90, 60, 45 and 30 s. The errors are computed with respect to the
reference solution produced by running RK4 scheme with �t = 10 s.
The slopes of regression lines fitted using errors for 30 s < �t < 180 s
are shown for each scheme in the legend. The names of the schemes
are defined in Table 1 and Section A.4.4. The left and right panels
show, respectively, the results for 5-day and 20-day forecasts. . . . . . 236

A.6 As in Figure A.5, but for explicit Lorenz 4-cycle schemes. Shown
are the errors for �t = 240, 180, 150, 90, 60, and 30 s. The slopes of
regression lines fitted using errors for 30 s < �t < 120 s are shown
for each scheme in the legend. The left and right panels show, re-
spectively, the results for 10-day and 30-day forecasts. . . . . . . . . . 240

xix



List of Abbreviations and Acronyms

3D-Var Three-Dimensional Variational data assimilation system

4D-Var Four-Dimensional Variational data assimilation system

ACARS Aircraft Communications Addressing and Reporting System

ACC Anomaly Correlation Coe�cient

AFSR Adjoint Forecast Sensitivity to R

AGCM Atmospheric General Circulation Model

AMSU-A Advanced Microwave Sounding Unit A

AMV Atmospheric Motion Vector

CMC Canadian Meteorological Centre / Centre Météorologique Canadien
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Chapter 1: Introduction

1.1 Brief history of the development of Numerical Weather Predic-

tion

Since the dawn of civilization, weather has always been beyond the reach

of human comprehension. Inability of humanity to foresee the future of weather

has led our ancestors to associate it with caprices of divine entities. The English

word “thunder,” for example, derives from “Thor,” the name of a god in Scan-

dinavian mythology; the Japanese word for thunder, “kami-nari,” literally means

roaring (“nari”) of a god (“kami”). Until very recently, weather forecasting relied

on religious fortunetelling or so-called “weather lore,” namely, an accumulation of

informally inherited, sometime superstitious, folklore related to the prediction of

weather. As Roulstone and Norbury (2013) recounts, even in 19th century when

astronomers were able to accurately calculate the orbit of a comet and the ebb and

flow of ocean tides, or even to “predict” the existence of the (then-unknown) planet

Neptune solely from the observational data and the first principles (i.e., celestial me-

chanics), weather forecasters still depended on their subjective intuition. In stark

contrast to this, modern weather forecasting is backed by rigid, scientific methods;
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daily weather forecasts issued by national meteorological centers worldwide are now

produced from numerical integration of the equations of fluid mechanics that govern

the motion of the atmosphere, whose computations are carried out on state-of-the-

art supercomputers. In this section, we briefly recount some of the key developments

that paved the way to the emergence of modern weather forecasting to locate the

role of this thesis in a broader historical perspective. Detailed historical narrations

on the birth and initial development of modern weather forecasting can be found,

for example, in Kalnay (2003, Chapter 1 and Appendix A), Roulstone and Norbury

(2013) and Persson (2005a,b,c).

Weather prediction entered the realm of “hard science” at the beginning of

20th century when Vilhelm Bjerknes, a Norwegian physicist, fluid dynamicist and

meteorologist, proposed to formulate weather prediction as a problem in physics

and fluid dynamics. His proposal encouraged meteorologists and physicists to study

the evolution of meteorological disturbances, not under the empirical framework of

Natural History, but as an applied problem of laws of physics (Bjerknes, 1904). This

paradigm shift fostered a number of important theoretical developments that led to

the emergence of a new branch of meteorology, namely, “dynamic meteorology,”

that eventually became the foundation of modern meteorology. The establishment

of dynamic meteorology as a precise quantitative discipline paved the road to the

first, groundbreaking (although unsuccessful) attempt at “Numerical Weather Pre-

diction” (NWP) conducted with hand-calculations by Lewis Fry Richardson in 1922.

In NWP, the weather is viewed as a dynamical system that is governed by a set of

hydrodynamic partial di↵erential equations (PDEs); the evolution of the weather is

2



thus predicted by numerical integration of the initial value problem. Richardson’s

first attempt at NWP unfortunately turned out to be a total failure, predicting

an unrealistically large and rapid change in surface pressure when, in reality, the

pressure barely changed. Since this failure, NWP had remained regarded as a mere,

impracticable dream, until the advent of an electronic digital computer in 1940’s;

an interdisciplinary group of mathematicians, physicists, electrical engineers and

meteorologists embarked on weather forecasting by means of numerical integration

of the governing equations derived from fluid mechanics using the ENIAC, the first

electronic digital computer. The first successful computer-generated weather fore-

cast reported by Charney et al. (1950) marked the birth of NWP, a methodology

that humanity finally acquired for the first time in the course of history by which

objective predictions of weather were made possible based solely on observational

data and the first principles (i.e., the laws of physics). Following this epoch-making

achievement by Charney et al. (1950), real-time operation of NWP by national me-

teorological administrations started in several countries, first in Sweden in 1954,

followed shortly after by the United States (1955), then by Japan (1959) and the

United Kingdom (1965).

The history of NWP since its birth is characterized by incessant succession of

theoretical and technological innovations. Exponential growth of computing power

that roughly follows the so-called Moore’s Law allowed NWP centers to steadily

increase the resolution of their forecast models. The first operational NWP models

in the 1950’s had only a single vertical layer and a horizontal resolution of about

300 ⇠ 500 km with forecast area of continental scale (a total of only 300 grid points).
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Over the last 50 years, the size of the problem solved by NWP systems has increased

by more than million-fold; as of 2014, current operational NWP models typically

predict the evolution of the entire atmosphere over the whole globe with ⇠ 100

vertical layers and ⇠ 20 km horizontal grid spacing, amounting to a total of ⇠ 109

grid points. Increase of resolution, together with adoption of governing equations

with less and less approximation, and significant improvement in representation of

parameterized physical processes, resulted in remarkable reduction of model errors.

As the model became more and more accurate, the accuracy of the initial

conditions became increasingly important. NWP scientists’ need for accurate ini-

tial conditions has given rise to a new, interdisciplinary branch of science: Data

Assimilation (DA). In the early stages of NWP, initial conditions were produced

by digitizing weather charts (i.e., contour maps of meteorological quantities such

as geopotential height or temperature at specific pressure level) that were manu-

ally (and subjectively) “analyzed” by human forecasters who were well trained in

synoptic meteorology. To put the NWP into routine operation, however, it was

necessary to automate this process (manual analysis was very laborious and time

consuming) and also to attain stable quality that is independent of the skill of the

forecaster in charge. The first automated objective “analysis” (i.e., generation of

initial conditions for NWP models) was produced by simple spatial polynomial in-

terpolation of observations. A major di�culty in this approach, however, was that

geographic distribution of observations is scarce and highly non-uniform: the num-

ber of available observations was much less than the number of grid points; there are

relatively dense observations over the land, particularly near the densely-populated
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regions, such as North America, Europe and East Asia, but, over the oceans or

less-populated, mountainous areas, observations are fewer or non-existent at all.

Shortly after, however, early pioneers of NWP soon realized that short-range fore-

casts from previous analyses provided good estimate of the atmospheric state for

such observation-scarce regions because the model can propagate information from

observations in the upstream regions down toward data-scarce area. Thus, instead

of producing analysis “from scratch” (i.e., using only the information from latest

observations) at every initial time, it is more advantageous to “correct” the short-

range forecast from the previous run (which is now called “first-guess,” “prior” or

“background”) by using the newly obtained information from observations (Bergth-

orsson and Döös, 1955). This allowed NWP scientists to formulate the problem

under the framework of rigorous statistical estimation theory, notably Bayesian es-

timation, regarding the short-range forecast as the prior and the analysis as the

posterior estimate. Theoretical advances thereafter and steady increase of comput-

ing power have led to successive improvements of DA methods. As of 2014, current

operational DA systems of major NWP centers are based on sophisticated statis-

tical methods, most notably, variational methods (3D-Var and 4D-Var), ensemble

Kalman Filtering (EnKF) or a hybrid of both.

Innovations in observation technology have also significantly contributed to

the improvement of NWP forecast skills. Most notably, exploitation of satellite-

based remote-sensed data into the NWP systems has had considerable impacts in

reducing forecast errors, as we show in later chapters (c.f., e.g., Figure 4.1). In

fact, necessity of NWP scientists to e↵ectively assimilate new types of observations
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was one of the main driving forces of theoretical advancements in DA; for example,

the transition from Optimal Interpolation method (OI) to 3D-Var was motivated

in part by necessity to directly assimilate satellite radiances rather than indirectly

assimilate them via “retrievals.”

Today’s operational global NWP systems assimilate ⇠ 106 observations twice

or four times each day to yield the best estimate of the atmospheric state in ⇠ 109-

dimensional space. Global atmospheric DA is arguably the largest “inverse problem”

ever solved; remarkably enough, this huge inverse problem is being solved on a

routine basis every day, without ever being stopped, producing tremendous benefit

to the society, economy and humanity.

As a consequence of these advancements, skills of NWP forecast have gone

through dramatic improvement. For example, Simmons (2011) reports that, for

the northern hemisphere (NH) extratropics, the skill of 6-day forecast achieved by

the European Centre for Medium-range Weather Forecast (ECMWF) operational

system at 2010 is as good as that of 3-day forecast of 1980’s operational system.

The improvement is even larger for the southern hemisphere (SH) extratropics with

2010 7-day forecast beating 1980 3-day forecast. Similar dramatic improvements in

forecast skill are also accomplished by other NWP centers.

1.2 Background: Importance of minimizing “forecast skill dropouts”

Although current operational NWP centers boast very high forecast skills on

average, they occasionally su↵er from abrupt drop of forecast performances. This
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phenomenon, denoted or referred to as “forecast skill dropout” by the National

Centers for Environmental Prediction (NCEP) or “forecast bust” by ECMWF, is

recently identified by major NWP centers as their major setback (e.g. Alpert et al.,

2009; Kumar et al., 2009; Rodwell and Coauthors, 2013).

A typical example of such “forecast skill dropouts” is shown in Figure 1.1. The

skills of 6-day forecast of several NWP centers, measured as the spatial anomaly

correlation coe�cient (ACC) of 500 hPa geopotential height field computed over

Europe, normally fluctuate around 80% or higher. At around 6th of April, however,

the scores of all centers abruptly drop and the debased forecast skills persist for

several days. Forecast skill “dropouts” are highly undesirable because not only do

they degrade the average performance of NWP forecast but also taint its reliability:

forecasts with stable accuracy (i.e., forecasts whose skills do not vary much over

time) are easier to use for policy makers than those with unstable accuracy. Thus,

even a single occurrence of a “dropout” can significantly lower the value of forecasts

for users. Furthermore, as pointed out by Kumar et al. (2009) and Rodwell and

Coauthors (2013), “dropouts” tend to occur in association with dynamic instability

(baroclinic instability, in particular) of synoptic situations and thus tend to occur

more frequently for high-impact weather events, which makes it even more important

to reduce their occurrences.

In order to minimize the occurrences of “dropouts,” we need to first under-

stand what causes them. Recent studies at NCEP (Alpert et al., 2009; Kumar

et al., 2009) have shown that there are cases of “dropouts” that occur not because

of the model’s deficiencies but because of the assimilation of flawed observations
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Figure 1.1: An example of a forecast skill “dropout”: The day 6 forecast
skill over Europe (35 �–75 �N, 12.5 �W – 42.5 �E) from the 5 major NWP
centers are shown as time series over one-month period from March 25th
to April 25th of the year 2011. Centers shown are ECMWF, UK Met
O�ce (UKMO), Japan Meteorological Agency (JMA), Canadian Mete-
orological Centre / Centre Métórologique Canadien (CMC), and NCEP.
The dates correspond to the initial time of the forecasts. The score
shown is the spatial ACC of 500 hPa geopotential height. From Rodwell
and Coauthors (2013).
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that the operational quality control (QC) system failed to filter out: they focused

on cases where NCEP’s Global Forecasting System (GFS) su↵ered from “dropout”

but ECMWF did not, and conducted hindcast experiments in which the initial

conditions for the NCEP’s GFS model are produced with the following procedure:

first, a set of pseudo-observations are generated from analysis of ECMWF by ap-

plying observation operator to it. The pseudo-observations thus generated are then

ingested to the Gridpoint Statistical Interpolation (GSI), the NCEP’s global DA

system, to produce initial conditions for the GFS model. When initiated from the

initial conditions thus produced, the GFS model did not exhibit a drop of forecast

skills, indicating that the mis-specification of the initial conditions, rather than the

errors of the model, is responsible for the “dropouts.” The major challenge in pre-

venting “dropouts” resides thus in detecting the “flawed” observations that lead to

erroneous initial conditions.

1.3 Ensemble Forecast Sensitivity to Observation (EFSO)

A diagnostic technique called Forecast Sensitivity to Observation (FSO) en-

ables us to quantify how much each observation improved/degraded the forecast. It

provides an estimate of how much each assimilated observation reduced or increased

the forecast error measured with some specified norm. If the estimated change of

forecast errors attributable to a specific observation is negative/positive, that means

that its impact toward forecast improvement is positive/negative (N.B. the nomen-

clature is somewhat confusing; observations with positive impacts have negative
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values of FSO because they reduce the error, and vice versa). Thus, if the diagnos-

tics is reliable, the “flawed” observations that cause forecast skill “dropouts” should

manifest themselves as outliers whose impacts are abnormally negatively large. We

propose to use an ensemble-based formulation of FSO, which we call EFSO, to

identify such “flawed” observations. We anticipate that the accuracy of analyses

and forecasts can be improved by repeating the data assimilation without using the

identified observations (see next section). Detailed description of the EFSO is given

in Section 2.2.

Promising results for the approach described above have already been ob-

tained by a previous study: Ota et al. (2013) successfully implemented EFSO to a

quasi-operational global ensemble DA system coupled with NCEP’s GFS model and

demonstrated that it is possible, for individual cases, to identify flawed observations

that are responsible for forecast skill dropouts, by applying EFSO with 24-hour

forecast lead time to relatively small horizontal regions. They report that, in all the

7 cases they examined, rejection of the identified defect observations actually im-

proved the forecasts. Strikingly, in one of the examined cases, the regional forecast

errors were reduced by as much as 30%.

Next section describes the overview of the proposed algorithm and the chal-

lenges to be explored before it is implemented to the operational system.
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1.4 Proactive QC

In this thesis, we propose a new, simple QC scheme, which we denote “Proac-

tive QC,” based on the idea described in the previous section. The essence of the

idea can be summarized as following: if we can identify the observations that sig-

nificantly degraded forecast by using EFSO diagnostics, then we can improve the

forecast by not using such deficient observations. Reflecting the simplicity of the

idea, the algorithm is also very simple.

1.4.1 Overview of the algorithm

This section gives a brief overview of how the Proactive QC works. A more

detailed description of the algorithm is given in Section 2.3.2.

Let 00h be the time for which Proactive QC is to be applied, and assume

that the DA system has a 6-hour assimilation window (the cycling interval). The

algorithm can be summarized as following:

1. Run regular DA cycle from time �06h to 00h.

2. Run regular DA cycle from time 00h to +06h.

3. Using the information available from Steps 1 and 2, detect horizontal regions

where “forecast skill dropout” is likely to occur, for example where the 12-hour

forecast from �06h is more accurate than the 6-hour forecast from 00h that

used the observations.

4. If such regions are detected, perform 6-hour EFSO targeting at those regions
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to identify “flawed” observations that are likely to have significantly degraded

6-hour forecast.

5. If such “flawed” observations are identified, repeat DA for time 00h without

using the “flawed” observations.

6. Repeat Steps 1–5 shifting the time.

1.4.2 Challenges toward operational implementation

Although, as described in the previous section, promising results of this ap-

proach have been already obtained (Ota et al., 2013), several issues still remain to

be addressed. First, it is not clear whether EFSO with forecast lead time as short

as 6 hours is capable of detecting “flawed” observations: in the EFSO formulation

proposed by Kalnay et al. (2012), forecast errors are verified against the analysis

validating at the same time and date. Compared to forecast errors of very short-

range such as 6 hours, errors of analysis against truth may not be negligibly small,

which might make it di�cult to accurately estimate forecast errors. The second,

related issue is whether we can detect possible occurrences of regional “dropouts” in

Step 3. after only 6 hours from the analysis. The third non-trivial question is what

is the best criterion for rejection of observations given the 6-hour EFSO impacts of

each observation: rejecting too many observations would lead to forecast degrada-

tion, but rejecting too few observations would make no di↵erence. We have thus to

design a method to determine the threshold that strikes best balance. The last and

most important issue is whether the rejection of the “flawed” observations detected
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by EFSO really improves analysis and forecast, in particular, beyond the 6-hour

lead time. We discuss these issues in more detail in Section 2.4 after introducing

our mathematical approach.

In order to answer these questions, we conduct DA experiments using a lower-

resolution version of NCEP’s operational global DA system. A detailed description

of the experimental setup is given in Chapter 3. The results of our experiments are

described in Chapters 4–6.

1.5 Ensemble Forecast Sensitivity to Observation Covariance Matrix

R (EFSR) and its application to tuning of R

In DA methods currently adopted by most operational NWP systems, such

as 3D-Var, 4D-Var or EnKF, information from background and observations are

linearly combined with an “optimal weight.” The “optimal weight” is determined,

implicitly (in variational methods) or explicitly (in sequential methods including

EnKF), based on the background- and observation- error covariances B and R

(note that in EnKF methods, the background covariance, commonly denoted by Pb

rather than by B, is dynamically estimated from the perturbation of background

ensemble). These covariances are parameters for DA systems that are externally

prescribed and thus subject to empirical tuning. Since they determine the weight

with which background and observations are combined, an accurate specification

of these covariances is of vital importance. In EnKF methods, the structure of

the background covariance matrix Pb
0

is estimated as the sampled covariance of
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the ensemble of background fields; this allows us to fully take into account the

flow-dependent structure of the errors. The magnitude of the background error

covariance Pb
0

is tuned by a technique called covariance inflation, whose adaptive

methodologies are being intensively studied by a number of researchers. In this

thesis, we focus on specification of observation error covariance R.

At present, the method most widely adopted by operational NWP systems

for estimation of R is the statistical diagnostics proposed by Hollingsworth and

Lönnberg (1986). This diagnostics assumes that the errors of observations and

background are uncorrelated and that di↵erent observations are also uncorrelated

(i.e., R is diagonal), and diagnoses diagonal elements of R as the “jump” (dis-

continuity) at the diagonal element of the corresponding column of self-covariance

matrix of observation innovation (O-B) vector. Expanding this idea, Talagrand

(1999) showed that, if a DA system is optimal in the sense that B and R are cor-

rectly specified, then the (unknown) true R can be diagnosed as the expected value

of the cross-covariance between the observation innovation (i.e., observation minus

background; O-B) and the observation residual (i.e., observation minus analysis;

O-A). Thus, if the two (prescribed and diagnosed) R’s disagree, that is an indica-

tion of mis-specification of B and R. Desroziers and Ivanov (2001) further extended

this approach and proposed an iterative tuning procedure based on the consistency

diagnostics; if the consistency test of Talagrand (1999) fails, then we can correct R

iteratively by relaxing prescribed R to the diagnosed R.

Another approach to this problem recently proposed by Daescu (2008) and

Daescu and Langland (2013) is to estimate the sensitivity of the forecast to the
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R-matrix; using the adjoint method, they derived formulae similar to that of FSO

by LB04 which estimate how a small change in each element of R would change the

forecast errors measured with an arbitrary quadratic norm. With this sensitivity

information, it is possible to tune the R matrix so that the forecast errors will be

reduced.

In this thesis, we show that it is possible to formulate an ensemble equivalent

of the forecast sensitivity to observation error covariance R of Daescu (2008) and

Daescu and Langland (2013) based on EFSO formulation of Kalnay et al. (2012).

We call our ensemble-based formulation by the acronym EFSR (ensemble forecast

sensitivity to R matrix). We first apply this method to a simple, toy DA system to

confirm the validity of our methodology. We then apply EFSR diagnostics to the

lower-resolution version of operational system that we used to test “Proactive QC.”

Based on the EFSR results, we further perform a simple tuning experiment to see

if EFSR-based tuning improves impacts from each observation type as desired.

1.6 Semi-implicit formulation of Lorenz N -cycle

The main focus of this thesis is on improvement of initial conditions for NWP

models. NWP, being an initial value problem, can also be improved through im-

provement of the model. One way to improve a model is to adopt a more accurate

time integration scheme. Despite recent advances in computational fluid dynamics,

current NWP models, especially global models, still adopt a simple and rather inac-

curate (only first-order) time integration scheme, namely, the semi-implicit version
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of the centered finite di↵erence scheme (commonly referred to by “leapfrog”) with

a stabilization temporal filter (Robert, 1969, so-called Robert-Asselin (RA) filter;)

which was introduced nearly half a century ago. One reason for the use of this old

scheme is that, a stable, semi-implicit formulation, which allows longer timestep-

ping beyond Courant-Friedrichs-Lewy (CFL) stability condition for the fast (but

meteorologically unimportant) external gravity waves, is not known for higher-order

schemes. In Appendix A, we propose a semi-implicit formulation for the so-called

Lorenz N -cycle scheme (Lorenz, 1971) which is computationally as economical as

the conventional leapfrog scheme but yet whose order of accuracy can be as high as

4-th order. The newly proposed formulation is applied and tested on a simplified,

primitive equation atmospheric general circulation model (AGCM), whose results

suggest that, for situations where taking long timestepping is not crucial, the new

scheme can be an appealing alternative to the conventional leapfrog scheme. This

work is presented in Appendix A.

1.7 Objectives

The main goal of this study is to develop a novel, fully flow-dependent “Proac-

tive” QC method in which observations are rejected based on whether they actually

degrade the forecast, and investigate if this method can improve operational NWP

forecasts. In particular, we try to give definitive answers to the four key questions

we posed in Section 1.4.2, namely:

1. Are 6 hours long enough for the detection of “flawed” observations?
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2. How can we detect possible occurrences of “dropouts” after only 6 hours from

analysis?

3. What is the best threshold for rejection of “flawed” observations? and

4. Does rejection of detected “flawed” observation really improve analysis and

forecast?

We explore the answers to these questions by performing DA experiments and data

denial experiments using a lower-resolution version of the NCEP’s operational global

NWP system.

The second, related goal is to investigate whether our new, ensemble-based

EFSR diagnostics can be used to improve a DA system so that it can more e↵ec-

tively assimilate observations. We first validate our EFSR formulation by checking

its consistency with respect to the adjoint-based formulation using a simple toy

system. We then implement it in the lower-resolution version of the NCEP’s op-

erational global NWP system and perform an R-tuning experiment based on the

EFSR diagnostics.

1.8 Outline

This thesis is structured as follows: the main subject of this thesis, Proactive

QC, is described in Chapters 2 to 6. Chapter 2 reviews the algorithms of the

currently operational QC methods and discusses their limitations. It then derives

the ensemble and adjoint FSO formulation following Kalnay et al. (2012) and LB04,

and presents the detailed algorithm of Proactive QC, followed by the discussion
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on the issues to be addressed before its operational implementation. Chapter 3

describes the forecast model, the DA system, and the observations used in our

experiments, along with the details of the experimental setup. Chapter 4 examines

EFSO’s dependence on the forecast lead time and the verifying truth, and establishes

the validity of using 6-hour EFSO for Proactive QC. Chapter 5 discusses how to

improve the detection algorithm of regional forecast skill dropouts: it first introduces

two di↵erent methods to divide the globe into smaller regions, and examines the

statistics of regional forecast errors and EFSO values for each of the two methods,

and then proposes an improved detection algorithm based on the obtained statistical

relations. The first part of this thesis culminates with Chapter 6 which describes the

results of the data denial experiments. It demonstrates that we can indeed improve

the forecast by Proactive QC, in some cases with dramatic improvements.

The second subject of this thesis, EFSR, is described in Chapters 7 and 8.

Chapter 7 derives the formulation of EFSR and verifies its e↵ectiveness, along with

that of its adjoint counterpart, through a series of idealized experiments using a

simple toy system called Lorenz ’96 system. Chapter 8 then applies the EFSR diag-

nostics to the real NWP system that we used in the experiments of Proactive QC,

and performs a simple tuning experiment in which the observation error variances

for some of the observation types are tuned based on the results of EFSR diagnos-

tics. The validity of EFSR diagnostics is then verified by assessing if the EFSO

impacts from the tuned observation types are improved by the tuning.

Finally, Chapter 9 synthesizes the findings of the present work, and describes

future directions toward the improvement of NWP systems, in particular, how the
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power of EFSO technique can be used for new applications.

Appendix A presents our attempt at improving NWP through an improvement

of the model rather than the DA system, more specifically, through an improvement

of time integration scheme. The outline for Appendix A is given in the last paragraph

of Section A.1.
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Chapter 2: Proactive QC

2.1 Brief review of presently operational QC techniques and their

limitations

Most DA methods assume that observation errors follow Gaussian distribu-

tion. They are thus not robust to observations with gross errors in the sense that, if

an outlying observation with an abnormally large error is ingested, resulting analysis

will also be abnormally inaccurate. Even assimilation of a single gross observation

can have devastating e↵ect, which can persist for several cycles due to propagation

of errors through analysis-forecast cycles (e.g., see Figure 1.1). It is thus of vital im-

portance for NWP systems to remove such outliers (observations with gross errors)

from observational data set before they are fed to DA system. The process of re-

moving such “bad” observations is called “Quality Control” (QC). This section gives

a brief review of QC techniques adopted by current operational centers and points

out some of their limitations. Since QC methods used by major operational centers

follow more or less similar procedures, we describe the overview taking JMA’s global

system (JMA, 2013; Onogi, 1998) as an example.

QC is based on the following idea (e.g. Kalnay, 2003, Section 5.8): an obser-
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vation is dubious if it significantly deviates from some assumed behavior or from

some expected value. For example, it is reasonable to assume that vertical sounding

observations should not deviate too much from hydrostatic balance, or that observa-

tions from ships should never be reported from land, etc. Observations that violate

these assumptions are thus rejected during QC process. The expected values include

climatology, interpolation from neighboring observations and the background (first

guess from short-range forecast); observations are rejected by QC if their departures

from these expected values exceed predefined thresholds.

For example, JMA’s operational system implements the above idea with many

layers of sequentially-executed processes which we describe in the next paragraph.

Each of the processes takes output from the previous process and assigns a flag

(“pass,” “suspect” or “reject”) to each observation based on some criteria. Data

that are flagged with “pass” or “suspect” are passed to the next process, and the

data that survived all these processes are finally injected to the main DA algorithm.

The QC processes at JMA can be divided into two parts; “internal QC”

followed by “external QC”. In the internal QC part, each observational data are

quality-controlled without referring to external sources of information (hence the

term “internal”). In the “external QC” part, each observational data are checked

for its consistency with respect to the background or other observations in their

neighborhood. The two parts consist of the following sequentially-processed steps:

Internal QC:

1. Blacklist check: some stations or instruments are registered in the blacklist
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based on their “credit history” (past record of poor quality). Observations

from such blacklisted stations or instruments are automatically rejected.

2. Climatological check: an observation is rejected in this step if it deviates

beyond a reasonable range from its climatological record.

3. Trajectory check: observations from moving instruments are checked for con-

sistency of their trajectories. For example, if a report from an aircraft says it

moved 1,000 km in 10 minutes, or if an observation from a ship is located in

the middle of a continent, such observations are highly incredible and thus are

rejected during this step.

4. Temporal continuity and inter-element consistency check: surface observations

from ground stations are dubious if, for example, temperature jumps by more

than 20 K in 1 hour or oscillates with a very high frequency; such observations

are rejected at this step.

5. Vertical consistency check: vertical sounding observations from radiosondes

and aircraft are checked for vertical consistencies, including temperature lapse

rate and hydrostatic balance.

External QC:

1. Gross error check: Departure d from background (O-B) is computed for each

observation. An observation is flagged “pass” if d  CP , “suspect” if CP <

d  CR, and “reject” if d > CR, where CP and CR are the thresholds given
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separately for di↵erent types of observations. Observations flagged with “sus-

pect” are then fed to the next “spatial consistency check”; those flagged with

“pass” skip the next step and goes directly into the last “duplication check”.

2. Spatial consistency check: In this step, a “minianalysis” based on optimal

interpolation (OI) is performed for observations with “suspect” flag using

only the “passed” observations in the vicinity of the observation in question

(Lorenc, 1981, so-called “buddy check”). The departure of the suspect obser-

vation from this OI analysis (dOI) is then computed. The suspect observations

“revive” (are given “pass” flag) at this step if |d�dOI | < CS for some thresold

CS.

3. Duplication check: Due to some transmission problems, it can happen that

a same observation is reported in more than one records. Assimilating the

same observations multiple times violates the assumption of DA algorithms

and can degrade quality of analysis. It is thus important to remove duplicated

observational data. Such duplicated observations are processed at this final

step so that a same observation appears only once in the data set.

Other operational centers also adopt QC methods similar to the one described above;

a unique feature of JMA’s system, however, is that the thresholds CP , CR and CS

are allowed to vary dynamically depending on the dynamical condition of the atmo-

sphere to account for flow-dependence of credibility of the background (“Dynamic

QC”; Onogi, 1998): the underlying idea is that, if the atmospheric is in dynami-

cally more active condition, then the background is likely to contain larger errors
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and thus, in such cases, the thresholds for rejection or suspicion should be relaxed.

Onogi (1998) showed that spatial and temporal derivatives of the background fields,

which represent the activeness of the atmospheric state, are well correlated with

departures of observations from the background and proposed the scheme which

adaptively assigns thresholds CP , CR and CS so that they are larger when spatial or

temporal derivatives of the background fields are larger.

A relatively new approach for dealing with the gross errors is to modify DA

algorithms so that they are robust to observations with gross errors rather than

removing them in a preprocessing step. “VarQC” (variational quality control; An-

derson and Järvinen, 1999; Tavolato and Isaksen, 2010) is one of such approaches

that can be applied to variational DA methods (3D-Var and 4D-Var). In VarQC,

the assumed probability density function (PDF) of observation errors is modified

from the usual Gaussian distribution to a superposition of two PDFs, one being

the usual Gaussian distribution and the other being some PDF that accounts for

gross errors. The advantages of using VarQC includes, for example, that, rather

than using observations in an on/o↵ manner, we can use observations in a con-

tinuous manner, giving less/more weights to more suspicious/credible observations,

and that it allows for some flow-dependence in QC provided that the background

error covariance be represented in a flow-dependent manner (which is true to some

extent in 4D-Var in which the background error covariance is implicitly evolved by

tangent-linear and adjoint models). Similar approach to EnKF DA systems are also

being developed in recent studies (e.g., Roh et al., 2013).

It is widely acknowledged that current operational QC methods such as those
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reviewed here have dramatic positive impact on the accuracy of analysis and fore-

cast. However, they still have some room for improvement. The biggest limitation is

that, comparison of observations with respect to the background, which is the most

significant part in the current QC procedures, can mistakenly screen out accurate

observations when the quality of background is poor, a “ latent dropout” situation

where correction of the background is particularly important. Flow-dependent tech-

niques such as Dynamic QC of Onogi (1998) can partially alleviate this issue, but it

has an inevitable side e↵ect of potentially allowing flawed observations to pass QC,

which can aggravate the situation.

DA is a process which brings back background that went away from the truth

by pulling it back closer to observations. Thus, ideally, observation screening should

be based on whether each observation is closer to the truth than the background is

(if an observation is more distant from truth than the background is, it should be

safer to keep the background intact). The di�culty here is that the truth is never

knowable; we believe, however, that the impacts of observations on the error of

short-term forecast could be used as good proxies because, if an observation is more

distant from the truth than the background is, then the error of analysis introduced

by assimilating it can be amplified during the course of forecast, thereby, allowing

its negative impact on analysis to be detected.

25



2.2 EFSO

As described in the Introduction, EFSO constitutes an essential part of our

“Proactive QC” algorithm. This section describes brief literature review of previous

FSO (forecast sensitivity to observations) studies and derives the EFSO formulation

following Kalnay et al. (2012). The relative advantages and disadvantages of adjoint-

based and ensemble-based FSO are also discussed.

2.2.1 Brief literature review of FSO studies

In order to maximize the value of observations, it is important to understand

how much di↵erent types of observations contribute to the improvement/degradation

of NWP forecast. The importance of answering this question continues to grow as

the number of observations available to DA systems increases, particularly because

observations from remote-sensing instruments such as satellites and ground-based

radars have increased, to a level at which even with the state-of-the-art supercom-

puter and computationally e�cient algorithms, thinning or reduction of the ingested

observational data is inevitable. Traditionally, this question was answered by con-

ducting Observing System Experiments (OSEs) in which two sets of DA experiments

are conducted, one which assimilates standard set of observations (control experi-

ment), the other which either excludes or includes particular subset of observations.

The impact of that particular subset of observations is then assessed by comparing

results of the two experiments. Although an OSE can provide definitive answer

to the above question based on fully nonlinear impacts of the observations, it has
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several major shortcomings: the first, practical point is that it is computationally

extremely expensive. The second, methodological issue is that, if a new type of

observations is added to the control system which already assimilates rich amount

of observations, it becomes di�cult to obtain statistically significant results because

the abundance of the observations in the control experiment tend to obscure the

impacts from the new observations.

A major breakthrough to this problem is the work by Langland and Baker

(2004; LB04) who showed that it is possible, by using the adjoint technique, to esti-

mate impacts of arbitrary subset of observation (in fact, of any single observation)

onto the forecast, all at once, with only a single execution of reasonably economical

computation. Several operational NWP centers, including Naval Research Labo-

ratory (NRL; LB04), ECMWF (Cardinali, 2009), JMA (Ishibashi, 2010), National

Aeronautics and Space Administration/Global Modeling and Assimilation O�ce

(NASA/GMAO; Gelaro and Zhu, 2009; Holdaway et al., 2014) and UKMO (Lorenc

and Marriott, 2013), soon adopted this powerful and economical diagnostic tool to

monitor/assess impacts of di↵erent types of observations in their systems. This pow-

erful diagnostic technique is now called FSO (forecast sensitivity to observations).

Adopted by numerous studies including those in operational NWP systems, the

adjoint-based FSO of LB04 proved to be a powerful diagnostic method. Its practical

applicability is somewhat limited, however, due to the requirement of an adjoint

model, the development of which is notoriously di�cult and laborious. An adjoint-

free FSO was introduced by Liu and Kalnay (2008) who derived an ensemble-based

FSO (EFSO) that can be applied to the Local Ensemble Transform Kalman Filter
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(LETKF; Hunt et al., 2007; c.f., Section 3.4 of this thesis). Li et al. (2010) later fixed

a minor error in Liu and Kalnay (2008) and showed that the corrected formulation

improves the accuracy of estimation of observational impacts. Kalnay et al. (2012)

devised a new, improved EFSO formulation which is more accurate and simpler

to implement. Furthermore, unlike the former formulation which assumes that the

DA uses the LETKF, the new EFSO is applicable to any form of EnKF. Ota et al.

(2013) implemented the new EFSO to NCEP’s Global Forecasting System (GFS)

model coupled with the serial Ensemble Square Root Filter (EnSRF; Whitaker and

Hamill, 2002) and gave comprehensive assessment of impacts from di↵erent types of

observation. Sommer and Weissmann (2014) applied the new EFSO to a convective-

scale DA system with a high-resolution limited area model and showed that EFSO-

estimated impacts are consistent with the results of OSEs (data denial experiments),

corroborating the validity of EFSO diagnostics.

While most previous FSO studies are primarily concerned with statistical fea-

tures of observational impacts, such as the average impacts of each observation type

or the percentage of observations that contribute positively or negatively to the

forecast, Ota et al. (2013) successfully demonstrated that it is possible, for indi-

vidual cases, to identify “flawed” observations that are responsible for forecast skill

dropouts by applying EFSO with 24-hour forecast lead time to a relatively small

horizontal region. This motivated us to investigate the possibility of “Proactive

QC,” the main subject of this thesis.
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2.2.2 EFSO formulation

This section introduces the EFSO fomulation following Kalnay et al. (2012).

The notation used throughout this thesis is also introduced in this section.

2.2.2.1 Notation

First, we make some remarks about our notational convention. In this thesis,

we denote ensemble mean and perturbation of any variable by, respectively, an over

bar and an uppercase letter; for example, the ensemble mean and perturbation of

a variable x is represented by x̄ and X, respectively. Vectors and matrices are

represented, respectively, by lowercase and uppercase bold letters. Similarly, scalars

are represented by a regular font. Superscripts a, b, f, o, t and v denote, respectively,

analysis, background, forecast, observation, truth and verification. A letter with a

two-character superscript preceded by � denotes the di↵erence of the two quantities

represented by each character in the superscript; for example, �yob denotes yo�yb.

Subscripts are used to represent valid time; if the subscript has a separator “|”, as

in ( )t2|t1 , then it means that it is a forecast from time t
1

to time t
2

. In this thesis,

following notations are employed:

n 2 N: the dimension of the model space

p 2 N: the number of observations assimilated at each cycle

K: the ensemble size

x̄a
0

2 Rn: ensemble mean analysis at time 0

x̄b
0

= x̄f
0|�6

2 Rn: ensemble mean background at time 0
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xv
t 2 Rn: verification state at time t

yo
0

2 Rp: observations assimilated at time 0

ȳb
0

= H(xb
0

) 2 Rp: ensemble mean background at time 0 in observation space

�ȳob
0

= yo
0

� ȳb
0

2 Rp: observation innovation at time 0

H : Rn ! Rp: observation operator

H 2 Rp⇥n: Jacobian matrix of the observation operator H

Mt|0 : Rn ! Rn: model integration from time 0 to t

Mt|0 2 Rn⇥n: tangent linear model integration from time 0 to t

MT
t|0 2 Rn⇥n: adjoint model integration from time t to 0

K 2 Rn⇥p: Kalman gain matrix

R 2 Rp⇥p: observation error covariance matrix

2.2.2.2 Analysis equation

Now, consider an ensemble DA problem for time 0 and assume that the en-

semble size of the system is K, the dimension of the model’s state space is n, the

number of observations is p and the assimilation interval is 6 hours. Our goal is to

estimate how much the assimilation of each observation changes the error of t-hour

forecast from initial time 0.

The analysis equation for time 0 is:

x̄a
0

� x̄b
0

= K�ȳob
0

(2.1)

In Kalman Filter, the Kalman gain K can be represented using the analysis error
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covariance Pa
0

, as:

K = Pa
0

HTR�1 (2.2)

In EnKF, the analysis error covariance Pa
0

is approximated by the sampled covari-

ance of analysis perturbation Xa
0

, giving:

K ⇡ 1

K � 1
Xa

0

Xa
0

THTR�1 (2.3)

⇡ 1

K � 1
Xa

0

Ya
0

TR�1 (2.4)

where an approximation HXa
0

⇡ Ya
0

(ensemble perturbation of analysis at time 0 in

observation space) is used. As we will see later, this approximation turns out to be

extremely powerful and plays a crucial role in our EFSO and EFSR derivation (see

the next subsection and Section 7.3). Note that, in practical situations where the

ensemble size K is smaller than the number of degrees of freedom of the system, the

sampled covariance 1

K�1

Xa
0

Xa
0

T must be localized to avoid sampling error. Using

the above approximation, the analysis equation Eq. (2.1) can be approximated by:

x̄a
0

� x̄b
0

⇡ 1

K � 1
Xa

0

Ya
0

TR�1�ȳob
0

(2.5)

2.2.2.3 Derivation of EFSO formulation

Now we proceed to deriving the EFSO formulation. The formulation presented

here is identical to that of Kalnay et al. (2012), except that they assumed the
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verification state to be the analysis mean (see Eq. (2.6) and Eq. (2.7)), whereas,

we allow it to be arbitrary.

In practical situations, true atmospheric state is unknowable; thus, in place

of the truth state, we use some verification state xv
t to estimate vectors of forecast

errors:

eft|0 = x̄f
t|0 � xv

t (2.6)

eft|�6

= x̄f
t|�6

� xv
t (2.7)

where eft|0 and eft|�6

represent, respectively, the errors of t-hour forecast from the

analysis at time 0 and (t + 6)-hour forecast from the analysis at time �6. These

forecast error vectors are measured with a scalar metric defined by the following

quadratic norm:

eft|0
2

= eft|0
T
Ceft|0 (2.8)

eft|�6

2

= eft|�6

T
Ceft|�6

(2.9)

where C 2 Rn⇥n is a positive definite weight matrix that defines the norm. In this

thesis, we use dry or moist total energy norm in experiments with GFS model, and

the identity matrix for experiments with 40-variable Lorenz ’96 model (see Section

3.6 and Section 7.4.2).

The impact of assimilating the observations at time 0 onto the forecast at time
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t can then be quantified by the di↵erence of the two scalar errors:

�e2 = eft|0
2 � eft|�6

2

= eft|0
T
Ceft|0 � eft|�6

T
Ceft|�6

(2.10)

=
⇣

eft|0 � eft|�6

⌘T

C
⇣

eft|0 + eft|�6

⌘

(2.11)

We now derive an expression for �e2 which can be interpreted as a sum of contri-

butions from each observation:

�e2 =
⇣

x̄f
t|0 � x̄f

t|�6

⌘T

C
⇣

eft|0 + eft|0

⌘

* (2.6), (2.7) (2.12)

=
�

Mt|0(x̄
a
0

)�Mt|0(x̄
b
0

)
�T

C
⇣

eft|0 + eft|�6

⌘

(2.13)

⇡
�

Mt|0(x̄
a
0

� x̄b
0

)
�T

C
⇣

eft|0 + eft|�6

⌘

(2.14)

=
�

Mt|0K�ȳob
0

�T
C
⇣

eft|0 + eft|�6

⌘

* (2.1) (2.15)

⇡ 1

K � 1

�

Mt|0X
a
0

Ya
0

T �ȳob
0

�T
C
⇣

eft|0 + eft|�6

⌘

* (2.4) (2.16)

⇡ 1

K � 1

⇣

Xf
t|0Y

a
0

TR�1�ȳob
0

⌘T

C
⇣

eft|0 + eft|�6

⌘

(2.17)

) �e2 = �ȳob
0

T 1

K � 1
R�1Ya

0

XfT
t|0C

⇣

eft|0 + eft|�6

⌘

(2.18)

where a linearization approximation Mt|0Xa
0

⇡ Xf
t|0 (ensemble perturbation of t-

hour forecast from analysis at time 0) is used.

The above expression can be interpreted as an inner-product of the innovation

vector �ȳob
0

and a sensitivity vector:

�e2 =

⌧

�ȳob
0

,
@(�e2)

@y

�

(2.19)
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where the sensitivity vector is

@(�e2)

@y
=

1

K � 1
R�1Ya

0

XfT
t|0C

⇣

eft|0 + eft|�6

⌘

(2.20)

Contribution from a single observation, say the l-th element of the observation vector

yo
0

, can then be expressed as:

�

�e2
�

�

�

(y

o

0)l
=
�

�ȳob
0

�

l

✓

@(�e2)

@y

◆

l

(2.21)

An important feature of this EFSO formulation is that it only requires standard

output of ensemble DA system (the ensemble perturbation of forecast in state-space

and that of analysis in observation space; see Eq. (2.18)). Also, the sensitivity vector

can be computed by simple matrix-vector multiplications. Since neither matrix

inversion nor eigenvalue decompositions is involved (note thatR�1 is explicitly given

and is usually diagonal in most DA systems), it is also computationally e�cient and

easy to implement.

Incidentally, as pointed out by Ota et al. (2013), the approximation Eq. (2.5)

can be used to estimate how the analysis or forecast would change by not using

some specific observations in the assimilation. Let �ȳob,deny
0

2 Rp be a vector of

observation innovation whose elements corresponding to the denied observations are

identical to those in �ȳob
0

but all others are set to 0; for example, if the first and

second elements of the observation vector yo
0

are to be denied, �ȳob,deny
0

is defined

such that
⇣

�ȳob,deny
0

⌘

1

=
�

�ȳob
0

�

1

,
⇣

�ȳob,deny
0

⌘

2

=
�

�ȳob
0

�

2

and
⇣

�ȳob,deny
0

⌘

l
= 0 for
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l = 3, · · · , p. Assume further that the analysis obtained by not using the denied

observations can be approximated by the analysis obtained when those observations

coincide with the corresponding background (i.e., the innovation is zero). Let

x̄a,deny
0

be the analysis that would be obtained without using the denied observations.

Then the analysis equation for x̄a,deny
0

can be written as

x̄a,deny
0

⇡ K
⇣

�ȳob � �ȳob,deny
0

⌘

(2.22)

Thus, from Eq. (2.1) and the approximate analysis equation Eq. (2.5), the change in

analysis that would occur by not assimilating denied observations can be estimated

by

x̄a,deny
0

� x̄a
0

⇡ �K�ȳob,deny
0

(2.23)

⇡ � 1

K � 1
Xa

0

Ya
0

TR�1�ȳob,deny
0

(2.24)

Similarly, by applying tangent linear approximation to the above equation, the

change in forecast that would occur by not assimilating denied observations can

be estimated by

x̄f,deny
t|0 � x̄f

t|0 ⇡ Mt|0

⇣

x̄a,deny
0

� x̄a
0

⌘

⇡ �Mt|0K�ȳob,deny
0

(2.25)

⇡ � 1

K � 1
Mt|0X

a
0

Ya
0

TR�1�ȳob,deny
0

(2.26)

⇡ � 1

K � 1
Xf

t|0Y
a
0

TR�1�ȳob,deny
0

(2.27)
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(Note that the Equation (8) in Ota et al. (2013) is missing the factor 1

K�1

).

Furthermore, assuming that the observation error covariance matrix R is di-

agonal:

R = diag(�o
1

, �o
2

, · · · , �o
p) (2.28)

and by applying Jacobian of the observation operator H to Eq. (2.24), we have,

ȳa,deny
0

� ȳa
0

:= H
⇣

x̄a,deny
0

⌘

�H (x̄a
0

) (2.29)

⇡ H
⇣

x̄a,deny
0

� x̄a
0

⌘

(2.30)

⇡ � 1

K � 1
HXa

0

Ya
0

TR�1�ȳob,deny
0

(2.31)

= � 1

K � 1
Ya

0

Ya
0

TR�1�ȳob,deny
0

(2.32)

which, in turn, by taking derivative with respect to yo
0

, becomes

So
jl :=

@ (ȳa
0

)l
@ (yo

0

)j
⇡ 1

K � 1
· 1

�o
j

k
X

i=1

n

(Ya
0

)i,j · (Y
a
0

)i,l

o

. (2.33)

This is identical to the ensemble formulation of analysis self-sensitivity matrix So

given in Liu et al. (2009).

2.2.2.4 (Cross-)Covariance localization

In EnKF, when the ensemble size K is smaller than the number of degrees of

freedom of the system, it is necessary to localize the sampled covariance to avoid

36



noise from sampling errors. Our EFSO also needs localization in evaluating the

cross-covariance 1

K�1

Ya
0

XfT
t|0 . With localization, Eq. (2.18) becomes:

�e2 = �ȳob
0

T 1

K � 1
R�1

h

⇢ �
⇣

Ya
0

XfT
t|0

⌘i

C
⇣

eft|0 + eft|�6

⌘

(2.34)

where the circle � represents elementwise multiplication (Schur product) and ⇢ 2

Rp⇥n is a matrix of localization function whose (l, j)-element is a localization factor

of the l-th observation onto the j-th grid point. Note that the localization function

can be (in fact, should be) di↵erent from the one used in EnKF; the information from

observations at time 0 is propagated and dispersed as the system evolves to time

t, and the localization function in EFSO should account for this propagation. The

question “how should the localization function be propagated?” is di�cult to answer;

ideally, perhaps, we should evolve the localization at the initial time by integrating

it with Kolmogorov (Focker-Plank) equation associated with the model Mt|0 (e.g.,

Jazwinski, 1970, Section 4.6), but this computation is prohibitively expensive. For a

simple system, we could use group velocities as a good proxy for speed of information

propagation (Yoon et al., 2010), but for a complicated system such as comprehensive

atmospheric models, even the computation of group velocity is not straightforward.

Kalnay et al. (2012) and Ota et al. (2013) introduced a simple “moving localization”

scheme which advects the center of the localization function by the horizontal winds

of the analysis scaled by some tuning factor and showed that this scheme, despite

being rather ad-hoc and simple, works well. Gasperoni and Wang (2013) devised an

adaptive method based on a group filter technique (Anderson, 2007) and obtained
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promising results using a simplified 2-layer primitive equations system. In this thesis,

we adopt the moving localization scheme of Ota et al. (2013).

2.2.2.5 Adjoint FSO formulation

The adjoint formulation uses Eq. (2.15) to evaluate the observational impacts

�e2:

�e2 = �yob
0

T
KTMT

t|0C
⇣

eft|0 + eft|�6

⌘

(2.35)

First, the vector C
⇣

eft|0 + eft|�6

⌘

is integrated backward by the adjoint model MT
t|0

from time t to 0. Then, the adjoint of the DA system KT is applied to the resulting

vector to yield the adjoint sensitivity vector. Unlike EFSO, the adjoint FSO does

not need localization. However, it does require the adjoint of the model and the

DA system, which also introduces some drawbacks. Relative pros and cons of the

adjoint and ensemble FSO are discussed in the next subsection.

2.2.3 Comparison of Adjoint and Ensemble FSO properties

As we can see from the derivations, adjoint and ensemble FSO are di↵erent

approximations to the same problem. Thus, they should give consistent results.

Kalnay et al. (2012) in fact showed that their results are consistent, given that the

ensemble size K is large enough and the forecast lead time t is not too long. There

are, however, some technical di↵erences. In particular, they have di↵erent sources

of shortcomings and limitations.
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The adjoint FSO relies on the adjoint model MT
t|0 of the forecast model. For

NWP models, the validity of the tangent-linear assumption quickly deteriorates as

forecast lead time t increases, due to the intrinsic discontinuity of physical processes

(e.g., Holdaway et al., 2014; Trémolet, 2004).

While the ensemble FSO does not require an adjoint model, the necessity to

apply cross-covariance localization limits its applicability to longer forecast lead time

t because an optimal way to propagate the localization function is not yet known.

Comparing the two methods from a computation and implementation aspect,

the ensemble formulation has clear advantages. It is easier to implement because

it does not require the adjoint model; it only requires standard output of EnKF. It

is also faster and less expensive than the adjoint FSO since the formula Eq. (2.34)

consists only of simple matrix multiplications.

In summary: the adjoint and ensemble FSO are equivalent (at least in theory);

are both valid for short forecast lead times but due to di↵erent reasons; from a

computational and technical perspective, ensemble FSO is more advantageous.

2.3 Proposed algorithm of Proactive QC

Our proposed “Proactive QC” exploits EFSO’s capacity to detect observations

that had detrimental e↵ect on the forecast, as outlined in Section 1.4.1. This section

describes the algorithm in more detail. Because our motivation stems from the work

of Ota et al. (2013), we begin by reviewing their algorithm in detail.
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2.3.1 Regional “dropout” attribution algorithm of Ota et al. (2013)

Ota et al. (2013) used EFSO with 24-hour lead time and the error norm

targeted at some relatively small regions to successfully identify defect observations

that caused significant drop of regional forecast skills. Below is a detailed description

of their algorithm:

(1) “Regional dropout” detection

Divide the globe into small rectangular regions (roughly 30 �⇥ 30 �in latitude-

longitude grid; see Section 2.4.3), allowing overlaps by incrementing the longi-

tude by 10 �and the latitude by 5 �. For each of the regions, compute 24-hour

and 30-hour regional forecast errors defined by Eq. (2.8) and Eq. (2.9), choos-

ing the total moist energy norm restricted to the target region as C. From

these regions, detect the occurrence of “regional dropouts” by testing if the

region satisfies both of the following criteria:

1. The 24-hour forecast error ef
24|0 is larger than its average over time by at

least 1.7 times: ef
24|0 > 1.7 ef

24|0.

2. The 24-hour forecast error ef
24|0 is larger than the that of the 30-hour

forecast started from the previous analysis ef
24|�6

by at least 1.2 times:

ef
24|0 > 1.2 ef

24|�6

.

If two or more overlapping or adjacent regions are identified as “dropouts,”

those areas are coalesced to form a single “dropout” region.

(2) “Flawed” observation type detection
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For each “dropout” region detected in the previous step, perform 24-hour

EFSO diagnostics with C being the moist total energy norm restricted to the

target region. Then, find the types of observation that satisfy either of the

following conditions:

1. The net impact from that type of observations has largest negative impact

(largest positive EFSO value) among other types.

2. The sum of EFSO values of the observations of that type is positive and

larger than one half of the total EFSO values (i.e., the sum of EFSO

values of all the assimilated observations).

(3) Selection of observations to be denied

For each of the types identified in the previous step as “flawed,” choose obser-

vations to be denied in the next step by the following procedure:

1. For each vertical level (for non-radiance observations) or channel (for

radiance observations from satellites), compute the sum of EFSO values

within that level/channel, and sort levels/channels in descending order

based on their sum of EFSO values. Select levels/channels until the total

EFSO values of the selected levels/channels reaches the total EFSO value

of all the observations of the type being processed. Levels/channels whose

total EFSO values are larger than one half of the total EFSO value of

the type being processed are also selected.

2. Divide the region into 10 �⇥10 �sub-regions. For each of the sub-regions,
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select observations to be denied by iterating over the selected levels/channels

the following procedures:

Select observations whose EFSO value is larger than 10% of the largest

absolute value of the EFSO values of the observations within the same

level/channel and sub-region.

(4) Data denial experiment

Finally, repeat analysis without using the selected observations and run the

forecast from the new analysis. Perform verification to confirm if rejection of

the selected observations really improves the forecast.

2.3.2 Proactive QC algorithm

As outlined in Section 1.4.1, our proposed algorithm for Proactive QC is a

straightforward extension from the algorithm of Ota et al. (2013) reviewed in detail

in the previous subsection. The main di↵erence is that, in stead of using EFSO with

24-hour lead time, we use EFSO with 6-hour lead time, so that it can be used in

the operational systems without introducing too much delay. Below is a description

of our proposed algorithm:

Let 00h be the initial time for which Proactive QC is to be applied. Let

t = 6hours, the forecast lead time used in EFSO.

1. Run regular ensemble DA cycle from time �06h to 00h. Perform either en-

semble or deterministic forecast for at least 12 hours to produce x̄f
t|�6

. This

will be used to compute the forecast error eft|�6

.
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2. Run regular ensemble DA cycle from time 00h to +06h. Compute the analysis

ensemble perturbation in observation space Ya
0

. Again, perform either ensem-

ble or deterministic forecast for at least 12 hours to produce x̄f
t+6|0. This will

be used in Proactive QC for the next cycle.

3. Apply “regional dropout” detection algorithm (see Chapter 5).

4. If “dropout regions” are detected, perform 6-hour EFSO targeting at those

regions.

5. Apply “flawed observation” selection algorithm (see Section 6.3).

6. If “flawed” observations are identified, repeat analysis and forecast for time

00h without using the identified observations.

7. Repeat Steps. 1–6 shifting the time.

The important components of this algorithm are the “regional dropout” detection

algorithm and the “flawed observation” selection algorithm. Detailed discussions on

these algorithms are presented later in Chapter 5 and Section 6.3.

2.4 Issues to be resolved before operational implementation

This section expounds the issues to be addressed which we briefly described

in Section 1.4.2.
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2.4.1 Validity of Using 6 hours as the forecast lead time

First, a critical issue is whether a 6-hour lead time is long enough for cap-

turing “flawed” observations: forecast errors of very short-range can be di�cult to

accurately estimate, if verified against analysis, because errors of analysis against

truth may not be negligibly small compared to that of very short-range forecast.

Furthermore, as Todling (2013) points out, analysis errors and forecast errors can

be non-independent, especially when the lead time is short, which could make it

even more di�cult to accurately estimate forecast errors. It is thus important to

carefully assess the validity of performing a 6-hour EFSO. Perhaps for this reason,

since the first pioneering work of LB04, most FSO studies for global NWP systems,

both adjoint-based and ensemble-based, have adopted 24 hours as the evaluation

lead time. In Section 4.3 we show that 6-hour EFSO is in fact, at least qualitatively,

consistent with the tried-and-true 24-hour EFSO.

2.4.2 Applicability to ensemble/variational hybrid DA systems

A growing trend in the development of operational NWP systems is to adopt a

hybrid approach where a variational DA method (3D-Var or 4D-Var) partially takes

in flow-dependent background error covariance from an ensemble of background

fields which, in most formulations, is produced by an EnKF method (e.g., Lorenc,

2003). Most major NWP centers, including Canadian Meteorological Centre/Centre

Météorologique Canadien (CMC), JMA, NASA/GMAO, NCEP and UKMO, are ei-

ther adopting or developing hybrid DA methods in their operational systems (e.g.,
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Buehner, 2005; Yoichiro Ota and Takashi Kadowaki, 2013, personal communica-

tion; Amal El Akkraoui and Ricardo Todling, 2013, personal communication; Wang

et al., 2013; Kleist, 2012; Clayton et al., 2013). ECMWF has also just started

testing a hybrid DA system which is based on a new hybrid scheme recently in-

troduced by Penny (2014) where the gain matrix K, rather than the background

covariance B (or Pb), is “hybridized,” and has got preliminary promising results

(Massimo Bonavita, 2014, personal communication). A new trend is to incorporate

four-dimensionality (i.e., asynchronicity of observations) into the hybrid (so-called

4DEnsVar; e.g., Kleist, 2012), which is expected to further improve the accuracy

of 3D-Var based hybrid DA systems. For better or not, this trend is likely to per-

sist for the foreseeable future. It is thus important to investigate whether EFSO

is applicable to an EnKF within a hybrid DA system. A complication in applying

EFSO to an EnKF within a hybrid system is that there are two di↵erent analyses,

one from the variational part and the other from the EnKF part. Both can serve

as the verifying truth xv
t in evaluating EFSO, but no work has yet been done as to

which is more appropriate or whether both are equally adequate. We address this

issue in Section 4.4 by comparing two sets of EFSO impacts, one estimated using

the analysis from vriational part as the verifying truth, the other estimated using

that from EnKF part, and show that EFSO is not very sensitive to the choice of the

verifying truth.
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2.4.3 Division of the globe into sub-domains

Ota et al. (2013) proposed to detect regional forecast “dropouts” by dividing

the globe into reasonably small regions. Here, how we should divide the globe is not

a trivial question. A näıve way is to divide the globe into “rectangular” domains with

equally-spaced intervals in latitude and longitude, for example, 30 �⇥30 � rectangles;

one may argue, however, that the resulting division is highly non-uniform, with

domains near the Poles considerably smaller in area than those near the Equator.

Ota et al. (2013) resolved this issue by adjusting the longitudinal spacing based

on the latitude so that the areas of each region become as uniform as possible. For

example, for the latitude interval 60 �N–90 �N, the longitudinal spacing is set to 60 �,

while, for 15 �S–15 �N, it is only 15 �. Note that the latter, equatorial regions are

shorter in longitude (about 1,667 km) than in latitude (3,333 km), which may not be

desirable because, in the tropics where equatorial waves are trapped (e.g., Gill, 1982,

Chapter 11), atmospheric disturbances tend to be zonally elongated (e.g., consider

the so-called Matsuno-Gill pattern, Gill, 1980; Matsuno, 1966). One way to alleviate

this issue is to adjust latitudinal spacing rather than longitudinal spacing; dividing

the globe along the zeros of an isotropic spherical harmonic function Y m
2m(�,') is

a particularly advantageous option because any two neighboring anti-nodes have

nearly equal distance and the areas of each cell are close to uniform (Eugenia Kalnay,

2013, personal communication; see Figure 5.1 and Table 5.1). In Chapter 5, we

compare the regular, 30 �⇥30 � rectangular domain decomposition with that based

on the zeros of the isotropic spherical harmonics of total wavenumber 12 (Y 6

12

(�,'))
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with regard to their ability to detect “regional dropouts”.

2.4.4 “Dropout” detection criteria

Ota et al. (2013) successfully detected “regional dropouts” with the criteria

described in Section 2.3.1. However, the criteria is rather subjective and may not be

optimal; it is also not clear whether “regional dropouts,” particularly those caused by

the use of “flawed” observations, are detectable only from the information available

6 hours after the analysis. We explore this issue in Chapter 5.

2.4.5 Selection algorithm for the observations to be denied

Last and most importantly, it is not trivial how we should decide if an obser-

vation should be denied in the repeated analysis given the information from EFSO

diagnostics. As we mentioned in Section 1.4.2, rejecting too many observations could

be detrimental, but rejecting too few observations would have no impact at all. As

we detailed in Section 2.3.1, Ota et al. (2013) carefully selected the observations to

be rejected with a rather complicated, intricate algorithm; their tacit assumption

is that observations with large negative impact should be clustered in localized re-

gion, both horizontally and vertically. It is not clear, however, if this assumption is

justifiable with the actual data. In Section 6.3, we revisit this issue by examining

the statistics and geographical distribution of EFSO impacts for individual cases.
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2.5 Summary

In this chapter we briefly reviewed the current operational QC methods and

discussed their limitations, and introduced the formulation of EFSO, a powerful

diagnostic tool which is the main ingredient of our new QC scheme which we call

Proactive QC (PQC). Its algorithm is then presented and the issues to be addressed

are also discussed by critically reviewing the pioneering work of Ota et al. (2013).

The later chapters present our answers to the issues we raised in the previous section.
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Chapter 3: Experimental setup for Proactive QC experiments

3.1 Introduction

In this study, we examine the applicability of the Proactive QC method to

the operational NWP systems using a lower-resolution version of the NCEP’s oper-

ational global NWP system. This chapter describes the details of our experimental

settings.

All our computations were performed on the Supercomputer for Satellite Simu-

lations and Data Assimilation Studies (the “S4 supercomputer” ) of the Joint Center

for Satellite Data Assimilation (JCSDA). The access to the S4 supercomputer was

kindly provided by Dr. Sid Boukabara of JCSDA.

The NCEP’s global NWP system that is operational since May 9th, 2011,

along with several of its lower-resolution versions, are ported to S4 by Dr. James

Jung of NCEP/JCSDA. With generous help from him, we modified the NCEP’s

global NWP system ported on the S4 supercomputer so that it fits our needs. The

EFSO code and the LETKF code developed by Mr. Yoichiro Ota of JMA (see

Section 3.4) were uploaded to the S4 supercomputer by Prof. Daryl Kleist of the

University of Maryland (then at NCEP) with generous permission from Dr. John

Derber of NCEP.
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Since our experiments are an extension from Ota et al. (2013), a comparison

of our experimental settings with those of their work should make it easy to grasp

the overview; such comparison is summarized in Table 3.1.

3.2 The GFS model

The GFS model is the forecast model component of the NCEP’s operational

global NWP system. Its development as the operational model started in 1980

with the implementation at the National Meteorological Center (NMC, which later

became NCEP) of a global spectral model based on the primitive equations (Sela,

1980). It has, ever since, always been one of the world’s leading NWP models, with

incessant continuous improvement in all aspects of NWP development.

The GFS model is a global spectral model in which the horizontal meteorolog-

ical fields are internally represented by the coe�cients of the spherical harmonics.

For the vertical discretization, it adopts finite di↵erencing in the �-pressure hybrid

coordinate system. For temporal discretization, it uses the classical Robert-Asselin

filtered leapfrog scheme with semi-implicit treatment of the external gravity waves

(Robert, 1969).

As of 2014, for the deterministic control forecast, the current operational GFS

model adopts horizontal resolution of T574 (namely, the coe�cients of the spher-

ical harmonics are triangularly truncated at the total wavenumber of 574), which

corresponds to grid spacing of about 28 km in the mid-latitude; for the ensemble

forecasts, it adopts T254 resolution (⇠ 55 km). In the vertical, it has 64 layers with
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This study Ota et al. (2013)

Forecast
Forecast Model GFS model GFS model
Resolution
(Deterministic) T254L64 N/A

Resolution
(Ensemble) T126L64 T254L64

Analysis
DA System LETKF/3D-Var hybrid GSI pure serial EnSRF
Member Size 80 80
Observations same as the operational same as the operational

Localization
cut-o↵ length

2,000 km (horizontal);
2 scale heights (vertical)

2,000 km (horizontal);
2 scale heights (vertical)

EFSO

Verifying truth GSI analysis and
LETKF mean analysis EnSRF mean analysis

Evaluation lead
time 6, 12 and 24 hours 24 hours
Localization
cut-o↵ length same as LETKF same as serial EnSRF

Error norm Dry and Moist Total Energy Dry and Moist Total Energy

Period

Spin-up 7 days from 2012-Jan-01-00Z to
2012-Jan-07-18Z

7 days from 2012-Jan-01-00Z to
2012-Jan-07-18Z

Statistical verifi-
cation

31 days from 2012-Jan-08-00Z to
2012-Feb-07-18Z

31 days from 2012-Jan-08-00Z to
2012-Feb-07-18Z

Case studies 34 days from 2012-Jan-08-00Z to
2012-Feb-10-18Z

31 days from 2012-Jan-08-00Z to
2012-Feb-07-18Z

Table 3.1: Experimental settings for our Proactive QC study compared with Ota
et al. (2013).
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model top at 0.3 hPa, for both deterministic and ensemble forecasts.

In our experiments, however, we adopt a lower-resolution version of the GFS

model, using T254 (⇠ 55 km) and T126 (⇠ 110 km) horizontal resolutions, respec-

tively, for the deterministic and ensemble forecasts. The vertical resolution is the

same as the operational system (64 layers). Halving the horizontal resolution re-

duces the I/O size and the necessary storage space by about a quarter, and the

computing time by about an eighth, thus enabling much quicker executions and

more experiments within the allocated resources.

3.3 The GSI 3D-Var based ensemble-variational hybrid data assimi-

lation system

The DA system of the NCEP’s currently operational global NWP system is the

Gridpoint Statistical Interpolation (GSI) 3D-Var based ensemble-variational hybrid

DA system (Kleist, 2012; Wang et al., 2013). It extends the previously operational

GSI 3D-Var DA system (Kleist et al., 2009b; Wu et al., 2002) by introducing flow-

dependence to the background error covariance using the background ensemble.

Let us first describe the traditional pure 3D-Var algorithm. 3D-Var solves the

analysis equation

�xab := xa
0

� xb
0

= K�yob
0

(3.1)

with K = BHT
�

HBHT +R
��1

(3.2)
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by minimizing the cost function J(�x):

�xab = argmin J(�x) (3.3)

J(�x) =
1

2
�xTB�1�x+

1

2

�

yo
0

�H(xb
0

+ �x)
�T

R�1

�

yo
0

�H(xb
0

+ �x)
�

(3.4)

where �xab is the analysis increment, xa
0

and xb
0

are the analysis and the background,

respectively, B is the (static) background error covariance, and the other notation is

as defined in Section 2.2.2.1. In practice, the cost function may include the so-called

“penalty term” or “constraint term” Jc(�x) which imposes some constraints to the

analysis such as dynamical balance (e.g., Kleist et al., 2009a; JMA, 2013, Section

2.5.5) or conservation of total mass (John Derber and Daryl Kleist, 2013, personal

communication).

The currently operational GSI ensemble-variational hybrid 3D-Var extends the

conventional 3D-Var by augmenting the control vector with the ensemble weight

vectors {↵m 2 Rn,m = 1, · · · , K} where n is the dimension of the state space and

K = 80 is the member size of the ensemble. Suppose we have a K-member ensemble

perturbation of the background Xb = [x0
1

,x0
2

, · · · ,x0
K ]. The hybrid 3D-Var obtains

the analysis increment

�xab = �xstat +
K
X

m=1

(↵0
m � x0

m) , (3.5)

where � represents the elementwise multiplication (Schur product), by minimizing

the new cost function J (�x,↵
1

, · · · ,↵K) in the augmented space (Kleist, 2012;
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Wang et al., 2013):

�

�xstat,↵0
1

, · · · ,↵0
K

�

= arg min
(�x,↵1,··· ,↵

K

)

J (�x,↵
1

, · · · ,↵K) (3.6)

J (�x,↵
1

, · · · ,↵K) = �
stat

1

2
�xTB�1�x+ �

ens

1

2

K
X

m=1

↵T
mL

�1↵m

+
1

2
(yo

0

�H(x))R�1 (yo
0

�H(x)) (3.7)

with x := xb
0

+ �xstat +
K
X

m=1

(↵m � x0
m) (3.8)

where �
stat

and �
ens

, whose reciprocals add to unity (1/�
stat

+ 1/�
ens

= 1), are the

parameters which determine how much weights are to be given to the static and

ensemble covariances, and L is the localization matrix of the ensemble weights ↵m.

The operational hybrid GSI uses the ensemble of background generated by

the serial EnSRF (Whitaker and Hamill, 2002). For e�ciency sake, however, we

replace the default serial EnSRF with the LETKF (see next section) implemented

in 2011 by Mr. Yoichiro Ota who was then detailed to NCEP from JMA (Ota, 2012,

personal communication).

The operational hybrid GSI is a two-way coupled system where the 3D-Var

takes in the flow-dependent background covariance from the ensemble, and the anal-

ysis ensemble is recentered to the deterministic analysis produced by the 3D-Var.

Figure 3.1, adapted from Wang et al. (2013), shows the flowchart of the two-way

coupled hybrid GSI. First, the EnKF (LETKF in our system) updates the analysis

ensemble using the background ensemble and the observations. Concurrently, the

3D-Var (labeled “GSI-ACV”; ACV standing for “augmented control vector”) gener-
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ates the control analysis using the control forecast (background) and the background

ensemble along with the observations. Then, the analysis ensemble is recentered

around the control analysis just generated from the 3D-Var part. Deterministic

and ensemble forecast models (the GFS model) integrate the control analysis and

the recentered analysis ensemble for 6 hours to produce the control and ensemble

background, closing the cycle.

Note that in a hybrid system there are two di↵erent analyses; one is the control

analysis from the variational part, and the other is the mean of the analysis ensemble

(before the recentering) from the ensemble part. They both can be used as the

verifying truth xv
t when evaluating forecast errors with Eq. (2.6) or Eq. (2.7). In

Section 4.4, we examine EFSO’s dependence on the choice of the verifying truth.

Figure 3.1: Schematical flow chart of the two-way coupled hybrid GSI system. This
flow-chart is to be read from left to right. Adapted from Wang et al. (2013).
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3.4 LETKF

As we mentioned in the previous section, although the operational hybrid GSI

uses the serial EnSRF of Whitaker and Hamill (2002) for ensemble generation, for

e�ciency sake, we replaced it with the LETKF recently implemented at NCEP by

Mr. Yoichiro Ota.

All EnKF methods can be classified into two categories: Perturbed Obser-

vation (PO) methods, and Square Root Filters (SRFs). SRF methods have less

sampling errors than the PO methods, so most EnKF methods currently in use in

geophysical fluid systems adopt the SRF methodology. In SRFs, the Kalman Filter

equation for the analysis error covariance:

Pa = (I�KH)Pb (3.9)

is solved by finding an ensemble transformation matrix (or a weight matrix) W that

updates the background perturbation to the analysis perturbation

Xa = XbW, (3.10)

so that it satisfies Eq. (3.9):

1

K � 1
XbWWTXbT = (I�KH)

1

K � 1
XbXbT . (3.11)

Eq. (3.11) does not uniquely determine the weight matrixW, and there are multiple
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ways to find W that satisfies it. The variant of ensemble SRF that is adopted by the

operational hybrid GSI, the serial EnSRF of Whitaker and Hamill (2002), exploits

the fact that, if the number of the assimilated observation is only one, then the

weight matrix W takes a particularly simple form ((I � KH) scaled by a scalar

factor that can be computed from �o and yb corresponding to the single observation

assimilated), and produces the analysis, serially assimilating one observation at a

time, regarding analysis from previous assimilation as the background. The simple

representation of the weight matrix W allows simplicity and ease of implementation,

but having to process observations serially inevitably imposes limited parallelism,

making the algorithm less e�cient on massively parallel cluster computers (Miyoshi,

2006).

The LETKF solves the square root filtering problem Eqs. (3.9)–(3.11) di↵er-

ently. By interpreting Xb as a map that transforms variables from the ensemble

space (the K-dimensional space spanned by each column vector of Xb) to the phys-

ical space, the matrix

P̃a =
1

K � 1
WWT (3.12)

can be interpreted as “the analysis error covariance matrix in the ensemble space”

because, mapped back to the physical space, it yields the analysis error covariance

Pa in the physical space:

Pa = XbP̃aXbT . (3.13)

57



Once the matrix P̃a is obtained, by choosing the weight matrix W to be symmetric,

the analysis perturbation Xa in physical space can be computed from Eq. (3.10) by

Xa = Xb
n

(K � 1)P̃a
o

1/2

. (3.14)

Hunt et al. (2007) showed that, in the ensemble space, the analysis error covariance

P̃a can be computed as the following inverse matrix

P̃a =
�

(K � 1)I+YbTR�1Yb
 �1

(3.15)

where Yb 2 Rp⇥K is the background perturbation in the observation space. Since

the matrix inverted in the above equation is K ⇥ K, and the ensemble member

size K is generally small, the computation of P̃a is rather cheap. The LETKF

further exploits the fact that information from one grid point to other grid points is

spatially confined to its vicinity with some radius of information propagation, and

performs the assimilation for each grid point, locally and independently. Because of

the independence, the analysis for each grid point can be done completely in parallel,

making the algorithm particularly suitable for a parallel computing environment.

In our experiments, we use the LETKF to provide the background ensemble

to the GSI. The analysis resolution is half that of the operational system, namely,

T126L64, and the member size is 80 (which is the same as in the operational sys-

tem). As in the operational serial EnSRF, both covariance localization and covari-

ance inflation are applied. The setup for localization and inflation is identical to
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the operational serial EnSRF with T254L64 resolution: the covariance is localized

with the fifth-order polynomial localization function of Gaspari and Cohn (1999),

both in the horizontal and the vertical, with the cut-o↵ length of 2,000 km and 2.0

scale heights, respectively. These correspond, respectively, to the e-folding scale of

800 km and 0.8 scale height. For covariance inflation, both multiplicative and ad-

ditive inflation are applied. The multiplicative inflation uses an adaptive algorithm

of Zhang et al. (2004) and Whitaker and Hamill (2012) which inflates the posterior

(analysis) covariance so that it is relaxed to the prior (background) variance mul-

tiplied by some fixed scaling factor, which, in the operational system and in our

experiment, is set to 0.85. The posterior (analysis) covariance is further inflated

with an additive inflation procedure that is similar in concept to the so-called Na-

tional Meteorological Center (NMC) method of Parrish and Derber (1992): for each

member, randomly pick a di↵erence of 48-hour and 24-hour forecast which validate

at the same date and time from a pre-computed inventory of NCEP’s operational

forecast, multiply it by a tuning factor, which we choose to be 0.32, and add it to

the posterior (analysis) ensemble. It should be noted that, since the localization

and inflation parameters we use in the lower-resolution T126 LETKF are optimized

for use with T254 serial EnSRF, these choices may not be optimal. Nevertheless,

the system worked without any problem during our experimentation.
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3.5 Observations

The observations assimilated in our experiments are identical to those in the

operational system. The observations are classified into two groups: non-radiance

data and radiance data. In the NCEP’s GSI system, non-radiance data are referred

to as “Conventional” data. Radiance data are simply referred to by “Satellite”

data. Note that, with this convention, satellite non-radiance observations, such as

Atmospheric Motion Vector (AMV), surface wind estimates from scatterometers, or

Global Positioning System Radio-Occultation (GPS-RO), are classified as “Conven-

tional.”

Each conventional observation is stored in the NCEP’s PREPBUFR file for-

mat and is given an integer index called “Report type” that identifies the type of

observation. The “report type” is referred to by “stattype” within the GSI code, so

hereafter, we call them as “stattype.” The list of “stattypes” operationally assim-

ilated at NCEP can be found at their website (NCEP, 2013), which is reproduced

in Tables 3.2 and 3.3.

In taking statistics, Ota et al. (2013) combined observations of several di↵erent

stattypes into one group, as shown in the second column of Tables 3.2 and 3.3. As

we will describe in Chapter 6, however, for Proactive QC, we will instead use raw

stattypes because observations of di↵erent stattypes tend to have di↵erent error

characteristics.

A list of satellite radiance data assimilated in our experiment is shown Table

3.4. In the later chapters, satellite data are referred to by the names given in this
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table.

3.6 EFSO setup

The EFSO impacts are computed for each observation using Eq. (2.34), for

three di↵erent evaluation lead times t: 6 hours, 12 hours, and 24 hours. We also

computed 0-hour EFSOs (i.e.analysis sensitivity to observations) but they are just

for discussion’s sake and we do not extensively describe their results. For covariance

localization, we adopt the moving localization scheme of Ota et al. (2013). As the

error norm, we adopt dry and moist total energy of Ehrendorfer et al. (1999): Let

S be a domain on the globe (it can be the globe itself), and consider measuring the

magnitude of a perturbation x0 of the atmospheric state. The kinetic energy (KE),

potential energy (PE) and moist energy (ME) of x0 are defined, respectively, by:

e2KE =
1

2

1

|S|

Z

S

Z

1

0

⇣

u02 + v02
⌘

d�dS (3.16)

e2PE =
1

2

1

|S|

Z

S

⇢✓

Z

1

0

Cp

Tr
T 02d�

◆

+
RdTr

P 2

r

P 0
s
2

�

dS (3.17)

e2ME =
1

2

1

|S|

Z

S

Z

1

0

L2

CpTr
q02d�dS (3.18)

where |S| is the area of the domain S, � = p/Ps is the vertical � coordinate,

u0,v0,T 0,q0 and P 0
s are, respectively, the zonal wind, meridional wind, temperature,

specific humidity and surface pressure of the perturbation x0, Cp is the specific

isobaric heat capacity of the air, Rd is the gas constant of dry air, L is the latent

heat of condensation per unit mass, and Tr and Pr are the reference temperature
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Stattype
Type name
used in Ota
et al. (2013)

Description Element

130 Aircraft AIREP and PIREP Ts

230 Aircraft AIREP and PIREP u, v
131 Aircraft AMDAR Ts

231 Aircraft AMDAR u, v
133 Aircraft ACARS Ts, q
233 Aircraft ACARS u, v
135 Aircraft Canadian AMDAR Ts

120 Radiosonde Radiosonde Tv, q, Ps

220 Radiosonde Radiosonde u, v
242 Satellite Wind AMV (cloud drift; be-

low 850 hPa) from JMA-
MTSAT

u, v

252 Satellite Wind AMV (cloud drift; above
850 hPa) from JMA-
MTSAT

u, v

243 Satellite Wind AMV (cloud drift; below
850 hPa) from EUMETSAT

u, v

253 Satellite Wind AMV (cloud drift; above
850 hPa) from EUMETSAT

u, v

245 Satellite Wind AMV (cloud drift; all levels)
from NESDIS-GOES

u, v

246 Satellite Wind AMV (WV cloud top; all
levels) from NESDIS-GOES

u, v

250 Satellite Wind AMV (WV cloud top; all
levels) from JMA-MTSAT

u, v

4,42
722
740
⇠746

GPSRO GPS Radio Occultation –

181 Land-Surface SYNOP and METAR Ps

281 Land-Surface SYNOP and METAR u, v

187 Land-Surface METAR
Ps (inferred

from
altimeter
setting)

287 Land-Surface METAR u, v

Table 3.2: List of assimilated non-radiance observation types (continued to Table
3.3). u, v, Ts, Tv, q and Ps represent, respectively, zonal wind, meridional wind, tem-
perature, virtual temperature, specific humidity, and surface pressure.
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Stattype
Type name
used in Ota
et al. (2013)

Description Element

180 Marine-Surface SHIP, BUOY, C-MAN and
TIDE GAUGE

Tv, q, Ps

280 Marine-Surface SHIP, BUOY, C-MAN and
TIDE GAUGE

u, v

257 MODIS Wind MODIS/POES AMV (IR
cloud drift; all levels) from
AQUA and TERRA

u, v

258 MODIS Wind MODIS/POES AMV (WV
cloud top ; above 600 hPa)
from AQUA and TERRA

u, v

259 MODIS Wind MODIS/POES AMV (WV
deep layer ; above 600 hPa)
from AQUA and TERRA

u, v

290 ASCAT Wind ASCAT scatterometer sur-
face wind over the ocean

u, v

221 PIBAL Pilot Balloons u, v
224 NEXRAD Wind wind from NEXRAD Radar u, v
223 Profiler Wind NOAA Profiler Network

(NPN) wind profiler
u, v

229 Profiler Wind Wind Profiler from PIBAL
bulletin

u, v

132 Dropsonde Flight-level reconnaissance
and profile dropsonde

Tv, q

182 Dropsonde Splash-level dropsonde over
ocean

Tv, q, Ps

289 WINDSAT Wind ASCAT scatterometer over
ocean (super observation)

u, v

112 TCVital Pseudo surface pressure ob-
servations at tropical cy-
clone storm center

Ps

700
⇠721 Ozone Ozone retrievals from satel-

lite radiances
ozone

Table 3.3: List of assimilated non-radiance observation types (continued from Table
3.2). Unlike Ota et al. (2013), di↵erent stattypes are not consolidated.
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Type (sensor name) Description

AMSUA Satellite microwave sounder radiances (from five satellites)
IASI Satellite infrared hyperspectral sounder radiances

Aqua AIRS Satellite infrared hyperspectral sounder radiances
ATMS Satellite microwave sounder radiances (from Suomi-NPP)
HIRS Satellite infrared radiances (from two satellites)
MHS Satellite microwave sounder radiances (from three satellites)
GOES GOES infrared sounder radiances (GOES13 and 15)
SEVIRI SEVIRI clear sky radiances

Table 3.4: List of assimilated satellite radiance data. Adapted from Ota et al.
(2013).

and surface pressure. In our computation, we choose Tr = 280 K and Pr = 1000

hPa. As in Ota et al. (2013), the vertical integration is carried out from the surface

up to the model top. The KE, PE and ME all have the dimension of J kg�1. The

dry total energy e2DTE and the moist total energy e2MTE are defined using the above

as

e2DTE = e2KE + e2PE (3.19)

e2MTE = e2KE + e2PE + e2ME (3.20)

The matrix C in Eq. (2.8) and Eq. (2.9) is defined so that the quadratic form

x0TCx0 evaluates to e2DTE or e2MTE defined above. Note that the use of EnKF allows

a simple computation of the moist static energy, which is extremely di�cult with

an adjoint system.
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3.7 Period of the experiments

The DA cycles are performed for 41 days from 00 UTC of January 1st, 2012

until 18 UTC of February 10th, 2012. The first cycle was started by assimilating the

observations of 00 UTC of January 1st, 2012 to the control and ensemble background

taken from the NCEP’s operational system. In preparing the initial data, resolution

transformation from the operational T574 (control) and T254 (ensemble) to T254

(control) and T126 (ensemble) was applied using the NCEP’s global chgres utility

installed on the S4 supercomputer.

The first seven days from 00 UTC of January 1st, 2012 to 18 UTC of January

7th, 2012 are discarded from the verification and case studies. For comparison

of statistical verification with Ota et al. (2013), we choose the period identical to

that in Ota et al. (2013): 31 days from 00 UTC of January 8th, 2012 to 18 UTC

of February 7th, 2012, with 31 ⇥ 4 = 124 samples in total. For case studies, we

examine 34 days from 00 UTC of January 8th, 2012 to 18 UTC of February 10th,

2012, with 34⇥ 4 = 136 samples in total.

65



Chapter 4: EFSO’s dependance on verifying truth and evaluation

lead time

4.1 Introduction

As we discussed in Section 1.4.2 and Section 2.4, we first need to examine

whether EFSO is applicable to the EnKF within a hybrid system, and how sensitive

it is to the choice of the evaluation lead time and the verifying truth. These issues

are addressed in this chapter. First, to check if EFSO also works on a hybrid DA

system, we briefly examine the consistency of our results with previous studies, in

particular Ota et al. (2013), who applied the same EFSO formulation to the same

GFS model (but with di↵erent horizontal resolution) in a pure EnKF DA system,

and Holdaway et al. (2014), who developed linear moist physics to the adjoint model

of NASA/GMAO’s Goddard Earth Observing System (GEOS-5) and applied the

adjoint FSO to their GSI-based 4D-Var system. We then examine EFSO’s sensitivity

to the evaluation lead time by comparing some of their statistical features and then

by comparing the EFSO impact of each observation for individual cases. Next we

conduct similar assessment on EFSO’s sensitivity to the choice of verifying truth

(either the control analysis from the variational part or the ensemble mean analysis

66



from the EnKF part). Our conclusion is that, somewhat to our surprise, EFSO

results do not depend too much on these choices.

4.2 Comparison with previous FSO studies

Since our work is the first to apply EFSO to a hybrid DA system, it is impor-

tant to make sure that EFSO also works with a hybrid system. In this section, we

compare our results with previous FSO studies. We first compare our EFSO results

with that of Ota et al. (2013). As we stated in Section 2.4, in our LETKF/3D-Var

hybrid GSI, we have two choices for the verifying truth. Here, we show the EFSO

impacts obtained by using the control analysis from GSI for verification. As we will

see in Section 4.4, the EFSO results do not depend significantly on which verifying

truth to use, so this choice does not a↵ect our conclusion.

Panels (a) and (c) of Figure 4.1 show 24-hour EFSO impacts from each obser-

vation type defined in Tables 3.2, 3.3 and 3.4 measured with the (a) moist and (b)

dry total energy norm, respectively, in units of J kg�1. The impacts are evaluated

for the whole globe and are averaged over the one-month period from 00 UTC of

January 8th, 2012 to 18 UTC of February 7th (see Section 3.7), using all of the

four initial times (00 UTC, 06 UTC, 12UTC and 18 UTC). For convenience, the

corresponding figures from Ota et al. (2013) are reprinted in panels (b) and (d). In

interpreting these figures, note that negative values of EFSO mean that the obser-

vations act to reduce the forecast errors and thus have positive impact. Despite the

di↵erent configurations such as the horizontal resolutions and the DA methods used,
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our results are mostly consistent with those of Ota et al. (2013). In particular, the

notable features pointed out by Ota et al. (2013), namely:

• AMSU-A (Advanced Microwave Sounding Unit A) contributes most positively,

both in dry and moist norm, followed by Aircraft, Radiosonde and IASI (In-

frared Atmospheric Sounding Interferometer).

• Ozone contributes slightly negatively with these error norms.

• All satellite radiance observations, especially the MHS (Microwave Humidity

Sounder) and PIBAL (Pilot Ballon) exhibit reduced impacts with the dry total

energy norm than with the moist total energy norm.

• GPSRO (Global Positioning System Radio Occultation) has almost equal im-

pact on moist and dry error norms, indicating that it has minimal impact on

moisture fields.

are all valid with our results as well. Two noticeable di↵erences are that: (1)

Satellite wind has less impact in our experiment than GPSRO, whereas, in Ota

et al. (2013), the impacts from the two observation types are comparable, and

(2) MODIS (Moderate-Resolution Imaging Spectroradiometer) wind has neutral

impact in our experiment, whereas, in Ota et al. (2013), it has clear positive impact.

It is di�cult to answer what causes these discrepancies (and that is not in the

scope of our study) but we speculate that suboptimality of thinning of these AMV

(Atmospheric Motion Vector; Satellite wind and MODIS wind are both AMV) data

in our experiment might be a possible factor: because AMV data are so densely
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observed, sometime exceeding the resolution of the models, the error correlations

between nearby observations, which is neglected in most formulations of DA, can be

non-negligible. Thinning of observations are thus necessary, and it has been shown

by theoretical consideration that the thinning should be made stronger for a lower

(coarser) model resolution (e.g. Liu and Rabier, 2002). Although the horizontal

resolution of the ensemble DA is lower in our experiments (T126) than in Ota et al.

(2013; T254), the two systems apply the same thinning to the AMV observations

before they are ingested to the DA system. Since the thinning is optimized for

the higher, operational resolution (T574 for control; T254 for ensemble), this could

make the assimilation of AMV data less e�cient in our lower-resolution system.

Apart from these minor di↵erences, our results are very consistent with Ota et al.

(2013), which supports the validity of using EFSO with an EnKF within a hybrid

DA system.

Next, we compare our results with an adjoint-based FSO, taking a recent re-

sult from Holdaway et al. (2014) as an example. Holdaway et al. (2014) extended

NASA/GMAO’s global NWP system by including moist physical processes to the

tangent linear and adjoint model of the GEOS-5 model and showed that the inclu-

sion of moist physics in the adjoint model improves the ability of the adjoint FSO to

better reproduce the nonlinear forecast error reduction. Panels (a) and (b) of Figure

4.2, adapted from Holdaway et al. (2014), show the FSO impacts from each obser-

vation type evaluated with the adjoint formulation of LB04 with NASA/GMAO’s

GEOS-5 system, averaged over a one-month period from March 17th, 2012 to April

17th, 2012, using only analyses of 00 UTC. Di↵erent colors represent di↵erent con-
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Figure 4.1: Comparison of our 24-hour EFSO impacts from each observation type
with those of Ota et al. (2013). (a) 24-hour EFSO impacts (J kg�1) from our
experiment verified against the control analysis from GSI measured with the moist
total energy norm averaged over a one-month period from 2012-Jan-08-00Z to 2012-
Feb-07-18Z. (b) 24-hour EFSO impacts measured with the moist total energy norm
from Ota et al. (2013) averaged over the same one-month period. (c) as in (a), but
with the dry total energy norm. (d) as in (b), but with the dry total energy norm.
Panels (b) and (d) are adapted from Ota et al. (2013).
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figurations for the adjoint model and the error norm: the red bars in (a) and (b)

show the impacts evaluated using the adjoint model with only dry physics measured

with dry total energy norm (note that the red bars in (a) and (b) are identical,

although they may look di↵erent due to the di↵erence in the scales), blue bars in

(a) represent the impacts evaluated using the adjoint model with dry and moist

physics measured with dry total energy norm, and the green bars in (b) represent

the impacts evaluated using the adjoint model with dry and moist physics measured

with moist total energy norm. Note that, in Holdaway et al. (2014), the moist total

energy norm e2MTE is defined as e2DTE + 0.3e2ME rather than e2DTE + e2ME as in our

case, and the vertical integration is from the surface to ⇠ 125 hPa, whereas, in our

case, it is from the surface to the model top. To contrast their results with ours,

we show, in panels (c) and (d), our 24-hour EFSO impacts measured with the dry

and moist total energy norm, respectively. Unlike in panels (a) and (c) of Figure

4.1 where we used all samples from 00, 06, 12 and 18 UTC, here we averaged the

impacts using only the samples from 00 UTC, to make them compatible with Hold-

away et al. (2014). Since most radiosonde stations make observations only on 00

and 12 UTC (and not on 06 and 18 UTC), we can expect that taking samples only

from 00 UTC makes the impact from radiosonde more significant, which is true in

our case (compare panels (a) and (c) of Figure 4.1, respectively, with panels (d)

and (c) of Figure 4.2). Our results and those of Holdaway et al. (2014) agree in

that, regardless of the error norm used, AMSU-A and Radiosonde are the top two

positively contributing types, followed by Aircraft and then by IASI and AIRS. If

we focus on radiance data, both our results and those of Holdaway et al. (2014),
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and also Ota et al. (2013), all estimate that the impacts are ordered, from largest

to smallest, as AMSU-A, IASI, AIRS, HIRS and MHS (note that the impacts from

GOES and SEVIRI are not shown in Holdaway et al. (2014), perhaps because they

are negligibly small).

Overall, our results are consistent with the previous FSO studies, which sug-

gests that the EFSO is also applicable to the EnKF within a hybrid DA system. We

next examine how sensitive the EFSO is to the choice of evaluation lead time.

4.3 Dependence on the evaluation lead time

Our proposed algorithm of Proactive QC relies on the ability of 6-hour EFSO

to detect “flawed” observations. It is thus important to understand the character-

istics of 6-hour EFSO. We investigate this issue in this section by comparing the

EFSOs evaluated for di↵erent evaluation lead times.

4.3.1 Statistical properties

The EFSO impacts for each observation type evaluated for 6-, 12-, and 24-hour

lead times, measured with the moist and dry total energy norms are summarized in

Figure 4.3. In this figure, the control analysis from GSI is used as the verifying truth.

As we stated in Section 1.4.2 and Section 2.4.1, we were not confident, before con-

ducting the experiments, whether 6-hour EFSO works or not because the analysis

errors against the truth, which is assumed su�ciently small in our EFSO formula-

tion, might not be negligible when compared to 6-hour forecast errors. Despite our
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Figure 4.2: Comparison of the observational impacts to 24-hour forecast errors (J
kg�1) from our EFSO experiments with those from adjoint FSO of NASA/GMAO’s
GEOS-5 system. (a) 24-hour FSO impacts from each observation type evaluated
with the adjoint formulation of LB04 with NASA/GMAO’s GEOS-5 system. Shown
are the impacts evaluated using the adjoint model with (red) only dry physics and
(blue) dry and moist physics. Both impacts are measured with the dry total energy
norm, and are averaged over a one-month period from March 17th, 2012 to April
17th, 2012, using only analyses of 00 UTC. (b) as in (a), but (green) the impacts
measured with the moist total energy norm using the adjoint model with dry and
moist physics, and (red) the impacts measured with the dry total energy norm using
the adjoint model with only dry physics (identical to the red bar in the panel (a)).
(c) As in Figure 4.1c, but averaged using only the analyses of 00 UTC. (d) As in
Figure 4.1a, but averaged using only the analyses of 00 UTC. Panels (a) and (b) are
adapted from Holdaway et al. (2014).
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Figure 4.3: Comparison of EFSO impacts for di↵erent evaluation lead times. Top
and bottom panels are, respectively, for the moist and dry total energy norm. Left,
middle and right panels are, respectively, for 6-, 12- and 24-hour lead time. In all
panels, the EFSO impacts are verified against the control GSI analysis. (a) as in
Figure 4.1a, but for 6-hour lead time. (b) as in (a), but for 12-hour lead time. (c)
as in (a), but for 24-hour lead time. (d) as in (a), but measured with the dry total
energy norm. (e) as in (b), but measured with the dry total energy norm. (f) as in
(c), but measured with the dry total energy norm.
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Figure 4.4: 6-hour EFSO impacts (J kg�1) of each observation plotted against the
height (in pressure; hPa). The impacts are evaluated for the entire globe with 6-
hour lead time and the moist total energy norm, and are verified against the control
GSI analysis. Shown are the observations of (a) Aircraft, (b) MODIS wind and (c)
AMSU-A, assimilated at 18 UTC of February 1st, 2012. For AMSU-A, the pressure
is defined for each channel as the maxima of the corresponding weighting function.
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concerns, however, Figure 4.3 shows that the EFSO impacts with di↵erent forecast

lead times are in fact highly consistent. In particular, relative importance of the

satellite radiance observations (the bottommost 8 bars) does not di↵er much for dif-

ferent lead times. This is also true for the conventional observations except MODIS

wind. Two features that draw our particular attention are: (1) the estimated im-

pacts of all observation types decreases as the lead time increases, when, in fact, the

forecast error grows, and (2) the decrease of the impacts with the lead time is modest

for satellite radiances and surface observations (Land-Surface, Marine-Surface and

ASCAT) but is large for other observation types, in particular, Aircraft and MODIS

Wind. We speculate that both features can be explained by the limitation resulting

from covariance localization (see Section 2.2.3): as the forecast time increases, the

information from an observation is advected away from the location where it was ob-

served, but the localization applied in EFSO fails to track it, resulting in diminished

impact estimation. This is possibly a reason why the total estimated reduction of

forecast errors (the sum of EFSO impacts from all observations) decreases as lead

time gets longer.1 The loss of impacts due to imperfect localization is stronger in

the upper troposphere where the westerly jet prevails, and this explains why the

impact from Aircraft observation, for example, weakens more quickly than surface

observations as the lead time gets longer: the observations from aircraft have larger

1Another possible mechanism is the error saturation for a chaotic dynamical system (e.g.,
Dalcher and Kalnay, 1987): in a chaotic system, nonlinear error growth saturates at certain forecast
lead time, due to the system’s limited memory of initial states. At this saturation lead time, impacts
from any observation becomes zero because, no matter how accurate the initial condition is, the
forecast error reaches the climatological level. In the atmosphere, the dominant modes do not
saturate until about 10–14 days, but for modes with small spatial scales, the saturation is much
faster, as shown by Holdaway et al. (2014). Note that this feature cannot be captured by the
adjoint-based FSO evaluation.
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impacts in data-sparse (less populated) areas away from airports. Since aircraft fly

over those areas at the cruising height just above the tropopause where the west-

erlies are strong, their impacts are prone to dilution due to covariance localization;

the observations at surface level or lower troposphere, on the other hand, do not

su↵er much from such limitation.

Figure 4.4 supports our reasoning above. Panel (a) shows the height and the

6-hour EFSO impact of each aircraft observation assimilated at 18 UTC of February

1st, 2012. Aircraft observations are distributed from ground level up to the lower

stratosphere (⇠ 170 hPa), but the observations are densest near the tropopause

level (from about 350 hPa to 170 hPa). Observations with large EFSO impacts are

also concentrated in this height range. MODIS wind observations (panel (b)) are

densest in the middle to upper troposphere (between 600 hPa to 400 hPa). A peak

of observations with large impacts is found at around ⇠ 450 hPa level. Both Aircraft

and MODIS wind have only limited fraction of observations near the ground where

the wind is weak, making it particularly prone to the weakening of signal due to

localization. On the other hand, AMSU-A (panel (c)) has a lot of channels that

are sensitive to the lower troposphere (below 800 hPa), and the observations for

such channels have large EFSO impacts, albeit not as large as those in the upper

troposphere, making it rather robust against the weakening of signals by localization.

In the literature of FSO studies, there have been several discussions about

how many percentage of the observations have beneficial impact onto the forecast,

in particular, why so few does: all works on FSO published hitherto report that

only slightly more than 50% of observations have positive FSO impact onto the
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forecast (e.g., Gelaro et al., 2010; Langland and Baker, 2004; Lorenc and Marriott,

2013; Todling, 2013). We should keep it in mind, however, that all these previ-

ous studies are based on FSO results with 24-hour lead time. According to Gelaro

et al. (2010), a Monte-Carlo experiment for a scalar system conducted by Ehren-

dorfer (2007, see their Figure 2) and Mike Fisher (2006, personal communication),

in which the background and observation error variance is perfectly specified and

the background and the observation have comparable accuracy, suggests that 60%–

65% of the observations should be beneficial to the analysis when the DA system

is optimal. Citing this result, Gelaro et al. (2010) argued that the suboptimality of

operational systems (i.e., imperfect specification of background or observation er-

ror covariances) may be restricting the utility of the information from observations.

Daescu and Todling (2009) argued that the imperfection of verifying truth makes

the FSO estimation less reliable. Todling (2013), on the other hand, showed that

the 0-hour FSO (i.e., analysis sensitivity to observation) verified against the obser-

vations rather than the analysis and measured with the error norm evaluated in the

observation space exhibits the fraction of beneficial observations that is close to the

theoretical range (60%–65%) and argued that their operational system should be in

fact nearly optimal. What he did not make clear, however, is why the results are so

di↵erent between the 24-hour forecast sensitivity and the analysis (0-hour forecast)

sensitivity. Lorenc and Marriott (2013), which was published almost simultaneously,

proposed a mechanism that possibly answers this problem: they conducted a series

of idealized Monte-Carlo experiments similar to that of Ehrendorfer (2007) but with

a linear model with 8 di↵erent independent modes in which the growth rate of each

78



mode, the background and observation error variances B and R, and the error of

verifying state, are all allowed to vary, and suggested that, not only the subopti-

mality of DA system and the limited accuracy of verifying truth, as suggested by

the previous studies, but also the di↵erence of the growth rates of each mode of

the forecast model, along with the lack of flow-dependence of B-matrix in the DA

system, all contribute to the lowered fraction of beneficial observations. In view of

these discussions, it would be interesting to look at how the percentage of beneficial

observations changes with the evaluation lead time in our system.

Figure 4.5 shows the percentage of observations that are estimated to be ben-

eficial with EFSO in our system, for the lead times of (a) 0 hour (i.e., observational

impact to analysis), (b) 6 hours, (c) 12 hours and (d) 24 hours. Consistent with

the previous studies, the percentage of beneficial observations for 24-hour forecast

(panel (d)) is only slightly above 50% for all observation types (except TCVital,

whose statistics is not reliable due to the limited sample size of only 77). As the

lead time decreases, however, more and more observations are estimated to be ben-

eficial. The percentages of beneficial observations, all observation types combined,

are 56%, 53%, 52% and 51%, respectively, for 0, 6, 12 and 24 hours. Following the

argument of Lorenc and Marriott (2013), we can interpret this as follows:

The atmosphere as a dynamical system has both growing and decaying

modes. Suppose that an observation improves the analysis by signifi-

cantly improving the decaying modes, but, at the same time, it slightly

degrades the growing modes. For a forecast of a short period, the ob-
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Figure 4.5: Percentage of beneficial observations (i.e., the number of observations
with positive impacts onto forecast divided by the total number of observations
and then multiplied by 100) classified by the observation types. EFSO impacts
are computed using the moist total energy norm with the control GSI analysis as
the verifying truth. Shown are evaluated with lead time (a) 0 hours (i.e., analysis
sensitivity to observation), (b) 6 hours, (c) 12 hours, and (d) 24 hours. Statistics
are taken for a one-month period from 2012-Jan-08-00Z to 2012-Feb-07-18Z, with
total observation number of 218,025,941.
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servation could maintain its beneficial impact; eventually, however, the

initial slight increase of the error in the growing modes will amplify and

overwhelm the reduction of the error in the decaying modes, rendering

the net impact of that observation negative.

Trevisan et al. (2010) showed that the analysis increment should be confined in

the unstable subspace for this reason, and demonstrated with the Lorenz ’96 system

(c.f., Section 7.4.1) that the 4D-Var in which the analysis increment is sought within

the unstable subspace performs better than the conventional 4D-Var.

4.3.2 Individual cases

In the previous subsection, we saw that the average EFSO impacts from each

observation type are rather insensitive to the evaluation lead time. In this subsec-

tion, we examine if EFSO impacts for individual observations are also insensitive to

the choice of the lead time by focusing on some of the cases we identify as “possible

regional dropouts” (see Section 6.2).

As an example, we show, in Figure 4.6, the geographical and vertical distri-

bution of EFSO impacts for the MODIS wind derived from the water vapor image

by tracking movement of deep layer cloud (stattype 259; see Table 3.3), for one

of the identified “regional dropout” cases. The initial date is 18 UTC of Febru-

ary 6th, 2012, and the area is the “rectangular” (in fact, “triangular”) domain of

[60 �N–90 �N]⇥[40 �E – 100 �E]. The EFSO impacts are measured with the moist to-

tal energy norm targeted in the region above and are verified against the control GSI
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analysis. Red and blue circles represent negative and positive impacts, respectively,

and the size of each circle is proportional to the size of the impact. The left panels

((a) and (c)) show the results for 6-hour EFSO; the right panels ((b) and (d)) show

the results for 24-hour EFSO.

In Proactive QC, we will exploit EFSO’s ability to detect “flawed” observa-

tions, namely, the observations with large negative impacts. We are thus particularly

interested in the consistency of positions and sizes of large red circles between the

two lead times (left and right panels). By comparing the left panels ((a) and (c))

with the right panels ((b) and (d)) of Figure 4.6, we can observe that, the observa-

tions with large negative 24-hour EFSO impacts (large red points) are well collocated

with those with large negative 6-hour EFSO impacts, both horizontally and verti-

cally, and vice versa. This visual impression is supported by panel (b) of Figure

4.7 which shows the scatter plot of 6-hour and 24-hour EFSO for the case shown

in Figure 4.6: the correlation between 6-hour and 24-hour EFSO is not very strong

for observations with modest impacts (i.e., dots near the origin), with some of the

observations with positive 6-hour EFSO having negative 24-hour EFSO, but for the

observations with large impacts which are of our particular interest, at least their

signs are consistent. On the other hand, the correlation between 0-hour and 6-hour

EFSO impacts (panel (a) of Figure 4.7) is much weaker, even with some negative

correlation, suggesting that 0-hour EFSO (i.e., analysis sensitivity to observations)

cannot detect “flawed” observations.

The result for this particular case suggests that, even for individual observa-

tions, 6-hour EFSO and 24-hour EFSO are consistent to some extent, especially if
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we focus on observations with large negative impact. However, just looking at one

case is not su�cient for drawing conclusions. In Table 4.1 we show how many of the

observations whose 6-hour EFSO values are at least one standard deviation above

the mean also have negative impact for the 24-hour forecast (i.e., have positive

24-hour EFSO values). Except 3 out of 20 cases (the cases # 5, 11 and 14), the

percentage is larger than 50%; the percentage is above 75% in as many as 8 cases

(the cases # 1, 8, 12, 13, 17, 18, 19 and 20). This leads us to conclude that “flawed”

observations can be detected by 6-hour EFSO as well.

4.4 Dependence on the choice of verifying truth

We now proceed to examine whether the choice of verifying truth significantly

a↵ects the EFSO results. We first compare statistical properties of the EFSO results

verified against the ensemble mean analysis from LETKF with those verified against

the control analysis from GSI. We then compare the two for individual observations.

Our conclusion is that the choice of the verifying truth is not important.

4.4.1 Statistical properties

We first examine whether the time-averaged EFSO impacts from each obser-

vation type di↵er significantly by using di↵erent verifying truth. Figure 4.8 is the

equivalent of Figure 4.3 verified against the ensemble mean analysis from LETKF.

They show the time-averaged EFSO impacts from each observation type evaluated

for di↵erent forecast lead times (6, 12 and 24 hours, from left to right) with dif-
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Case
# Date Latitude Longitude > +� “Hit” %

1 2012-Jan-12-00Z 90 �S – 60 �S 110 �E – 140 �E 171 137 80.2
2 2012-Jan-12-18Z 60 �N – 90 �N 140 �E – 180 � 197 128 65.0
3 2012-Jan-13-06Z 60 �N – 90 �N 70 �W – 20 �W 427 282 66.0
4 2012-Jan-14-18Z 45 �N – 90 �N 120 �E – 150 �E 368 262 71.2
5 2012-Jan-15-18Z 60 �N – 90 �N 10 �E – 80 �E 858 278 32.4
6 2012-Jan-17-18Z 60 �N – 90 �N 50 �W – 0 � 516 283 54.8
7 2012-Jan-18-06Z 90 �S – 60 �S 70 �W – 30 �W 1,093 629 57.5
8 2012-Jan-18-18Z 45 �N – 90 �N 120 �E – 150 �E 284 225 79.2
9 2012-Jan-26-18Z 60 �N – 90 �N 40 �E – 80 �E 407 238 58.5
10 2012-Jan-27-00Z 60 �N – 90 �N 30 �E – 80 �E 177 105 59.3
11 2012-Jan-27-00Z 60 �N – 90 �N 20 �W – 10 �E 427 196 45.9
12 2012-Jan-28-18Z 60 �N – 90 �N 50 �E – 90 �E 462 368 79.7
13 2012-Feb-02-18Z 60 �N – 90 �N 40 �E – 110 �E 547 450 82.3
14 2012-Feb-03-00Z 60 �N – 90 �N 60 �E – 90 �E 315 18 8.1
15 2012-Feb-04-00Z 60 �N – 90 �N 40 �W – 10 �W 244 133 54.5
16 2012-Feb-05-12Z 90 �S – 60 �S 60 �W – 0 � 436 298 68.3
17 2012-Feb-06-18Z 60 �N – 90 �N 40 �E – 100 �E 582 497 85.4
18 2012-Feb-06-18Z 90 �S – 60 �S 60 �W – 10 �E 576 471 81.8
19 2012-Feb-09-06Z 60 �N – 90 �N 140 �W – 90 �W 1,592 1,268 79.6
20 2012-Feb-10-06Z 90 �S – 60 �S 50 �E – 80 �E 104 80 76.9

Table 4.1: Percentage of “large 6-hour EFSO” observations whose 24-hour EFSO
values are positive, for the 20 cases identified as “regional dropouts” (c.f. Section
6.2). “Large 6-hour EFSO” observations are defined as the observations whose EFSO
values exceed one standard deviation (�) above the mean, the number of which is
shown in the fifth column denoted by “> +�.” The number of observations among
the “large 6-hour EFSO” observations whose 24-hour EFSO impacts are negative
(i.e., the value is positive) is shown in the sixth column (denoted by “Hit”), whose
fraction (in percent) is shown in the rightmost column.
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a) b)

c) d)

Figure 4.6: Geographical and vertical distributions of EFSO impacts for individual
MODIS wind (stattype 259; see Table 3.3) observations on one of the “regional
dropout” cases (18 UTC of February 6th, 2012 and the area of 60 �N – 90 �N, 40 �E
– 100 �E). Shown are (a) horizontal distribution of 6-hour EFSO impacts (b) as in
(a), but for 24-hour EFSO, (c) vertical distribution of 6-hour EFSO, and (d) as in
(c), but for 24-hour EFSO. Red and blue circles represent, respectively, negative
and positive impacts (i.e., positive and negative EFSO values). The area encircled
by each circle corresponds to the magnitude of the EFSO impact. Wind barbs in
panels (a) and (b) represent the observed wind. Each MODIS wind observation
is composed of a pair of observations, one for u (zonal wind) and the other for
v (meridional wind), which are assimilated separately. Here, the impact for each
MODIS observation is defined as the sum of the impacts from its u and v component.
The EFSO is verified against the control GSI analysis and is measured with the moist
total energy norm restricted to the above mentioned “rectangular region.”
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Figure 4.7: Scatter plot of (a) 0-hour and 6-hour EFSO, and (b) 6-hour and 24-hour
EFSO (in J kg�1) for the case and the observation type shown in Figure 4.6.
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ferent error norms (moist and dry total energy norm, respectively, for the top and

bottom panels). Similarity between any panel of the two figures is clearly evident.

The only noticeable discrepancy is that Aircraft and MODIS wind have larger im-

pact, especially with 6-hour lead time (panels (a) and (d)), when verified against

the ensemble mean LETKF analysis (Figure 4.8) than against the control GSI anal-

ysis (Figure 4.3). Apart from this minor discrepancy, the two results are highly

consistent, indicating the insignificance of the choice of the verifying truth.

a)# b)# c)#

d)# e)# f)#

Figure 4.8: As in Figure 4.3, but for the EFSO impacts verified against the ensemble
mean LETKF analysis.
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4.4.2 Individual cases

Now we examine whether the consistency between EFSO verified against the

two analyses is also robust for individual observations. Figure 4.9 shows the scatter

plots of the two EFSO values (one verified against the control GSI analysis and

the other verified against the ensemble mean LETKF analysis) for three di↵erent

observation types (Aircraft, MODIS wind and AMSU-A) assimilated at a particular

date and time of 18 UTC of February 1st, 2012. For any of the three observation

types shown, we can observe clear, high correlation. The correlation is higher for

24-hour EFSO (right panels) than for 6-hour EFSO (left panels). The 6-hour EFSO

of MODIS wind (panel (c)) exhibits some observations for which the two EFSO

values do not agree, especially for large positive values (i.e., negative impacts).

Nevertheless, we can conclude that, overall, the EFSO diagnostics is not too sensitive

to the choice of verification.

4.5 Summary

In this chapter, we first compared 24-hour EFSO from our experiments with

previous FSO studies to check if the EFSO applied to a hybrid DA system yields

reasonable results. Our results are in fact consistent with the previous studies,

confirming the applicability of EFSO to a hybrid DA system. We then compared

EFSOs of di↵erent forecast lead times and found that, somewhat to our surprise,

EFSO with the lead time as short as 6 hours is overall consistent with that of the

tried-and-true 24-hour lead time, especially if we focus on the EFSO of large negative
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c) d)

e) f)

Figure 4.9: Scatter plots of the two EFSO values (in 10�3J kg�1) for individual
observations, one verified against the control GSI analysis (x-axis) and the other
verified against the ensemble mean LETKF analysis (y-axis), for (a,b) Aircraft ob-
servations, (c,d) MODIS wind observations and (e,f) AMSU-A observations. The
left panels ((a), (c) and (e)) show the results for 6-hour EFSO; the right panels ((b),
(d) and (f)) show the results for 24-hour EFSO. All EFSO values are measured
globally with the moist total energy norm. The observations assimilated at 18 UTC
of February 1st, 2012 are shown.

89



impacts. We then examined whether the choice of the verifying truth significantly

a↵ects the results of EFSO, and we found that the EFSO is rather insensitive to

this choice, even for individual observations.

The fact that 6-hour and 24-hour EFSO can consistently identify observations

with large negative impacts is of vital importance to us because this gives us hope

that 6-hour EFSO can be used for Proactive QC.

Because the EFSO is found not to be too sensitive to the choice of the verifying

truth, in later chapters we mainly use the control GSI analysis as the verifying truth:

the control analysis is generally considered to be more accurate than the ensemble

mean EnKF analysis because it is produced at a higher horizontal resolution and it

combines the robustness of static background covariance with the flow-dependence

from EnKF.
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Chapter 5: Improvement of “regional dropout” detection algorithm

5.1 Introduction

In our proposed Proactive QC algorithm, we divide the globe into relatively

small regions and apply an algorithm that detects possible “regional forecast dropouts”

(Step 3. of the algorithm described in Section 1.4.1 and Section 2.3.2). Ideally, we

should perform EFSO on all regions and see if there are any observations the rejec-

tion of which would reduce forecast errors. However, with ⇠ 400 regions per each

analysis (see Section 5.2), this would be too computationally expensive and not

feasible for an operational system, although EFSO is considerably computationally

more e�cient than the adjoint based FSO. Thus, we have to “screen out” regions for

which rejection of a subset of observations is unlikely to improve the forecast, before

performing EFSO. Following Ota et al. (2013), we examine criteria based on the

following two measures: a) the error of the t-hour forecast initialized by the anal-

ysis normalized by its climatological mean, eft|0/
D

eft|0

E

, which, hereafter we refer to

simply as “normalized regional forecast errors,” and b) the ratio of the errors of the

t-hour and t+6-hour forecasts validating at the same time, eft|0/e
f
t|�6

, which we refer

to simply as “regional forecast error reduction by the analysis.” Here, the errors

are measured with the moist total energy norm restricted to each region. The first
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criterion measures how much the regional forecast error is large or small compared

to its “usual” value; the second criterion measures how much the assimilation of ob-

servations reduced (or increased) the regional forecast error. Ota et al. (2013) used

the thresholds of 1.7 for a) and 1.2 for b) (c.f. Section 2.3.1), respectively, with

the forecast lead time t = 24 hours, and identified 7 possible “regional dropout”

cases, two of which were improved by more than 20% by rejecting the “flawed” ob-

servations that were identified by regional EFSO. While their achievement is a great

success, there is still some room for improvement. First, as we discussed in Section

2.4.3, the way they divided the globe into smaller subdomains may not be optimal.

Second, the thresholds for a) and b) are determined rather subjectively and may not

be optimal. It is not clear whether they should be constant for all latitudes because

the dynamics of the atmosphere have di↵erent characteristics in the extratropics

and tropics. Furthermore, if the two quantities (normalized regional forecast errors,

eft|0/
D

eft|0

E

, and the regional forecast error reduction by the analysis, eft|0/e
f
t|�6

) are

strongly correlated, then it would su�ce to use just only one of them.

The issues we stated above are discussed in this chapter. In Section 5.2, we

introduce two approaches for decomposing the globe. In Section 5.3 we examine

the statistics of the normalized regional forecast errors eft|0/
D

eft|0

E

and the regional

forecast error reduction by the analysis eft|0/e
f
t|�6

, first using samples from the en-

tire globe, then limiting the samples to Northern Hemisphere (NH) extratropics,

Southern Hemisphere (SH) extratropics, and the tropics. We will also examine the

statistics with samples only from near the North and South Poles. Then, using these

statistics, we pick-up ⇠ 200 cases in which we assume regional forecast dropouts are
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likely to occur. We then perform EFSO to each of them to estimate how much

the forecast can be improved by not using the observations of the stattypes (see

Section 3.5) or satellite sensors with net negative impacts. The selection of cases

based on the the normalized regional forecast errors eft|0/
D

eft|0

E

and the regional fore-

cast error reduction by the analysis eft|0/e
f
t|�6

can be considered a success if, among

the selected cases, there are cases for which the forecast is estimated to be signifi-

cantly improved by not using the negatively-impacting observation types detected

by EFSO. Further, we compare the estimated forecast improvements with the nor-

malized regional forecast errors eft|0/
D

eft|0

E

and the regional forecast error reduction

by the analysis eft|0/e
f
t|�6

to see which of the two is the better statistical predictor

for the estimated forecast improvements.

We note that the statistical analysis we present in this chapter is rather ad hoc

and more like engineering than science; the optimal criteria could be di↵erent from

one system to another, so we might have to re-tune them on a system-to-system

basis.

5.2 Domain decomposition

As we discussed in Section 2.4.3, how best to divide the globe into smaller

regions is not a trivial question. A näıve way, used by Ota et al. (2013), is to simply

divide the globe into “rectangular” regions in latitude-longitude space, for example,

30 �⇥30 � “squares.” One concern with this approach is that, the area of each re-

gion, or cell, varies with the latitude and becomes highly non-uniform. For example,
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the area of a cell on the 15 �S–15 �N band is larger than that on the 60 �N–90 �N

band by more than 4 times. Ota et al. (2013) solved this issue by adjusting the

longitude spacing so that the areas of each region become as uniform as possible. A

possible drawback of this approach is that, in the tropics, the cell becomes merid-

ionally elongated, when, in fact, the structures of tropical disturbances are zonally

elongated. Here, we propose another approach in which the latitude spacing rather

than longitude spacing is adjusted: we divide the globe by the zeros of the isotropic

spherical harmonics with total wavenumber 12 (Y 6

12

(�,')). The advantage of this

approach is that the areas of each cell become close to uniform (see Table 5.1 and

the right panels of Figure 5.1). To allow for overlaps, we also use domain decom-

position that is formed by zonal and meridional lines which connect anti-nodes of

Y 6

12

(�,'). Also, overlaps in the zonal direction is allowed by shifting the longitude

by 10 �. We call this domain decomposition “Y 6

12

cells.” The Y 6

12

cells consist of a

total of (7 + 6)⇥ 36 = 468 cells.

Along with the Y 6

12

cells, we also examine the näıve “30 �⇥30 � cells” where the

globe is divided into 30 �⇥30 � latitude-longitude cells, allowing overlaps by shifting

the latitude and longitude, respectively, by 15 � and 10 �. The 30 �⇥30 � cells consist

of a total of (6 + 5)⇥ 36 = 396 cells. The rationale for testing this division, despite

the non-uniformity of the areas of each cell, is that the characteristic horizontal

scales of meteorological disturbances decrease as the latitude goes higher: in the

extratropics, the horizontal scale of disturbances are roughly determined by the
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Rossby radius of deformation (e.g. Balgovind et al., 1983; Gill, 1982):

�R =

p
gH

f
=

p
gH

2⌦ sin'
(5.1)

where g is the gravitational acceleration, H is the equivalent depth of the vertical

mode, f is the Coriolis parameter, ⌦ is the angular velocity of Earth’s rotation,

and ' is the latitude (in radian). As the latitude increases, f also increases, thus

decreasing �R. Moreover, the equivalent depth H also tends to become smaller in

higher latitude because the static stability is generally stronger at higher latitudes.

The tropopause level is also lower at the higher latitudes (⇠ 300 hPa near the Poles

and ⇠ 150 hPa at the Equator). For this reason, we guess that using larger regions

in the lower latitude than in the higher latitude could be justifiable.

Figure 5.1 shows how the globe is divided into smaller cells by (top) the

30 �⇥30 � cells and (bottom) Y 6

12

cells, with (left) the orthograpic projection and

(right) the cylindrical equidistant projection. The area of each cell in each latitude

band is shown by the width of gray boxes on the right edge of the right panels. As

we discussed, the areas of each cell in each latitude bands are highly nonuniform in

30 �⇥30 � cells but close to uniform in Y 6

12

cells. The specification of each latitude

that divide the cells, along with the area of each cell in each latitude band, is shown

in Table 5.1.
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Latitude Specification

30 �⇥30 � cells

minlat maxlat area (km2) minlat maxlat area (km2)

60 �N 90 �N 2,748,630 45 �N 75 �N 5,370,630
30 �N 60 �N 7,715,440 15 �N 45 �N 9,600,990

0 � 30 �N 10,835,300 15 �S 15 �N 11,266,300
30 �S 0 � 10,835,300 45 �S 15 �S 9,600,990
60 �S 30 �S 7,715,440 75 �S 45 �S 5,370,630
90 �S 60 �S 2,748,630

Y 6
12 cells

minlat maxlat area (km2) minlat maxlat area (km2)

42.4482 �N 90.0000 �N 6,743,580 33.6865 �N 54.0107 �N 5,366,600
24.8270 �N 42.4482 �N 5,440,880 16.5516 �N 33.6865 �N 5,805,080
8.2020 �N 24.8270 �N 6,006,440 0.0000 � 16.5516 �N 6,198,280
8.2020 �S 8.2020 �N 6,217,080 16.5516 �S 0.0000 � 6,198,280
24.8270 �S 8.2020 �S 6,006,400 33.6865 �S 16.5516 �S 5,805,080
42.4482 �S 24.8270 �S 5,440,880 54.0107 �S 33.6865 �S 5,366,600
90.0000 �S 42.4482 �S 6,743,580

Table 5.1: Specification of the latitudes along with the area of each cell on each
latitude band for (top) the 30 �⇥30 � and (bottom) Y 6

12

cells.

5.3 Statistics of the normalized regional forecast errors and the re-

gional forecast error reduction by the analysis

In this section we examine how the normalized regional forecast errors eft|0/
D

eft|0

E

and the regional forecast error reduction by the analysis eft|0/e
f
t|�6

are statistically dis-

tributed and whether they are correlated. Specifically, we are interested in whether

the statistics are di↵erent for the two di↵erent divisions of the globe (30 �⇥30 �

and Y 6

12

). We first look at the statistics with samples from the whole globe. Since
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“30x30”&Cells&
Area&of&each&cell&

Area&of&each&cell&

&Cells&

Area&of&each&cell&
Area&of&each&cell&

Figure 5.1: (Top) 30 �⇥30 � cells and (bottom) Y 6

12

cells represented with (left)
orthographic and (right) cylindrical equidistant projections. To allow for meridional
overlaps, the two division approaches both have two di↵erent ways to segment the
latitude. The area of each cell in each latitude band is shown by the width of gray
boxes on the right edge of the right panels.
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the dynamics of meteorological disturbances is di↵erent for di↵erent latitudes, the

statistics may be also di↵erent. Thus, we also look at statistics with samples only

from tropics, the NH and SH extratropics, and near the North Pole and the South

Pole.

Figure 5.2a shows the statistics of the normalized regional forecast errors and

the regional forecast error reduction by the analysis verified against the control GSI

analysis for 30 �⇥30 � cells. The three panels in the upper row show, from left to

right, the histogram of normalized regional forecast errors, the histogram of regional

forecast error reduction by the analysis, and the scatter plot of the two, all for the

lead time t = 6 hours; similarly, the lower three panels are for the lead time t = 24

hours. The sample mean and standard deviation (�) are indicated at the bottom of

each histogram. These statistics are also summarized in Table 5.2. The same plots

for Y 6

12

cells are shown in Figure 5.2b. Let us first look at the results for 30 �⇥30 �

cells (Figure 5.2a). The normalized regional forecast errors, by definition, has mean

1 and its distribution is somewhat skewed to the right, both for t = 6 hours and 24

hours. An interesting observation is that the standard deviation is not very di↵erent

for the two lead times, with � = 0.219 for t = 6 hours and � = 0.241 for t = 24

hours. The mean of the regional forecast error reduction by the analysis is 0.575

for t = 6 hours and 0.823 for t = 24 hours, both less than 1, meaning that the

assimilation of observations on average act to reduce regional forecast errors. From

the scatter plots, we can observe that, for both lead times, the dots are clustered

in the upper left, indicating that if the regional t-hour forecast is less accurate than

usual, then the forecast error is not reduced much by the analysis; equivalently, if
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(a) 30 �⇥30 � cells, against GSI analysis

(b) Y 6
12 cells, against GSI analysis

Figure 5.2: (a): Statistics of the normalized regional forecast errors and the regional
forecast error reduction by the analysis for (top) 6-hour lead time and (bottom) 24-
hour lead time. Errors are measured for each cell of the 30 �⇥30 � cells with the moist
total energy norm and are verified against the control GSI analysis. The samples
are taken from all cells (global). Shown are (left) the histogram of the normalized
regional forecast errors, (middle) the histogram of regional forecast error reduction
by the analysis, and (right) the scatter plot of normalized regional forecast errors
(abscissa) and regional forecast error reduction by the analysis (ordinate). The
vertical and horizontal lines in the scatter plot denote mean-plus-2� levels. (b): As
in (a), but for the Y 6

12

cells.
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the forecast error is significantly reduced by the analysis, then the regional forecast

error is likely to be smaller than usual. However, there is no clear linear correlation

between the two quantities. By comparing Figure 5.2a and Figure 5.2b, we find

that, contrary to our initial expectation, the distributions do not depend on how we

divide the globe.

Next we examine if the choice of the verifying truth a↵ects the statistics.

Figure 5.3 shows the statistics of regional forecast errors in the same format as in

Figure 5.2. As in Figure 5.2, the results for the 30 �⇥30 � cells and the Y 6

12

cells do

not di↵er much. Compared to Figure 5.2 in which the errors are verified against the

control GSI analysis, the results for 6-hour lead time is somewhat di↵erent, with

the mean of regional forecast error reduction by the analysis smaller when verified

against the ensemble mean LETKF analysis (0.463 for 30 �⇥30 � cells and 0.461 for

Y 6

12

cells) than when verified against the control GSI analysis (0.575 for 30 �⇥30 �

cells and 0.567 for Y 6

12

cells). Also, there are several cases with very large normalized

regional forecast errors which exceed 4 (rightmost panels). Those cases all occurred

in the tropics.

The statistics (mean and standard deviation) with samples taken only from

the NH extratropics (i.e., north of 30 �N) and the SH extratropics (i.e., south of

30 �S) are shown, respectively, in the second and third rows of Table 5.2a and Table

5.2b. As in the statistics with global sampling, there seems to be no noticeable

di↵erence between 30 �⇥30 � cells and Y 6

12

cells. The results for the tropics (between

30 �S and 30 �N; fourth rows) also seem to have no noticeable di↵erence between

30 �⇥30 � cells and Y 6

12

cells. The scatter plots between normalized regional forecast
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Summary of Statistics : (a)30 �⇥30 � cells

verification GSI LEKTF

normalized eft|0 eft|0/e
f
t|�6

normalized eft|0 eft|0/e
f
t|�6

lead time 6hrs. 24hrs. 6hrs. 24hrs. 6hrs. 24hrs. 6hrs. 24hrs.

Globe
mean

std.dev.
1.000
0.219

1.000
0.241

0.575
0.081

0.823
0.090

1.000
0.297

1.000
0.256

0.463
0.101

0.801
0.102

NH
mean

std.dev.
1.000
0.255

1.000
0.288

0.603
0.088

0.808
0.107

1.000
0.334

1.000
0.302

0.476
0.118

0.783
0.120

SH
mean

std.dev.
1.000
0.225

1.000
0.281

0.574
0.071

0.814
0.104

1.000
0.269

1.000
0.295

0.457
0.085

0.794
0.122

Trop.
mean

std.dev.
1.000
0.189

1.000
0.172

0.558
0.076

0.839
0.062

1.000
0.288

1.000
0.192

0.459
0.097

0.815
0.071

North
Pole

mean
std.dev.

1.000
0.278

1.000
0.334

0.609
0.093

0.798
0.120

1.000
0.347

1.000
0.342

0.482
0.115

0.775
0.134

South
Pole

mean
std.dev.

1.000
0.258

1.000
0.321

0.584
0.081

0.799
0.113

1.000
0.284

1.000
0.326

0.452
0.098

0.782
0.133

Summary of Statistics : (b) Y 6
12 cells

verification GSI LEKTF

normalized eft|0 eft|0/e
f
t|�6

normalized eft|0 eft|0/e
f
t|�6

lead time 6hrs. 24hrs. 6hrs. 24hrs. 6hrs. 24hrs. 6hrs. 24hrs.

Globe
mean

std.dev.
1.000
0.220

1.000
0.224

0.567
0.081

0.832
0.082

1.000
0.316

1.000
0.244

0.461
0.104

0.809
0.093

NH
mean

std.dev.
1.000
0.232

1.000
0.256

0.600
0.082

0.808
0.099

1.000
0.313

1.000
0.273

0.472
0.113

0.782
0.112

SH
mean

std.dev.
1.000
0.209

1.000
0.262

0.571
0.064

0.819
0.096

1.000
0.257

1.000
0.279

0.462
0.078

0.799
0.111

Trop.
mean

std.dev.
1.000
0.220

1.000
0.207

0.559
0.084

0.840
0.072

1.000
0.329

1.000
0.229

0.459
0.107

0.816
0.083

North
Pole

mean
std.dev.

1.000
0.214

1.000
0.243

0.605
0.078

0.800
0.097

1.000
0.289

1.000
0.256

0.481
0.103

0.775
0.109

South
Pole

mean
std.dev.

1.000
0.201

1.000
0.255

0.573
0.061

0.809
0.094

1.000
0.235

1.000
0.267

0.457
0.070

0.789
0.109

Table 5.2: Summary of the statistics (mean and standard deviation) with samples
from di↵erent latitude ranges, for (a) 30 �⇥30 � cells and (b) Y 6

12

cells of the normal-

ized regional forecast errors eft|0/
D

eft|0

E

and regional forecast error reduction by the

analysis eft|0/e
f
t|�6

.
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(a) 30 �⇥30 � cells, against LETKF analysis

(b) Y 6
12 cells, against LETKF analysis

Figure 5.3: As in Figure 5.2, but verified against the ensemble mean LETKF anal-
ysis.
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errors and regional forecast error reduction by the analysis for the NH and SH

extratropics and the tropics (not shown) also did not show any noticeable di↵erence

between 30 �⇥30 � and Y 6

12

cells.

Since the largest di↵erence between the 30 �⇥30 � cells and Y 6

12

cells is at the

polar areas, we can expect to see clearer contrast in the statistics for the two divisions

by focusing on cells near the poles. With this anticipation, we also looked at the

statistics with samples taken only from the cells that encircle the poles. The results

are shown in the last two rows of Table 5.2. For both North and South Poles,

the statistics are overall quite similar between 30 �⇥30 � cells and Y 6

12

cells. One

noticeable feature is that, the standard deviations are larger in 30 �⇥30 � cells than

in Y 6

12

cells, both for normalized regional forecast errors and regional forecast error

reduction by the analysis and for 6-hour and 24-hour lead times, for both GSI and

LETKF analysis. Here again, the scatter plots between normalized regional forecast

errors and regional forecast error reduction by the analysis for the two polar regions

(not shown) did not show any noticeable di↵erence between 30 �⇥30 � and Y 6

12

cells.

The above statistical assessment was motivated by our anticipation that the

distributions of the normalized regional forecast errors and the regional forecast

error reduction by the analysis might have di↵erent characteristics for di↵erent lat-

itude ranges, and for di↵erent methods to divide the globe, from our intuition that

dynamics of meteorological disturbances are di↵erent for di↵erent latitudes. How-

ever, contrary to our expectation, we did not see clear distinction between di↵erent

latitude ranges and di↵erent methods to divide the globe.
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5.4 Correlation with the estimated forecast improvement

As we described in the previous section, we did not see clear di↵erences for

di↵erent latitude ranges in the statistics of normalized regional forecast errors and

regional forecast error reduction by the analysis. Also, the dependence on the ver-

ifying truth seems not to be significant. For these reasons, we extracted cases to

perform EFSO using the same threshold to all latitudes, and concentrated on ver-

ification with the control GSI analysis. The thresholds we applied are 2 standard

deviation above the mean: for each of 6-hour and 24-hour lead times, and for each of

30 �⇥30 � and Y 6

12

divisions, we extracted cases for which both normalized regional

forecast errors and regional forecast error reduction by the analysis are above these

thresholds. From the 34-day period (c.f. Section 3.7), these criteria, which hereafter

we call by the “2�-criteria,” resulted in about ⇠ 200 cases for each lead time and

each globe division (Table 5.3), which is about 1–2 EFSOs per cycle and thus should

be feasible in an operational system.

Number of the extracted cases with the 2� criteria

lead time 30 �⇥30 � Y 6

12

6 hours 219 266
24 hours 189 211

Table 5.3: The number of the cases extracted by the “2�-criteria.”

For each case, we performed regional EFSO and computed the “estimated

regional forecast improvement” by the following procedure:

First, we compute the sum of t-hour regional EFSO impacts for each “stattype”
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(for non-radiance data; see Table 3.2 and Table 3.3) and each sensor (for radiance

data; see Table 3.4). If there are any types whose net impacts are negative (i.e.,

the values are positive), then we add them up and divide the sum by the regional

t-hour forecast error eft|0, and finally multiply it by 100. If there are no types with

net negative impacts, the “estimated regional forecast improvement” is defined to

be 0%.

As we described in Section 5.1, we expect some large percentage of the estimated

forecast improvement to be found among the cases we selected with the 2�-criteria.

In order to discern which of the following is the better “predictor” for fore-

cast improvement, the normalized regional forecast errors eft|0/
D

eft|0

E

or the regional

forecast error reduction by the analysis eft|0/e
f
t|�6

, we plot scatter diagrams between

each of these two quantities and the estimated regional forecast improvement de-

fined above. In interpreting these scatter plots, we are particularly interested in

correlations between large values of the “predictand” (the estimated forecast im-

provements) and the “predictor” (the normalized regional forecast errors eft|0/
D

eft|0

E

or the regional forecast error reduction by the analysis eft|0/e
f
t|�6

).

Figure 5.4 shows the results for 30 �⇥30 � cells. The reassuring fact is that,

there are quite a lot of cases with large estimated forecast improvements: for 6-

hour (panels (a) and (c)) and 24-hour (panels (b) and (d)) lead time, we can find

15 (out of 219) and 13 (out of 189) cases, respectively, whose estimated forecast

improvements are above 25% level. This assures us that, with the 2�-criteria, we

can e↵ectively capture cases with large potential for forecast improvements by the

denial of “flawed” observations.
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Next, let us turn our attention to correlations. In the plot for normalized

regional forecast errors with 6-hour lead time (panel (a)) it is di�cult to discern

any meaningful correlation. For 24-hour lead time (panel (b)) we can even see a

negative correlation. In the plot for regional forecast error reduction by the analysis

with 6-hour lead time, we can see some reasonable correlation, particularly if we

focus on the right half of the plot where the regional forecast error reduction by the

analysis is larger than ⇠ 0.85. We should not be too optimistic, however, because

the sample size is rather small. For 24-hour lead time (panel (d)), again it is di�cult

to see any correlation.

Figure 5.5 shows the results for Y 6

12

cells. In this case, the estimated forecast

improvements are not very large (only 3 cases exceed 25% level, both for 6-hour

and 24-hour lead times). It is also di�cult to find any correlation for any of the

panels, but normalized regional forecast errors with 6-hour lead time (panel (c)) can

be considered the best (or “least bad”) predictor because, for all cases with regional

forecast error reduction by the analysis eft|0/e
f
t|�6

less than 0.82, the estimated im-

provement is less than 15% and for all the cases whose estimated improvement is

larger than 20%, the regional forecast error reduction by the analysis eft|0/e
f
t|�6

is

larger than 0.82.

5.5 Summary

To improve the “regional dropout” detection algorithm of Ota et al. (2013), in

this chapter, we introduced two alternative globe divisions, the 30 �⇥30 � cells and
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30 �⇥30 � cells

6 hours

a)

c)

24 hours

b)

d)

Figure 5.4: Scatter plots of the estimated forecast improvement (%) with (a,b) the
normalized regional forecast errors, and (c,d) the regional forecast error reduction
by the analysis. Panels on the left (a,c) and the right (b,d) are, respectively, for
lead times of 6 hours and 24 hours. The samples are taken from the 30 �⇥30 � cells.
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Y 6
12 cells

6 hours

a)

c)

24 hours

b)

d)

Figure 5.5: As in Figure 5.4, but for Y 6

12

cells.
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the Y 6

12

cells, and examined the statistics of the two “predictors” for the estimated

forecast improvement, the normalized regional forecast errors eft|0/
D

eft|0

E

and the

regional forecast error reduction by the analysis eft|0/e
f
t|�6

computed for the two

globe divisions. Despite our expectation that the statistics should be di↵erent for

the two globe divisions which are quite di↵erent in the uniformity of the areas of

each cell, and also for di↵erent latitude ranges because the underlying dynamics is

di↵erent, our results presented in Section 5.3 suggest that the statistics are not very

di↵erent for these choices.

Based on this observation, we extracted ⇠ 200 cases, for each of the two lead

times (6 and 24 hours) and for each of the 30 �⇥30 � and Y 6

12

divisions, by apply-

ing the “2�-criteria” which select only the cases where normalized regional forecast

errors eft|0/
D

eft|0

E

and the regional forecast error reduction by the analysis eft|0/e
f
t|�6

both exceed its mean by more than 2 standard deviations. We then performed re-

gional EFSO to see if the “2�-criteria” can capture the “possible regional dropouts,”

namely, the cases in which the forecasts are expected to be improved by rejecting

the observation types which are estimated by EFSO to have negatively impacted

the forecast.

The results of regional EFSOs suggest that the “2�-criteria” can reasonably

capture the regional dropouts, especially with 6-hour lead time and the 30 �⇥30 �

cells, with about 7% (= 15/219) of all the selected cases exhibiting estimated fore-

cast improvements exceeding 25%. We also found that the regional forecast error

reduction by the analysis is better correlated with the estimated forecast improve-

ments than the normalized regional forecast errors are, albeit with less confidence
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due to the limited sample size.

With the “2�-criteria” applied to the 30 �⇥30 � cells and a 6-hour lead time, we

were able to narrow down the regions to apply EFSO to only 1–2 regions per cycle,

but yet retain 15 cases whose estimated forecast improvements are above 25%. Thus,

the “2�-criteria” seem to be a reasonable compromise for a need to capture as many

regional forecast dropouts as possible with as few executions of EFSO computation

as possible. High values of the estimated regional forecast improvements that are

found in the extracted cases, however, do not necessarily guarantee that we can

improve the forecast by not using the “flawed” observations detected by the EFSO:

it can be guaranteed only by conducting a data denial experiment in which the

detected “flawed” observations are removed from the analysis, and then assessing

if the forecast really improves. In the next chapter, we conduct such data denial

experiments and demonstrate that the forecasts can be improved this way.
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Chapter 6: Data denial experiments

6.1 Introduction

In Chapter 4, we confirmed that EFSO can be applied not only to a pure

EnKF DA system but also to an EnKF within a hybrid DA system and that 6-hour

EFSO can yield results that are consistent with 24-hour EFSO. In Chapter 5, we

further confirmed that potential “regional forecast dropouts” can be detected after

only 6 hours from analysis. The rather prudent assessment we made in the previous

two chapters has cleared all but the last one of the concerns we raised in Section

2.4. In this chapter, we finally address the last issue to be answered, how best to

choose the observations to be denied?, by performing, for each potential “dropout”

case, eight sets of data denial experiments with di↵erent data denial strategies.

Here, by data denial experiments, we denote experiments in which the analyses are

repeated without using the observations that are identified as “flawed” by EFSO

diagnostics, and then the forecasts are repeated from the (supposedly improved)

new analyses. If the forecasts from the new analyses are more accurate than those

from the original (control) analyses, then that demonstrates that our Proactive QC

can indeed improve the quality and reliability of the forecasts by minimizing the

occurrences of regional “forecast skill dropouts.”
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Due to the limitation of computational resources, however, we cannot perform

data denial experiments to all the 219 cases we extracted in Chapter 5. Thus, we

first select 20 cases for which the data denial experiments are to be performed, with

the criteria we describe in Section 6.2. The number of cases we examine, 20, is de-

termined from the computational resources that we can a↵ord: as we perform eight

di↵erent data denial experiments for each of the 20 cases, the data denial experi-

ments amount to a total of 160 analyses and forecasts, which is roughly equivalent

in terms of computational cost to a one-month cycling experiment (including the

spin-up period).

After presenting the 20 selected cases in Section 6.2, we examine how best

to choose which and how much of the observations to deny. We first inspect the

validity of the assumption tacitly made in the selection algorithm of Ota et al.

(2013), i.e., that the observations with large impacts should appear in localized

regions (c.f., Section 2.4.5), by looking at geographical (horizontal) and vertical

distribution of the EFSO impacts of individual observations. Then, we examine the

statistical distribution of EFSO impacts from individual observations and propose

eight strategies for selection of the observations to be denied. As we describe in

Section 6.3, the eight strategies also include those based on 24-hour EFSO, by

which we intend to see which of the 6-hour and 24-hour EFSO is more e↵ective

in improving the forecasts. In Section 6.4, we finally show the results of the data

denial experiments, in particular, how the forecasts are improved (or degraded) by

the denial of the “flawed” observations. As we show in Section 6.4, the results are

extremely promising, with significant forecast improvements for all but two out of
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20 cases.

6.2 Selection of cases

As we described in the previous section, data denial experiments are expensive

and we cannot a↵ord to perform them for all the 219 potential “regional dropout”

cases we extracted in Chapter 5. For this reason, we picked up 20 notable cases

from them with the following procedure:

1. Select the case with the largest “estimated forecast improvement” (which are

estimated for 6-hour forecasts using 6-hour EFSO; see Section 5.4).

2. From the cases of the date of the selected case, search for regions that overlap

or adjacent to the selected region. If such regions are found, merge them to

form a single region. Put the merged region, along with the date, into the list

of selected cases.

3. Exclude the selected regions from the “candidate” list and repeat Steps 1. and

2. to select the second case.

4. Repeat Steps 1.–3. until you get the 20th case.

The selected 20 cases are summarized in Tables 6.1 and 6.2. If two or more

30 �⇥30 � regions are merged, we performed regional 6-hour EFSO again on the

merged region. The observation types that are identified by 6-hour EFSO as “flawed,”

namely, the observation types whose net EFSO impacts are negative (i.e., positively

valued), are shown in the fifth column. The “estimated improvements” we defined
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in Section 5.4 (the sum of the EFSO values from the observation types shown in the

fifth column divided by the regional 6-hour forecast error measured with the moist

total energy norm, eft|0, then multiplied by 100) are also shown in the sixth column.

If the target region shown in the third and fourth columns is formed by merging

more than one 30 �⇥30 � regions in the Step 2. of the above procedure, then the

largest value among the un-merged 30 �⇥30 � regions is shown. For comparison, we

also performed 24-hour EFSO on the selected regions. The “flawed” observation

types and the “estimated improvement” evaluated using 24-hour EFSO are shown

in the seventh and eighth columns.

Among the 20 cases listed in Tables 6.1 and 6.2, the case #17 deserves special

attention because it is exactly the case for which Ota et al. (2013) found ⇠ 30%

regional improvement by the rejection of MODIS wind observation by using 24-

hour EFSO. As we will show in Section 6.4, we also obtained a significant forecast

improvement for this case by the rejection of “flawed” observations. Consistent

with their results, MODIS wind is identified as “flawed,” both with 6-hour EFSO

and 24-hour EFSO. The 24-hour “estimated improvement” for this case #17 (66%)

is the largest in the 20 cases. Furthermore, (perhaps coincidentally), the region

(60 �N–90 �N, 40 �E–100 �E) is exactly the same as what Ota et al. (2013) identified.

The only di↵erence from Ota et al. (2013) is that, with our method, Aircraft is also

identified as “flawed” observation type, whereas, in Ota et al. (2013), only MODIS

wind was judged “flawed.”

We can observe from Tables 6.1 and 6.2 that all the potential major dropout

cases occurred in the vicinity of the Poles, and that, for most of them, MODIS
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wind observations are identified as “flawed” by 6-hour EFSO. 24-hour EFSO also

identified MODIS wind as “flawed,” albeit less frequent than 6-hour EFSO. This

suggests that MODIS wind observations in the polar areas, either the observation

itself or the way they are assimilated, such as the thinning or the prescribed error

variance, might have had some problem for this particular period. This deduction

is further corroborated by the results of data denial experiments we show in Section

6.4.
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6.3 Selection of observations to be denied

In Sections 1.4.2, 1.7 and 2.4 we repeatedly posed the question: given the

information from 6-hour EFSO, how can we best choose the observations to be de-

nied? To answer this question, we first need to answer how we should “prioritize”

the observation rejection; namely, we need to be able to answer, given any two ob-

servations, rejection of which of the two observations is more beneficial. Second,

we need to answer how much we should reject: as we described in Section 1.4.2,

rejecting too many observations would lead to forecast degradation, but rejecting

too few observations would make little di↵erence. Thus, we have to find a way to

strike the best balance. This section addresses these questions.

Let us first examine the answer of Ota et al. (2013) to the first question. They

answered this question by the data-selection algorithm which we described in detail

in the Step (3) in Section 2.3.1. As we discussed in Section 2.4.5, this very intricate

algorithm implicitly assumes that observations with large negative impact should

be clustered in horizontally and vertically localized regions. It is not clear, however,

if this assumption is justifiable with real data. Here, we investigate the validity of

this assumption by looking at geographical and vertical distributions of the EFSO

impacts of individual observations.

We have already shown a typical example of such distributions in Figure 4.6

when we discussed the consistency between 6-hour and 24-hour EFSO. Now, we

examine the same figure from a di↵erent angle: Are observations with large pos-

itive/negative impacts localized?, or: Are observations with positive impacts well
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separated from those with negative impacts?

From Figure 4.6, we can see that, the observations with positive impacts and

those with negative impacts are not well separated: for any observation with large

negative impact, we can easily find observations with positive impacts in its vicinity,

both vertically and horizontally. Visual inspections for other cases and other obser-

vation types (not shown), albeit rather subjective, all support our claim above. Our

finding is consistent with Sommer and Weissmann (2014) who found, by applying

the EFSO formulation of Kalnay et al. (2012) to a convective-scale regional LETKF

DA system, that positively impacting observations are spatially intertwined closely

with negatively impacting observations and thus are not localized. From the above

inspection, we conclude that, it is more appropriate to choose the observations solely

based on their EFSO values rather than to classify them based on their geographical

and vertical locations.

Next, let us consider the second question: how many should we reject? To

answer this question, we examine the statistical distribution of EFSO values, for each

case and for each of the identified “flawed” observation types. For each observation

type, we sort the observations based on their EFSO values and plot the EFSO values

against the rank. In choosing the observations to be denied, we aim to reduce the

forecast errors as much as possible by rejecting as few observations as possible.

Thus, if we can find a “jump,” i.e., a steep slope or a discontinuity at which the

EFSO value suddenly becomes large, it seems reasonable to put the threshold there.

Three typical examples of such plots are shown in Figure 6.1. The three panels
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Figure 6.1: The 6-hour EFSO values of individual observations plotted against their
ranks. Shown are (top) the observations of stattype 133 (Aircraft) for Case #6,
(middle) the observations of stattype 259 (MODIS wind) for Case #8, and (bottom)
AMSU-A observations from MetOp-A satellite for Case #7. Positive and negative
impacts (or negative and positive values, respectively) are plotted with blue and red
colors. The units are 10�3J kg�1. The three arrows represent, from left to right, the
thresholds for rejection of “allneg,” “one-sigma” and “netzero” criteria.
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show the EFSO values of individual observations of (top) stattype 133 (Aircraft

temperature and humidity observations reported by commercial airplanes through

ACARS (Aircraft Communications Addressing and Reporting System)) for Case

#6, (middle) stattype 259 (MODIS wind inferred from deep layer cloud of water

vapor channel) for Case #8, and (bottom) AMSU-A observations from MetOp-A

satellite for Case #7. Note that, as we mentioned in the caption of Figure 4.6, in

computing EFSO statistics of wind observations, we combined the impacts from the

zonal and meridional wind components (u and v, respectively), which are assimilated

separately in our DA system.

In the top panel, we can locate a clear “jump” near the right edge of the

plot. For this kind of distribution, it is easy to choose a threshold. Unfortunately,

however, in most of the cases we examined, such clear “jumps” could not be found.

In the middle and bottom panels of Figure 6.1, the EFSO values are distributed more

continuously. For these distributions, it seems di�cult to objectively determine the

best threshold above which the observations can be regarded “outliers.”

Since it seems di�cult to objectively determine the threshold, we decided to

try three simple criteria for determining thresholds and see which of them works

best by performing data denial experiments to each of them. For comparison’s sake,

we also tried posing no threshold at all; namely, reject all observations whose types

are judged “flawed” by EFSO. We call this criterion “allobs.”

We summarize the three criteria, along with the “allobs” criterion we described

above, in the following list:
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allobs Remove all observations of the detected type within the target region, re-

gardless of the EFSO values of each observation

allneg Remove all observations of the detected type within the target region that

had negative EFSO impacts (positive values)

one-sigma Remove observations of the detected type within the target region whose

EFSO values were above the mean of the observations of the same type by at

least one standard deviation (�)

netzero For each of the detected observation type, sort the observations of the

detected type within the target region based on the EFSO impacts, and remove

observations from the one with largest negative impacts (positive values) until

the net impact of that type becomes zero (neutral)

The “netzero” criterion is a modest approach which just tries to prevent all

observation types from collectively degrading the forecast. Ota et al. (2013) adopted

this conservative approach and obtained successful results. This modest approach,

however, may limit the full capacity of EFSO diagnostics. The idea behind our

Proactive QC, or any conventional QC methods, is to detect and remove “outliers”

which DA system cannot properly handle. With this idea in mind, we could deter-

mine which observations to reject based on whether each observations are “outliers”

in terms of the statistics of their EFSO impacts, which led us to design the “one-

sigma” criterion. The “allneg” criterion entirely trusts the results of EFSO and

removes all observations that had negative impacts. Because EFSO diagnostics are

subject to sampling errors, we can consider this approach to be a rather dangerous
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strategy because we can possibly reject observations that are actually helpful. For

these reason, when we designed these criteria, we expected “one-sigma” criterion to

be most successful.

In Figure 6.1, the threshold obtained by the “allneg,” “one-sigma” and “net-

zero” criteria are shown by the vertical arrows. The leftmost one which points the

rank at which the EFSO value becomes zero represent the thresold of “allneg”; the

second leftmost one represents that of “one-sigma”; and the rightmost one repre-

sents that of “netzero.” In a highly skewed distribution with clear discontinuity, the

thresholds obtained by “netzero” and “one-sigma” criteria tend to be close to each

other, as we can see from the top panel. Thus, for such cases, the two criteria are

expected to yield similar results.

In the next section, we show results of data denial experiments in which the

observations to be denied are determined by the four criteria introduced above. In

order to compare the e↵ectiveness of Proactive QC based on 6-hour EFSO (which we

believe is feasible in an operational system) and that based on 24-hour EFSO (which

would not be feasible in an operational real-time system but still could be exploited

in a reanalysis), we also performed data denial experiments based on 24-hour EFSO.

The number of observations that are denied by each of the eight criteria are

summarized in Table 6.3. As we can see by comparing the number of denied ob-

servations for “allobs” and “allneg,” the “allneg” criteria denies about a half of

the observations within the target region whose type is judged as “flawed.” This

is consistent with the fact that about a half of all the observations have negative

impacts (c.f. the discussion in Figure 4.5). Note that, they are still a tiny portion of

123



Case 6-hour 24-hour

# allobs allneg
one-
sigma netzero allobs allneg

one-
sigma netzero

1 1488 968 182 326 894 484 106 52
2 2292 1174 242 110 2421 1281 253 133
3 2842 1714 224 344 13776 7103 910 284
4 3827 2126 352 270 1498 778 108 22
5 3328 1714 246 118 480 247 36 36

6 9360 4430 230 22 4169 2014 109 24
7 31491 15690 867 67 10281 5694 785 385
8 3654 1816 320 138 3654 1978 318 130
9 2330 1510 296 510 2988 1509 88 5
10 3278 1720 204 89 4355 2256 181 52

11 27832 13726 375 32 28498 14160 510 75
12 3830 2282 526 462 3830 2102 436 152
13 6416 3936 720 908 6470 3310 388 60
14 481 234 34 26 183 64 1 2
15 966 508 23 11 16187 8489 747 287

16 6956 3544 522 174 6956 3634 556 212
17 5915 3326 616 415 7492 3857 679 355
18 6238 3276 622 366 5014 2643 448 324
19 8504 4678 749 809 39459 19624 660 38
20 1216 598 128 48 1216 668 116 84

Table 6.3: The number of denied observations for each case and each criterion.

the total number of the assimilated observations; our quasi-operational DA system

assimilates about ⇠ 3 ⇥ 106 observations per cycle. As we expected, the number

of the denied observations generally decreases in the following order: allobs, allneg,

one-sigma, netzero. Note that the three cases #1, #3 and #9 are exceptions; in

these cases, more observations are denied in “netzero” than in “one-sigma.”
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6.4 Results

6.4.1 Verification method

In the development of NWP systems, a common practice for measuring suc-

cess of a new scheme is to compare standardized scores of global or hemispheric

scales. Typical examples of such standardized scores include root mean square error

(RMSE) or spatial anomaly correlation coe�cient (ACC) computed for the globe,

NH or SH extratropics, or the tropical belt (e.g., 20 �S–20 �N, 0 �–360 �) of some me-

teorological elements that are familiar to synoptic meteorologists such as 500 hPa

geopotential height (Z500) or Mean Sea-Level Pressure (MSLP). We do not follow

this practice, however, because we are interested to know whether we can minimize

regional forecast failures by Proactive QC; the commonly used global or hemispheric

scale scores would obscure local impact of data denial and hence may not be suitable

for our verification purpose.

For the verification of the e↵ectiveness of data denial, we compute the local

“relative forecast improvement” which we define by the following:

First, we divide the globe into 10 �⇥10 � patches. Then, for each of these 10 �⇥10 �

patches, we compute the forecast error measured with the moist total energy norm

restricted to that 10 �⇥10 � region verified against the control GSI analysis. We

compute this scalar forecast error for each of the two forecasts, one initialized by the

original analysis (before the data denial or Proactive QC), the other initialized by the

new analysis obtained by rejecting the identified “flawed” observations, and denote
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them, respectively, by ef,beforeQC

t|0 and ef,afterQC

t|0 . The relative forecast improvement

for each 10 �⇥10 � patch is defined using these two forecast errors as

relative forecast improvement :=
ef,beforeQC

t|0 � ef,afterQC

t|0

ef,beforeQC

t|0
⇥ 100 [%] (6.1)

Although our main focus is to capture local improvement of forecast, it is also

important to make sure that the rejection of the observations does not make the

forecast error measured at a larger scale worse. Thus, we also computed the “average

improvement” which is also defined by Eq. (6.1) but with the scalar forecast errors

ef,beforeQC

t|0 and ef,afterQC

t|0 computed for the NH extratropics (40 �N–90 �N, 0 �–360 �; if

the target region is in the NH) or the SH extratropics (40 �S–90 �S, 0 �–360 �; if the

target region is in the SH).

6.4.2 Case study (1): Examination of Case #17

We now proceed to show the results of data denial experiments. First, we

show the results for an individual case, taking Case #17 as an example. This is the

case for which Ota et al. (2013) obtained remarkable forecast improvement by the

denial of MODIS wind observations. As they did, we also obtained great forecast

improvement by the denial of “flawed” observations. This case is also one of the

typical examples of our results and the features we will point out in this subsection

are also valid for many of the other cases.

The relative forecast improvement for Case #17 obtained by the data denial

experiments with the denial criteria based on 6-hour EFSO is shown in Figure 6.2.
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In these contour plots, improvement and degradation of forecast are shown, respec-

tively, with blue and red colors. As we can see from the “allobs” column, if we

deny all observations of the types judged “flawed” by 6-hour EFSO (stattypes 257–

259 (MODIS wind) in this case), the forecast is improved in some regions but is

also degraded in other regions, although the degraded regions become smaller as

the forecast lead time increases. Thus, rejecting all observations of “flawed” type

regardless of the EFSO values of the individual observations is not a good strategy.

If we remove only the observations that had negative impacts (“allneg”), we can

e↵ectively eliminate most of the degraded regions. Remarkably, with “allneg” crite-

rion, the forecast improvement locally reaches as much as 48% for 24-hour forecast.

The fact that “allneg” yields better forecast improvement than “allobs,” and that

it dramatically reduces the forecast degradation, proves the e↵ectiveness of EFSO

diagnostics. However, we still see some regions of degradation, for example north of

Siberia close the North Pole at 12-hour lead time. By further restricting the denied

observations by only denying observations whose EFSO values exceed the mean by

more than one standard deviation (“one-sigma”), we can completely eliminate fore-

cast degradation; however, this is achieved at the expense of diminished forecast

improvement. If we more selectively restrict the denied observations (“netzero”),

the forecast improvement becomes even smaller.

The results for data denial experiments based on 24-hour EFSO are shown in

Figure 6.3. Basically the results are similar to those based on 6-hour EFSO. The

biggest di↵erence is that, for some reason, with 24-hour EFSO, the “one-sigma”

criterion does not result in improvement or degradation. Interestingly, data denial
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based on 6-hour EFSO results in slightly better forecast improvement than that

based on 24-hour EFSO, although the di↵erence is very small. In the next subsec-

tion, we show a summary of how the forecast is locally improved or degraded in all

the cases we examined. We demonstrate there that our success with Case #17 is

not just sheer luck (that is, there are other cases that had comparably significant

improvements).

6.4.3 Summary of the results

We summarize the results of data denial experiments in Tables 6.4 and 6.5 by

showing, for each case and criterion for data denial, the largest positive value of the

local relative improvement of 24-hour forecast (“max.imp.”), the largest negative

value of the local relative improvement of 24-hour forecast (or the largest relative

forecast degradation ;“max.deg.”), and the average 24-hour forecast improvement

evaluated for the extratropics of the hemisphere in which the target region is located.

For “allneg,” “one-sigma” and “netzero” criteria based on 6-hour EFSO, the

average improvement (“avg.imp.”) is positive in almost all cases. The only excep-

tions are “allneg” of Case #5 and #9, where we had degradation, respectively, of

0.2% and 0.4%. Because Proactive QC is designed to minimize the occurrences of

local forecast failures, its impact is spatially localized and thus, if averaged over a

large spatial extent such as the hemisphere, the impact becomes small. This is why

the average improvement is at most ⇠ 2%. Note that, although the improvement

of the order of ⇠ 0.2% to ⇠ 2% might seem to be quite modest, in the development
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allobs& allneg& one*sigma& netzero&

Rela1ve&Forecast&Improvement&
by&denial&of&obs.&based&on&6*hour&EFSO&

Case&#17&

FT=06&

FT=12&

FT=24&

Figure 6.2: Relative forecast improvement for each of the four data rejection criteria
based on 6-hour EFSO, for Case #17. Each column represents, from left to right,
the “allobs,” “allneg,” “one-sigma” and “netzero” criteria. The first row represents
the relative improvement of 6-hour forecast; the second and third rows represent,
respectively, the improvement of 12 and 24 hour forecasts. Red colors represent
forecast degradation; blue colors represent forecast improvement. The thick black
cone represents the target region.
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allobs& allneg& one*sigma& netzero&

Rela1ve&Forecast&Improvement&
by&denial&of&obs.&based&on&24*hour&EFSO&

Case&#17&

FT=06&

FT=12&

FT=24&

Figure 6.3: As in Figure 6.2, but with observation denial based on 24-hour EFSO.

130



of an operational NWP system, even such seemingly modest improvement is very

di�cult to obtain.

The features that we saw with the case study of Case #17 is also valid for

most other cases, namely: (1) “allobs” exhibit both improvement and degradation,

(2) “allneg” alleviates the the degradation seen in “allobs” and tend to show larger

improvement, and (3) “one-sigma” and “netzero” further reduce the degradation,

but they also tend to reduce the improvement. Also, except in Case #11 and #15,

data denial based on 6-hour EFSO yielded better forecast improvement than that

based on 24-hour EFSO.

Encouragingly, the large forecast improvement that we saw for Case #17 is

not limited only to this particular case. For example, if we look at “allneg” criterion

based on 6-hour EFSO, the cases #8, #12, #13, #16, #17, #18 and #19 all exhibit

local maximum forecast improvement that exceed 30%. For these cases, “one-sigma”

and “netzero” criteria also result in large maximum local forecast improvement (⇠

20%). For all of these particularly successful cases, 6-hour EFSO identified MODIS

wind as the flawed observation type. This suggests that either the observations

from MODIS wind had anomalous errors or the way the DA system handles them

is faulty.
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Case 6-hour 24-hour

# allobs allneg
one-
sigma netzero allobs allneg

one-
sigma netzero

1

max.imp.
max.deg.
avg.imp.

12%
-9%
0.0%

11%
-1%
0.2%

4%
-1%
0.1%

5%
-1%
0.1%

12%
-9%
0.0%

20%
-1%
0.3%

0%
-1%

-0.0%

6%
0%

0.1%

2

max.imp.
max.deg.
avg.imp.

14%
-5%

-0.1%

11%
-4%
0.3%

8%
-2%
0.2%

4%
0%

0.2%

2%
-45%
-2%

10%
-5%
0.1%

1%
0.5%
0%

2%
0%

0.1%

3

max.imp.
max.deg.
avg.imp.

13%
-15%
0.0%

7%
-5%
0.2%

2%
-1%
0.0%

4%
-2%
0.0%

7%
-8%

-0.1%

12%
-7%
0.1%

0%
0%

0.0%

2%
-3%

-0.1%

4

max.imp.
max.deg.
avg.imp.

25%
-5%
0.6%

27%
-5%
0.7%

15%
-2%
0.3%

13%
-2%
0.2%

3%
-6%

-0.3%

4%
-3%
0.1%

1%
-5%

-0.3%

0%
0%

-0.0%

5

max.imp.
max.deg.
avg.imp.

15%
-32%
-0.2%

19%
-81%
-0.2%

23%
-30%
0.2%

22%
-13%
0.3%

12%
-78%
-1.3%

10%
-21%
-0.4%

1%
-1%

-0.0%

1%
-1%

-0.0%

6

max.imp.
max.deg.
avg.imp.

9%
-9%
0.0%

15%
-6%
0.4%

12%
-3%
0.3%

3%
-1%
0.1%

24%
-38%
0.0%

9%
-10%
0.1%

2%
-2%
0.0%

3%
-2%
0.0%

7

max.imp.
max.deg.
avg.imp.

17%
-9%

-0.0%

13%
-5%
0.4%

2%
-3%
0.0%

0%
0%

0.0%

19%
-36%
0.3%

26%
-28%
0.6%

0%
0%

0.0%

4%
-1%
0.2%

8

max.imp.
max.deg.
avg.imp.

41%
-18%
0.9%

41%
-14%
1.1%

21%
-5%
0.8%

10%
-2%
0.4%

41%
-18%
0.9%

26%
-10%
1.2%

0%
0%

-0.0%

4%
-1%
0.2%

9

max.imp.
max.deg.
avg.imp.

7%
-21%
-0.6%

8%
-16%
-0.4%

8%
-3%
0.0%

8%
-4%
0.1%

3%
-2%

-0.1%

5%
-1%
0.1%

3%
-1%
0.0%

3%
-1%
0.0%

10

max.imp.
max.deg.
avg.imp.

25%
-6%
1.1%

19%
-6%
0.7%

3%
-2%
0.2%

6%
0%

0.2%

21%
-5%
0.8%

17%
-12%
0.8%

4%
0%
0%

2%
0%

0.2%

Table 6.4: Relative improvement or degradation of 24-hour forecast by the denial of
observations. The first of the three rows of each case (labeled “max.imp.”) shows
the largest positive value of the local “relative forecast improvement.” The second
row (labeled “max.deg.”) shows the largest negative value of the local “relative
forecast improvement” (i.e., the largest local “relative forecast degradation”). The
last row (labeled “avg.imp.”) shows the average forecast improvement evaluated for
the extratropics of the hemisphere in which the target region is located. Continued
on Table 6.5.
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Case 6-hour 24-hour

# allobs allneg
one-
sigma netzero allobs allneg

one-
sigma netzero

11

max.imp.
max.deg.
avg.imp.

11%
-6%
0.5%

9%
-5%
0.3%

2%
-2%
0.1%

3%
0%

0.1%

22%
-5%
0.9%

15%
-6%
0.9%

1%
0%

0.0%

2%
0%

0.2%

12

max.imp.
max.deg.
avg.imp.

37%
-14%
0.7%

39%
-12%
0.7%

19%
-2%
0.5%

19%
-2%
0.5%

37%
-14%
0.7%

38%
-19%
0.4%

1%
0%

0.0%

12%
-6%
0.2%

13

max.imp.
max.deg.
avg.imp.

24%
-9%
1.4%

30%
-9%
0.8%

18%
-10%
0.3%

19%
-12%
0.4%

24%
-9%
1.3%

26%
-10%
1.1%

0%
0%

0.0%

8%
-6%
0.1%

14

max.imp.
max.deg.
avg.imp.

5%
0%

0.3%

3%
0%

0.1%

1%
0%

0.0%

1%
0%

0.1%

5%
0%

0.3%

3%
-1%
0.1%

0%
0%

0.0%

0%
0%

0.0%

15

max.imp.
max.deg.
avg.imp.

3%
-2%
0.1%

1%
-1%
0.1%

1%
-1%

-0.0%

1%
-1%
0.0%

13%
-16%
-0.1%

35%
-18%
0.8%

1%
-1%
0.0%

7%
-10%
0.2%

16

max.imp.
max.deg.
avg.imp.

27%
-15%
1.9%

30%
-21%
1.8%

23%
-4%
1.3%

16%
-2%
0.7%

30%
-20%
2.1%

33%
-43%
1.2%

1%
-1%
0.0%

7%
-1%
0.3%

17

max.imp.
max.deg.
avg.imp.

39%
-15%
0.8%

48%
-4%
2.1%

26%
-2%
1.2%

20%
-2%
0.8%

45%
-15%
0.7%

51%
-8%
1.6%

0%
-1%

-0.0%

15%
-2%
0.5%

18

max.imp.
max.deg.
avg.imp.

46%
-9%
2.4%

46%
-8%
2.2%

25%
-3%
1.0%

21%
-2%
0.8%

36%
-14%
1.6%

47%
-13%
2.1%

0%
-1%

-0.0%

20%
-4%
0.6%

19

max.imp.
max.deg.
avg.imp.

44%
-24%
2.2%

37%
-10%
2.2%

17%
-1%
1.0%

14%
-1%
1.0%

6%
-17%
-0.2%

8%
-7%
0.2%

0%
0%

0.0%

2%
-1%
0.0%

20

max.imp.
max.deg.
avg.imp.

12%
-3%
0.2%

10%
-1%
0.3%

5%
-1%
0.2%

3%
-1%
0.0%

12%
-3%
0.2%

9%
-2%
0.2%

1%
-2%

-0.0%

9%
-1%
0.2%

Table 6.5: Continued from Table 6.4.
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6.4.4 Case study (2): the unsuccessful case

We have seen, in the previous section, that in 18 out of 20 cases, we can in fact

improve the forecast by denying observations that are identified by 6-hour EFSO as

“flawed.” This, we believe, is a remarkable achievement. However, in the two cases,

#5 and #9, the denial of observations based on 6-hour or 24-hour EFSO failed to

improve the forecast. It should be instructive to look into what happened in these

cases. In this subsection, we examine the results for Case #5. We note that the

results for Case #9 (not shown) exhibited similar features.

The patterns of relative 6-hour and 24-hour forecast improvement are shown,

respectively, in Figure 6.4 and Figure 6.5. Let us first examine the results for the

denial experiments based on 6-hour EFSO (Figure 6.4). By looking at the first row

(FT=06), we can observe that, with “allneg,” “one-sigma” and “netzero” criteria,

the 6-hour forecast is actually improved within the target area (note that “allobs”

does not use the information from EFSO of individual observations so we do not

expect to gain any improvement with this method). Thus, the 6-hour EFSO is

actually very accurate in the sense that the linear estimation from EFSO and the

actual nonlinear forecast impact are very consistent. However, in “allneg,” there

is a forecast degradation of 8.7% at the 10 �⇥10 � patch of (10 �E–20 �E, 70 �N–

80 �N), which is just at the border of the boundary of the target area, although

it is not clearly visible in this plot. As the forecast lead time gets longer, the

improvement is attenuated (FT=12) and at FT=24, forecast degradation appears

for “allneg.” Note that, although 24-hour forecast is degraded with “allneg,” the
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degradation can be avoided with the more conservative “one-sigma” and “netzero”

criteria. We speculate that the forecast degradation observed in “allneg” is due to

the EFSO’s sampling errors; because EFSO is estimated from a limited samples

from the ensemble, it is inevitably subject to sampling errors and can mistakenly

assign (perhaps small) negative impacts (positive value) to observations that are

actually beneficial.

From Figure 6.5, we can observe that 24-hour EFSO is again very accurate

in the sense that 24-hour forecast inside the target area is actually improved by

the negatively contributing observations (see the panel of “allneg” and “FT=24”).

What we did not expect is that, the forecast outside the target area is degraded at

the same time. This means that the observations that are estimated by EFSO to

have degraded the forecast within the target area was helping the forecast outside

of the target area. Again, this forecast degradation can be avoided by adopting the

more conservative “one-sigma” and “netzero” criteria.

The lesson we learn from this inspection is that, when we apply regional EFSO,

we should keep it in mind that, it might assign negative impacts to observations that

are beneficial for the forecast outside the target area.
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allobs& allneg& one*sigma& netzero&

Rela1ve&Forecast&Improvement&
by&denial&of&obs.&based&on&6*hour&EFSO&

Case&#5&(the&most&unsuccessful)&

FT=06&

FT=12&

FT=24&

Figure 6.4: As in Figure 6.2, but for Case #5.
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allobs& allneg& one*sigma& netzero&

Rela1ve&Forecast&Improvement&
by&denial&of&obs.&based&on&24*hour&EFSO&

Case&#5&(the&most&unsuccessful)&

FT=06&

FT=12&

FT=24&

Figure 6.5: As in Figure 6.3, but for Case #5.
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6.5 Summary

The last and most important two questions we posed in Section 1.7, namely,

3. What is the best threshold for rejection of “flawed” observations? and

4. Does rejection of detected “flawed” observation really improve analysis and

forecast?

are finally answered in this chapter. To answer these two questions, we performed

data denial experiments to selected 20 cases with four di↵erent criteria for choosing

the threshold for rejection of “flawed” observations. In the “allobs” criterion, all

observations of the types that are identified by EFSO as “flawed” are rejected,

regardless of the EFSO impacts of individual observations; in the “allneg” criterion,

only the observations that had negative EFSO impacts are rejected; in the “one-

sigma” criterion, the observations whose EFSO values exceed the mean by at least

one standard deviation are rejected; in the “netzero” criterion, observations are

rejected, from the one with largest negative EFSO impact to that with the smallest,

until the net impact from the selected observation type becomes neutral. These four

criteria form a spectrum of “strictness,” with “allobs” the loosest and “netzero” the

most selective. In order to compare the e↵ectiveness of Proactive QC based on 6-

hour EFSO (as we propose) and that based on 24-hour EFSO, we also performed

data denial experiments with the criteria based on 24-hour EFSO as well.

The results we obtained are extremely encouraging; with the “allneg” criterion,

we obtained hemisphere-scale forecast improvement in 18 out of 20 cases. Further-
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more, in seven of the 18 successful cases, the local maximum forecast improvement

reached over 30%. The forecast degradation found in the two unsuccessful cases can

be made neutral if we adopt more conservative “one-sigma” or “netzero” criteria.

Unfortunately, however, we found that the reduction of degradation also comes with

reduction of improvement. Interestingly and encouragingly, we found that the data

denial based on 6-hour EFSO is equally (or slightly more) e↵ective in reducing 24-

hour forecast errors compared to that based on 24-hour EFSO. This is interesting

because it suggests that 6-hour EFSO, which estimates the observational impacts

on 6-hour forecast, can provide more useful information on how to improve 24-hour

forecast than 24-hour EFSO, which estimates the observational impacts on the same

24-hour forecast.

With these evidences, we believe that we can give a�rmative answer to the

question 4: rejection of “flawed” observations indeed improves analysis and fore-

cast. In order to answer the question 3., we might need additional investigation.

We confirmed that the forecast degradation can be suppressed by the “one-sigma”

criterion but it sacrifices some of the achieved forecast improvement. Thus, we can

expect that some looser threshold could still suppress the degradation and lower the

reduction of forecast improvement. We point out, however, that this is a matter

of compromise and the decision should ultimately be made in a subjective manner.

Our personal preference is a rather conservative threshold which does not make

the forecast worse anywhere; this is because, with Proactive QC, we are trying to

enhance the reliability of NWP.
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We believe that the results we obtained in this chapter are good enough for

it to be considered for operational implementation. There still remain some tech-

nical issues to be addressed before the actual implementation to a high-resolution

operational system. We will discuss more on such issues in Chapter 9.

As we mentioned in the previous section, the seven most successful cases all

obtained significant forecast improvement by rejecting subsets of MODIS wind ob-

servations. This means that if our Proactive QC is implemented to the operational

system, we can identify observation instruments that actually made forecast worse

on a real-time basis. We can then use such information to improve the conventional

o↵-line QC, for example, by improving the blacklist (c.f. Section 2.1). Or, we could

even encourage developers of instrument to look into any possible faults of their al-

gorithms by providing appropriate metadata to them. This motivates us to consider

an additional application of EFSO and Proactive QC. We will discuss this subject

in Chapter 9.

140



Chapter 7: Ensemble Forecast Sensitivity to observation error co-

variance (EFSR) I: Formulation and experiments with

Lorenz ’96 system

7.1 Introduction

As we outlined in Section 1.5, the observation error covariance R is an exter-

nal parameter for DA systems that are typically prescribed somewhat empirically

and subjectively. Thus, In order to optimized the performance of a DA system,

the observation error covariance matrix R needs to be tuned. Daescu (2008) and

Daescu and Langland (2013) showed that it is possible, with the adjoint technique

analogous to the FSO of LB04, to derive an expression that estimates how a small

change in each element of R matrix will change the forecast errors eft|0. In this

chapter, we show that an ensemble equivalent to the adjoint diagnostics of Daescu

and Langland (2013) can be easily formulated by using the approximation proposed

by Kalnay et al. (2012) in deriving the EFSO, which we described in Section 2.2.2.

For succinctness, hereafter, we call this diagnostics FSR, short for Forecast Sensi-

tivity to observation error covariance matrix R; we refer to the adjoint-based and

ensemble-based FSR, respectively, by AFSR and EFSR.
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We first derive the adjoint formulation of FSR following Daescu and Langland

(2013), and present our ensemble formulation. We then test the e↵ectiveness of the

AFSR and EFSR diagnostics using a simple, toy system called Lorenz ’96 model.

Encouraged by the successful results with this toy system, we next implement and

test the EFSR diagnostics using the lower-resolution version of the NCEP’s oper-

ational global NWP system which we used for our Proactive QC study. Finally,

we perform a simple R-tuning experiment based on the results of EFSR, and as-

sess if the EFSR-based tuning improves the impacts of observations to the forecast

by comparing EFSOs before and after the tuning. The setup and results of the

quasi-operational experiments are described in Chapter 8.

7.2 Adjoint formulation following Daescu and Langland (2013)

In this section we derive a formulation of the forecast sensitivity to R matrix

following Daescu and Langland (2013) using the notation we introduced in Chapter

2.

Consider a DA problem for time 0. Our goal is to obtain an approximate

expression for how the t-hour forecast error eft|0 defined by Eq. (2.8) changes with a

small variation in the observation error covariance matrix from R to R+R0.

Since the Kalman gain matrix K can be written as

K = Pb
0

HT
�

HPb
0

HT +R
��1

, (7.1)
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the analysis equation Eq. (2.1) can be split into two equations

8

>

>

<

>

>

:

xa
0

� xb
0

= Pb
0

HTw
0

�

HPb
0

HT +R
�

w
0

= �yob
0

(7.2)

where w
0

is an intermediate analysis increment in the observation space. In some

literature, this formulation is referred to as Physical Space Analysis Scheme (PSAS;

Da Silva et al., 1995; Kalnay, 2003, Section 5.5.2). Now, let us introduce a variation

in R0 to the observation error covariance R, and denote variations in other variables

by xa
0

0 and w
0

0. The analysis equations Eq. (7.2) then becomes

8

>

>

<

>

>

:

xa
0

+ xa
0

0 � xb
0

= Pb
0

HT (w
0

+w
0

0)

�

HPb
0

HT +R+R0� (w
0

+w
0

0) = �yob
0

(7.3)

By neglecting a second-order term R0w0
0

and by subtracting Eq. (7.2), we have,

8

>

>

<

>

>

:

xa
0

0 = Pb
0

HTw
0

0

�

HPb
0

HT +R
�

w
0

0 +R0w
0

⇡ 0

(7.4)

Thus, the change in the analysis xa
0

0 caused by R0 can be expressed as

xa
0

0 ⇡ Pb
0

HT
n

�
�

HPb
0

HT +R
��1

o

R0w
0

(7.5)

= �KR0w
0

* (7.1) (7.6)

Now we show that the intermediate analysis increment w
0

has a simple expression.
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By applying the Jacobian H of the observation operator H to the first of PSAS

equations Eq. (7.2), we have

H
�

xa
0

� xb
0

�

= HPb
0

HTw
0

=
�

HPb
0

HT +R
�

w
0

�Rw
0

(7.7)

= �yob
0

�Rw
0

* the second of PSAS equations (7.2) (7.8)

) w
0

= R�1

�

�yob
0

�H
�

xa
0

� xb
0

��

(7.9)

⇡ R�1

�

�yob
0

�
�

H(xa
0

)�H(xb
0

)
� 

= R�1�yoa
0

(7.10)

where �yoa
0

= yo
0

� H(xa
0

) is the misfit of observation with respect to the analysis.

Thus, we can approximate w
0

with the observation-minus-analysis (O-A) multiplied

from left by the inverse of the observation error covariance R�1.

Finally, we derive an expression for how the forecast error eft|0 defined by

Eq. (2.8) changes by the variation R0 in R. The first-order approximation to the

variation in eft|0 is

eft|0
0
= (xa

0

0)T
@eft|0
@xa

= (�KR0w
0

)T
@eft|0
@xa

* (7.6) (7.11)

= � (R0w
0

)T KT
@eft|0
@xa

= � (R0w
0

)T
@eft|0
@yo

0

* (2.1) (7.12)

By taking derivative with respect to (i, j)-element of R0, we have

@eft|0
@Ri,j

= �(w
0

)j

 

@eft|0
@yo

0

!

i

(7.13)

One way to compute the forecast error sensitivity vector with respect to observations
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@ef
t|0

@yo

0
is to “reuse” it from the adjoint FSO of LB04 (Eq. (2.35)):

@eft|0
@yo

0

=
@
⇣

eft|�6

+�e2
⌘

@yo
0

(7.14)

=
@eft|�6

@yo
0

+
@ (�e2)

@yo
0

= 0 +
@ (�e2)

@yo
0

(7.15)

= KTMT
t|0C

⇣

eft|0 + eft|�6

⌘

(7.16)

Hereafter, we refer to this formulation as “AFSR-REUSE” (Adjoint FSR with the

sensitivity gradient vector REUSEd from FSO computation). This AFSR-REUSE

formulation has a particular advantage of being computationally economical, pro-

vided that the FSO is already computed, because we do not have to perform the

adjoint computation again. One might argue, however, that this approximation may

not be accurate because the formulation of LB04 for the sensitivity gradient
@(�e2)
@yo

0

is evaluated for two trajectories with di↵erent initial conditions at time 0, one being

the analysis xa
0

, and the other being the background xb
0

, in order to yield a second-

order estimate of the observational impacts �e2 (e.g. Todling, 2013). Daescu and

Langland (2013) proposes instead to compute the gradient
@ef

t|0
@yo

0
by evaluating it at

the analysis field xa
0

alone:

@eft|0
@yo

0

= KT
@eft|0
@xa

0

* (2.1) (7.17)

= KTMT
t|0

@eft|0

@xf
t|0

* xf
t|0 = Mt|0 (x

a
0

) (7.18)

= KTMT
t|0 · 2Ceft|0 * (2.8) (7.19)
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Hereafter, we refer to this formulation as “AFSR-NEW” (Adjoint FSR with the

sensitivity gradient vector NEWly computed). This formulation requires a new

adjoint computation.

7.2.1 Sensitivity to tuning factors

In tuning the observation covariance matrix R, it is customary to classify

observations into some groups for which we can assume that there is no inter-group

correlations in the observation errors, and scale the error covariances within each

group by a single common factor. Daescu and Langland (2013) also derived a

formulation for forecast sensitivity to these scaling factors. Let the observations yo
0

be partitioned into I subgroups
�

yo
0,i, i = 1, · · · , I

 

where y0

0,i 2 Rq
i ,

P

i qi = p,

and scale each of them by the scaling factors soi , i = 1, · · · , I:

Ri ! soiRi (7.20)

where {Ri 2 Rq
i

⇥q
i , i = 1, · · · , I} are the diagonal sub-blocks of R (note that we

assume no correlation of errors between any two observations of di↵erent groups).

The scaling factors soi are positive non-dimensional scalars. Then, from Eq. (7.12)

and Eq. (7.10), the forecast sensitivity to these scaling factors are

@eft|0
@soi

= �
�

Riw0,i

�T @eft|0
@yo

0,i

(7.21)

= �
⇣

�yoa
0 ,i

⌘T @eft|0
@yo

0,i

(7.22)
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where w
0,i is a sub-vector of w

0

corresponding to yo
0,i. Eq. (7.22) means that, for

any group of observations, the sensitivity of forecast errors to the scaling factor

of observation error covariance of that group can be computed as the observation-

minus-analysis (O-A) residual multiplied by forecast sensitivity gradient to the cor-

responding observation, summed up over all observations in that group (with the

sign flipped), which is very simple to compute.

7.3 Ensemble formulation based on EFSO

The ensemble formulation immediately follows from the adjoint formulation

and the Kalman gain approximation in Eq. (2.4). From equations Eq. (7.10) and

Eq. (7.13), we have,

@eft|0
@Ri,j

= �
�

R�1�ȳoa
0

�

j

 

@eft|0
@yo

0

!

i

(7.23)

The sensitivity vector
@ef

t|0
@yo

0
can be expressed either by the “AFSR-REUSE” formu-

lation Eq. (7.16) as

@eft|0
@yo

0

=
�

Mt|0K
�T

C
⇣

eft|0 + eft|�6

⌘

(7.24)

⇡ 1

K � 1
R�1Ya

0

XfT
t|0C

⇣

eft|0 + eft|�6

⌘

* (2.4) or (2.20) (7.25)
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or by the“AFSR-NEW” formulation Eq. (7.19) as

@eft|0
@yo

0

=
�

Mt|0K
�T · 2Ceft|0 (7.26)

⇡ 1

K � 1
R�1Ya

0

XfT
t|0 · 2Ceft|0 * (2.4)) (7.27)

We refer to the former formulation Eq. (7.25) by “EFSR-REUSE” and the latter

Eq. (7.25) by “EFSR-NEW.” Note that in deriving the above two formulations, we

have used the approximations that we used in deriving EFSO (Eq. (2.18)). Here

again, covariance localization is necessary if the ensemble size K is not su�ciently

large, giving localized formulations

@eft|0
@yo

0

⇡ 1

K � 1
R�1

h

⇢ �
⇣

Ya
0

XfT
t|0

⌘i

C
⇣

eft|0 + eft|�6

⌘

(7.28)

or

@eft|0
@yo

0

⇡ 1

K � 1
R�1

h

⇢ �
⇣

Ya
0

XfT
t|0

⌘i

· 2Ceft|0 (7.29)

The forecast sensitivity to tuning factors Eq. (7.22) is also valid for these

ensemble-based formulations, with the sensitivity vector replaced by either of the

two expressions given above.
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7.3.1 Sensitivity to the covariance inflation factor

It is interesting to note that we can estimate, from our EFSR formulation, the

forecast sensitivity to the multiplicative covariance inflation factor. Consider scaling

the background and the observation error covariances Pb and R with a same scalar

scaling factor s0:

Pb ! s0Pb, R! s0R (7.30)

From the expression for Kalman gain matrix Eq. (7.1) we know that Kalman gainK

does not change by this scaling. Thus, analysis xa
0

is kept unchanged and therefore,

the forecast error eft|0 also does not change by this scaling.1

Now, consider scaling Pb by sb and the sub-matrices of R, {Ri, i = 1, · · · , I}

by {soi , i = 1, · · · , I}. The variation of the forecast error eft|0
0
caused by the varia-

tions in scaling factors, sb
0
and so

1

0, · · · , soI 0, can be written as

eft|0
0

=
@eft|0
@sb

sb
0
+

I
X

i=1

@eft|0
@soi

soi
0 (7.31)

As we saw in the previous paragraph, if the variations sb
0
, so

1

0, · · · , soI 0 are all the

same (let us denote it by s0), then the resulting change in the forecast error must

1Note that, although scaling P

b by a factor s and scaling R by a factor 1/s are equivalent
for a single analysis, they may not be equivalent for a cycled system because scaling of Pb can
accumulate over cycles, while scaling of R does not.
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be zero. Thus,

0 =
@eft|0
@sb

s0 +
I
X

i=1

@eft|0
@soi

s0 (7.32)

)
@eft|0
@sb

= �
I
X

i=1

@eft|0
@soi

(7.33)

Noting that the scaling factor for the background covariance sb can be interpreted

as a globally constant multiplicative inflation factor, we see that the equation Eq.

(7.33) tells us that the forecast sensitivity to inflation factor can be estimated as

the sum of forecast sensitivity to observation error covariance tuning factors (with

the sign flipped). We comment that Daescu and Langland (2013) gives a proof of

this equation by directly deriving the expression for
@ef

t|0
@sb in their Appendix.

7.4 Toy-model experiment with Lorenz ’96 system

This section presents the experimental setup and the results of our experi-

ment using the Lorenz ’96 model. A brief discussion about the interpretation and

implications of the results is presented in the next section. The code used in this

experimentation was developed upon the experimental system which Mr. Yoichiro

Ota of the JMA developed for an internal training purpose at the JMA led by Prof.

Takemasa Miyoshi of the University of Maryland and RIKEN/AICS (then at JMA

Hotta and Ota, 2011).
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7.4.1 Lorenz ’96 system

In our toy-system experiments, we use the Lorenz ’96 model as the forecast

model. It is a chaotic low-dimensional ODE system first introduced by Lorenz (1996)

and Lorenz and Emanuel (1998) to address a fundamental question in predictability

and DA study: In a system with insu�cient observations, how can we place a

supplementary observation that optimally improves the predictability of the system?

In the literature of predictability and DA study, this model has been widely adopted

as a benchmark system for new ideas.

The model is an N -dimensional ODE system defined by

dxj

dt
= xj (xj+1

� xj�2

)� xj + F, j = 1, · · · , N (7.34)

with a cyclic boundary condition x�1

= xN�1

, x
0

= xN and xN+1

= x
1

. The first

term mimics the advection (�u ·ru) of fluid mechanical equations; the second and

third terms represent, respectively, dissipation (damping or di↵usion) and external

forcing, hence making the model a nonlinear, forced-dissipative system, a typical

genre of chaotic systems. As in the original study by Lorenz and Emanuel (1998),

for our study, we adopt N = 40 and F = 8.0. Note that, unlike Kalnay et al. (2012)

and Liu and Kalnay (2008), who used di↵erent values of F for the nature run and

DA cycles to account, to some extent, for model errors, we use the same parameter

F = 8.0 for both the nature run and the forecast model (so-called “identical twin”

or “perfect model” setting). The forecast model Eq. (7.34) is integrated by the
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standard fourth-order Runge-Kutta scheme with time step �t = 0.01.

For DA, we adopt the LETKF (Hunt et al., 2007, see Section 3.4) with member

size K = 40. Since the member size is equal to the dimension of the state space,

we did not apply covariance localization. To avoid filter divergence, however, we

applied multiplicative covariance inflation (Anderson, 2001) with a constant inflation

parameter 1.152 at each assimilation cycle. This parameter is not tuned to an

optimal value but, as we show in the next section, the system worked well. In fact,

we could use Eq. (7.33) to tune it. The cycling interval (the assimilation window)

is 0.05 in non-dimensional time. From an analogy with the then-operational NWP

models in terms of e-folding time of perturbations, Lorenz and Emanuel (1998)

proposes to dimensionalize the time by interpreting 0.2 in non-dimensional time as

24 hours. Hence, our cycling interval in dimensionalized time is 6 hours.

In our experiments, we assimilate observations available at every grid point

(i.e., H is the identity function). For the j-th grid point, the observations are

generated for every analysis time by adding independent Gaussian pseudo-random

numbers with the variance �o,true
j

2

. The pseudo-random numbers are generated

with the Mersenne Twister algorithm (Matsumoto and Nishimura, 1998) using the

Fortran 95 code developed and publicly distributed by Dr. Atsushi Ito of Nagoya

University, Japan. The true observation error covariance can thus be assumed to be

Rtrue = diag
⇣

�o,true
1

2

, �o,true
2

2

, · · · , �o,true
40

2

⌘

(7.35)

Throughout the experiments, the observation error covariance prescribed in the DA
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system R is also assumed to be diagonal:

R = diag
�

�o
1

2, �o
2

2, · · · , �o
40

2

�

(7.36)

7.4.2 Experimental design

First, the nature (or the “truth”) is produced by running the forecast model

Eq. (7.34) from an initial condition randomly generated from the uniform distribu-

tion in [0, 1]. The nature run is integrated from time t = 0 to time t = 730 (which

corresponds to 10 years in dimensionalized time), generating truth for 14,600 cycles.

The initial background ensemble at time t = 0 is generated by picking up

40 truth states at randomly chosen 40 distinctive dates. Each DA experiment is

run 14,600 cycles (10 years) and the first 1,460 cycles (one year) are excluded from

verification, regarding one year as a spin-up period.

To examine the ability of the adjoint and ensemble FSR diagnostics to detect

mis-specification of observation error variances
�

�o2
j , j = 1, · · · , 40

 

, we conducted

three pairs of “identical twin” experiments. Each pair consists of two DA cycle runs,

one with correctly specified R (i.e., identical to the truth; hereafter we refer to this

by “correct-R run”), the other with incorrectly specified R (hereafter we refer to

this by “incorrect-R run”). The true and specified observation error variances, along

with the names of the experiments, are summarized in Table 7.1.

The SPIKE experiment is inspired by the experimental settings of Liu and

Kalnay (2008) and Kalnay et al. (2012) who examined the capacity of EFSO to
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capture the negative impact from the observation at the 11-th grid point which

have larger observation errors than the others. All observations but the one at the

11-th grid point have the error variance 0.22; at the 11-th grid point, it is 0.82. In the

mis-specified DA run (the incorrect-R run), they are all prescribed by 0.22. With

this experiment, we intend to see whether the adjoint or ensemble FSR diagnostics

can detect the mis-specification of the error variance at the 11-th grid point to

provide useful guidance on how to correct it. We also examine whether the FSR

diagnostics do not signal “false alarm” when the specification of R is correct.

The STAGGERED experiment is designed to assess whether the FSR diag-

nostics are robust to cases where observations with di↵erent magnitude of errors are

located close to each other. The true observation errors are 0.12 and 0.32, respec-

tively, for odd- and even-numbered grid points. In the incorrect-R run, they are all

prescribed by 0.22; we should thus reduce/increase the error variances at odd/even

grid points.

The LAND-OCEAN experiment is inspired by Lorenz and Emanuel (1998)

who simulated data-sparse “ocean” and data-rich “land” using the Lorenz ’96 sys-

tem. In our LAND-OCEAN experiment, however, the density of observations are

the same for the “ocean” and the “land”; we, instead, vary the quality of observa-

tions, with the observations over the ocean being more accurate: satellite radiance

observations are generally more accurate over the ocean than over the land because

the surface condition is more uniform over the ocean than over the land. In this

experiment, we mimic a situation where we assimilate only satellite radiance ob-

servations, whose accuracy is di↵erent depending on the surface condition. The
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observations are relatively more accurate over the “ocean” (21  j  40), with the

error variance 0.12, while, over the “land” (1  j  20), the quality of observations

are poorer, with the larger error variance 0.32. We assume that the NWP developers

on this “virtual planet” are not yet aware of this non-uniformity in the observation

quality and have been incorrectly using the constant observation error variance 0.22

in their DA system (we simulate this situation with the incorrect-R run) . They

now use the FSR techniques to grasp the true magnitude of observation errors.

For each of the three experiments, we compute the FSR vector

✓

@ef
t|0

@�o

1
2 , · · · ,

@ef
t|0

@�o

40
2

◆

with the four di↵erent methods, the adjoint based “AFSR-REUSE” (Eq. (7.16)) and

“AFSR-NEW” (Eq. (7.19)), and the ensemble based “EFSR-REUSE” (Eq. (7.25))

and “EFSR-NEW” (Eq. (7.27)). As in the DA system, no covariance localization is

performed for EFSR estimations. As the forecast lead-time, we adopt 24 hours (0.2

in nondimensional time). For evaluating forecast errors with Eq. (2.6), we use the

analysis as the verifying truth xv
t . The quadratic error norm C in Eq. (2.8) is the

identity matrix in R40⇥40 (i.e., the Euclidian norm).
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Name True obs error variance Prescribed error variance

SPIKE �o,true
j

2

=

(

0.82 j = 11

0.22 j 6= 11
�o
j
2 = 0.22 everywhere

STAGGERED �o,true
j

2

=

(

0.12 j: odd

0.32 j: even
�o
j
2 = 0.22 everywhere

LAND-OCEAN �o,true
j

2

=

8

>

<

>

:

0.32
1  j  20
(“land”)

0.12
21  j  40
(“ocean”)

�o
j
2 = 0.22 everywhere

Table 7.1: The true and specified observation error variances for the three experi-
ments performed using the Lorenz ’96 system.
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7.4.3 Results

7.4.3.1 The SPIKE experiment

First, as a “sanity check,” we show, in Figure 7.1, the analysis errors of the

SPIKE experiment. The analysis errors are verified against the truth and their

averages over the last 9 years of the cycling experiments are shown. The blue and

red lines show, respectively, the analysis errors for the correct-R and incorrect-R

runs.

In the vicinity of the 11-th grid point where the observation has larger errors,

the analysis is considerably more accurate for the correct-R run (blue line) than for

the incorrect-R run (red line). Even in the correct-R run, the “bad” observation

at the 11-th grid point makes the analysis less accurate at that grid point than at

elsewhere. Specifying the wrong observation error variance which is smaller than

the true value exacerbates the situation by giving higher credence to the “bad”

observation than it deserves. Nevertheless, the DA is still successful in the sense

that the analysis is more accurate than the observations. This assures that “filter

divergence” has not occurred in these DA cycles.

The top and bottom panels of Figure 7.2 show, respectively, the ensemble-

based forecast sensitivity gradient to observation error variances,
@ef

t|0
@�o

j

2 , estimated

using “EFSR-REUSE” and “EFSR-NEW” formulations (see Eqs. (7.23), (7.25) and

(7.27)). Apart from the di↵erence in magnitude, the two formulations give similar

diagnostics. For the incorrect-R run, the two formulations both successfully signal

157



us that we should increase the observation error variance for the “bad” observation

at the 11-th grid point (note that a negative sensitivity gradient means that the

forecast error decreases (and thus the forecast becomes more accurate) by increasing

the observation error variance), while, for the correct-R run, they both give virtually

zero sensitivity.

For the incorrect-R run, despite the fact that the observation error variances

for the observations near the “bad” observation are correctly specified, the EFSR

diagnostics, both ‘the ‘EFSR-REUSE” and “EFSR-NEW,” tell us that we should

decrease the observation error variances for them. Our interpretation for this is as

follows:

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  5  10  15  20  25  30  35  40

A
n

a
ly

si
s 

R
M

S
E

Grid Number

Analysis RMSE with respect to the Truth 
 SPIKE experiment

Mis-specified σo2

Correct σo2

Figure 7.1: Analysis errors verified against the truth for the SPIKE experiment
displayed as a function of grid number. The analysis errors for each grid point are
averaged over the last 9 years of a 10-year DA cycling. The analysis errors are
smaller when the observation error variances are correctly specified (blue line) than
when they are mis-specified (red line).
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Figure 7.2: The forecast sensitivity gradient to observation error variances
@ef

t|0
@�o

j

2

for the SPIKE experiment estimated using (top) “EFSR-REUSE” and (bottom)
“EFSR-NEW” formulations. As in Figure 7.1, the blue and red lines represent, re-
spectively, the DA runs with correctly specified observation error variances (correct-
R run) and that with mis-specified observation error variances (incorrect-R run).
As in Figure 7.1, the sensitivity gradients are averaged over the last 9 years of each
DA run.
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Figure 7.3: As in Figure 7.2, but for estimation using the adjoint FSR formulations:
(top) “AFSR-REUSE” and (bottom) “AFSR-NEW.”
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The sensitivity gradient
@ef

t|0
@�o

j

2 , being a partial derivative, tells us how, for

each index j, a small displacement in �o
j
2 would change the forecast error

eft|0 if the other observation error variances �o
l
2, l 6= j are kept unchanged.

Thus, if there is an observation that makes the forecast worse, then we

can make the forecast better by giving higher credit to (i.e., decreasing

observation error variances for) the adjacent, more accurate observations.

This raises us one concern: the FSR methods might not be a reliable diagnostic if

accurate and inaccurate observations are located close to each other. This concern

motivated us to try the STAGGERED experiment whose results are described in

the next subsection.

Although the two formulations, “EFSR-REUSE” and “EFSR-NEW,” give

qualitatively similar results, the magnitude of the sensitivity gradient is sharply

di↵erent, with the latter being larger. As we will show in later subsections, this

feature is also observed in the other two experiments as well.

Figure 7.3 shows the result of FSR diagnostics using the adjoint formulations,

“AFSR-REUSE” (top) and “AFSR-NEW” (bottom). They are quite consistent with

their ensemble counterparts (Figure 7.2). Peculiarly, however, the adjoint results are

smaller than the ensemble results by a factor of about 0.65. Again, as we will show

in later subsections, this feature is also observed in the other two experiments as

well. At this moment, we do not yet know how to interpret this discrepancy.
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7.4.3.2 The STAGGERED experiment

Figure 7.4 shows the analysis errors of the STAGGERED experiments verified

against the truth. As in the SPIKE experiment, the analysis is more accurate in

the correct-R run than in the incorrect-R run. For both runs, the analysis is more

accurate at the odd-numbered grid points where the observations are more accurate

than at the even-numbered grid points where the observations are less accurate.

Again, the fact that the analysis is more accurate than the observations, whose

true error variances are 0.12 at the odd-numbered grid points and 0.32 at the even-

numbered grid points, assures that filter divergence has not occurred in these DA

runs.

Figure 7.5 shows the ensemble-based forecast sensitivity gradient to observa-

tion error variances,
@ef

t|0
@�o

j

2 , estimated using ‘the ‘EFSR-REUSE” and “EFSR-NEW”

formulations. For the incorrect-R runs (red lines), the two formulations both state

that we should decrease the observation error variances at the odd-numbered grid

points where the prescribed observation error variances (0.22) are larger than their

actual values (0.12; note that a positive gradient means that the forecast errors

increases by increasing the observation error variances) and the opposite for the

even-numbered grid points, which is exactly what we expect from a successful FSR

diagnostics.

For the correct-R experiments (blue lines), ideally, we expect that if an FSR

diagnostics is perfect, then it would state that we do not have to tune R, or at least,

there should be no di↵erence between the odd-numbered and the even-numbered
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grid points; our FSR diagnostics tell, however, that we should tune the observation

error variances for the odd- and even-numbered grid points di↵erently; furthermore,

the two formulations, “EFSR-REUSE” and “EFSR-NEW,” give mutually contra-

dicting results: the “EFSR-REUSE” states that we should decrease/increase the

observation error variances at the odd/even grid points, while, the “EFSR-NEW”

states the opposite.

We would like to point out, however, that this issues may not be as serious

as it may look: first, the magnitude of the sensitivity gradient is much smaller

than that in the incorrect-R run. Also, if we compare them with the result of

SPIKE experiment, it is virtually negligible. Moreover, as Figure 7.7 shows, if we

compare the odd- and even-numbered grid points by using the forecast sensitivity

to the tuning factors soj (j = 1, · · · , 40) of the observation error variances defined by

Eq. (7.22), the discrepancy among the odd- and even-numbered grid points become

less sharp. This is because, in computing the sensitivity to the tuning factor
@ef

t|0
@so

j

from the sensitivity to the observation error variance
@ef

t|0
@�o

j

2 , we multiply it by the

observation error variance. In particular, the “EFSR-NEW” formulation (bottom

panel) gives almost flat profile for sensitivity to the tuning factors.

As in the SPIKE experiment, the adjoint and ensemble formulations are quite

consistent (compare Figure 7.5 with Figure 7.6), but here again, the magnitude in

the adjoint results is smaller than that in the ensemble results.
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Figure 7.4: As in Figure 7.1, but for the STAGGERED experiment.
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Figure 7.5: As in Figure 7.2, but for the STAGGERED experiment.
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Figure 7.6: As in Figure 7.3, but for the STAGGERED experiment.
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Figure 7.7: As in Figure 7.5, but for the forecast sensitivity to the tuning factor soj
of the observation error variances.
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7.4.3.3 The LAND-OCEAN experiment

Figure 7.8 shows the analysis errors of the LAND-OCEAN experiment veri-

fied against the truth. Consistent with our expectation, for both the correct- and

incorrect-R runs, the analysis is less accurate over the “land” (1  j  20) where

the observations are less accurate (with error variance 0.32), than over the “ocean”

(21  j  40) where the observations are more accurate (with variance 0.12). A

somewhat unexpected, surprising feature here is that, unlike in the previous two

experiments, there is not much di↵erence in the accuracy of the analysis between

the correct-R and incorrect-R run, except near the land-ocean boundaries (i.e.,

between j = 40 and j = 1, and between j = 20 and j = 21). This means that,

except near the boundaries, the analysis (and thus the forecast) of the incorrect-R

run cannot be improved much by optimizing the observation error variances speci-

fied in the DA system. Thus, we cannot anticipate the FSR diagnostics to provide

useful information on how to tune the observation error variances, except near the

boundaries.

Consistent with our reasoning above, the ensemble FSR (Figure 7.9) and the

adjoint FSR (Figure 7.10) are not as successful for this experiment as they are for the

previous two experiments. For the incorrect-R run (red line), the “EFSR-REUSE”

and “AFSR-REUSE” (top panels) both give correct guidance near the land-ocean

boundaries (grid points #20 ⇠ #23, #40,#1 and #2), giving positive/negative

sensitivities to the “ocean”/”land” grid points. However, in the interior of the

“land,” the sensitivities are rather random with the wrong sign; in the interior of
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the “ocean,” the sensitivities are very low. The “EFSR-NEW” and “AFSR-NEW”

(bottom panels) are both more successful than the “EFSR-REUSE” and “AFSR-

REUSE,” giving clear negative sensitivities (i.e., we should increase the observation

error variances) for the entire “land.” On the other hand, the results for the correct-

R run (blue line) is not easy to interpret. Since the observation error variances are all

correctly specified, we can expect that the sensitivity gradient should have more or

less similar values, giving a flat profile. The “EFSR-NEW” and “AFSR-NEW” give

a flatter profile than the “EFSR-REUSE” and “AFSR-REUSE,” so in this sense, the

former seems to make more sense. From another aspect, however, “EFSR-REUSE”

and “AFSR-REUSE” seem to be more reasonable: near the “land-ocean” bound-

aries, we can expect to improve the forecast by giving higher/lower credence to the

more/less accurate ocean/land observations by assigning smaller/larger observation

error variances. “EFSR-REUSE” and “AFSR-REUSE” do suggest us to decrease

the observation error variances at the near-boundary “land” grid points (21st, 22nd,

and 40th), while “EFSR-NEW” and “AFSR-NEW” suggest otherwise. It is thus

not clear which of the four FSR formulations is the best.
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Figure 7.8: As in Figure 7.1, but for the LAND-OCEAN experiment.
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Figure 7.9: As in Figure 7.2, but for the LAND-OCEAN experiment.
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Figure 7.10: As in Figure 7.3, but for the LAND-OCEAN experiment.
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7.5 Summary and discussion

In this chapter, we introduced the formulation of EFSR (ensemble-based fore-

cast sensitivity to observation error covariance R) by combining an ensemble ap-

proximation similar to that of Kalnay et al. (2012) with the adjoint formulation

of Daescu and Langland (2013), and examined its capability to detect whether the

observation error variances prescribed to a DA system are larger or smaller than the

actual values, using the 40-variable version of Lorenz ’96 model within a framework

of the“identical twin” experiment. Three di↵erent sets of experiment are performed,

each consisting of two DA cycle runs, one with correctly specified observation error

variances, the other with incorrectly specified observation error variances. In any of

the experiments, adjoint and ensemble formulation gave consistent estimations, but

the adjoint formulation resulted in a smaller sensitivity. Overall, the four tested for-

mulations ( “EFSR-REUSE,” “EFSR-NEW,” “AFSR-REUSE” and “AFSR-NEW”)

are all capable of detecting mis-matches in the actual and prescribed observation

error variances. In particular, in one of the three experiments conducted, the SPIKE

experiment in which only one observation at a specific grid point is less accurate

than the other observations by a factor of 4, the mis-specification of the observation

error variance was detected extremely well by all the four formulations tested, which

corroborates the power of the FSR diagnostics.

Two caveats might need to be pointed out, however: first, FSR diagnostics

could signal a “false alert” when, in fact, the observation error variances are perfectly

specified, as we saw in the correct-R runs of the STAGGERED and LAND-OCEAN
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experiments. Second, in situations where an optimal specification of observation

error variances does not lead to noticeable improvement in analysis or forecast, as

is the case with the incorrect-R run of the LAND-OCEAN experiment, results of

the FSR diagnostics can be less reliable.

These caveats being said, our results from the simple system, overall, do sup-

port the e↵ectiveness of the FSR diagnostics. Encouraged with this success, we

implemented and tested our EFSR formulation to the NCEP’s lower-resolution ver-

sion of the operational global NWP system, as we describe in the next chapter.
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Chapter 8: Ensemble Forecast Sensitivity to observation error co-

variance (EFSR) II: Quasi-operational implementation

with GFS LETKF/3D-Var hybrid GSI

8.1 Introduction

In the previous chapter we introduced an ensemble-based formulation of fore-

cast sensitivity to observation error covariance matrix R, which we call EFSR, and

showed with a simple toy system that the EFSR diagnostics is capable of detecting

incorrect specification of the observation error covariance. In this chapter, we apply

the EFSR diagnostics to a real NWP system, that is, the GFS model coupled with

the LETKF/3D-Var hybrid GSI DA system which we used for our Proactive QC

experiments. Unlike systems such as the one we used in the previous chapter, in

a real NWP system we do not know the true values of the observation error co-

variance matrix R. Thus, we cannot directly tell if the results of EFSR diagnostics

are right or not. In order to verify if the EFSR diagnostics yield meaningful re-

sults, we perform a tuning experiment in which the observation error variances for

several observation types are modified (or tuned) based on the recommendations

from the EFSR diagnostics and check if the tuning of R improves EFSO impacts
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from the tuned observation types. As we will show, our results do corroborate the

e↵ectiveness of the EFSR diagnostics.

8.2 Experimental setup

The experimental setup is identical to what we used for Proactive QC exper-

iments (Chapter 3): we use a lower-resolution (T254L64 for control; T126L64 for

ensemble) version the GFS EnKF/3D-Var GSI DA system with the EnKF part re-

placed by the LETKF. In this system, the observation error covariance matrix R is

assumed to be diagonal and is shared between the GSI (3D-Var) and the LETKF.

The observations assimilated in our experiments are identical to those in the oper-

ational system and the period is 31 days from 00 UTC of January 8th, 2012 to 18

UTC of February 7th with 6-hourly analysis. See Chapter 3 for more details.

We could simply apply EFSR diagnostics to the output we have from our

Proactive QC experiments but we re-executed LETKF jobs because, when we per-

formed the Proactive QC experiments, we did not store the ensemble mean analysis

in the observation space ȳa
0

which is necessary for computing EFSR (Eq. (7.22)).

For each of the stattypes (see Section 3.5 and Tables 3.2 and 3.3) and the

sensors (c.f. Table 3.4), we computed the forecast sensitivity to observation error

variance scaling factors soi , i = 1, · · · , I by Eq. (7.22) using the gradient vector

@ef
t|0

@yo

0
defined by Eq. (7.25) (the EFSR-REUSE formulation). Since we confirmed

in the previous chapter with the toy system that the two formulations for gradient

evaluation, EFSR-REUSE (Eq. (7.25)) and EFSR-NEW (Eq. (7.27)), are both
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capable of detecting mis-specification of observation error variances, we only examine

the EFSR-REUSE formulation. The sensitivity to scaling factors is computed for

each of the 124(= 31 ⇥ 4) analyses and are averaged over the whole one-month

period.

8.3 Results

This section presents the forecast sensitivity to observation error variance scal-

ing factors
@ef

t|o
@so

i

for di↵erent types of observations obtained from the EFSR diagnos-

tics.

Figure 8.1 shows the forecast sensitivity to observation error variance scaling

factors computed using the EFSR-REUSE formulation of the gradient vector (Eq.

(7.25)). In the top panels ((a) and (b)) the forecast errors are evaluated with the

moist total energy norm; in the bottom panels ((c) and (d)) they are evaluated

with the dry total energy norm. Panels on the left ((a) and (c)) and those on

the right ((b) and (d)) show, respectively, the results for 6-hour and 24-hour lead

time. Positive values of the sensitivity mean that the forecast errors will increase

by increasing the corresponding observation error variances and thus we should

decrease them. Conversely, negative values indicate that we should increase the

corresponding observation error variances.

From Figure 8.1, we see that, except for MODIS winds, all observation types

exhibit positive sensitivities in all of the panels. From the discussion in Section

7.3.1, we can interpret this as indicating that the covariance inflation is insu�cient
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Figure 8.1: Forecast sensitivity to observation error variance scaling factors. Shown
are (a) 6-hour forecast sensitivity measured with the moist total energy norm, (b)
as in (a), but for 24-hour forecast, (c) as in (a), but measured with the dry total
energy norm, and (d) as in (c), but for 24-hour forecast. All are verified against the
control GSI analysis. The units are J kg�1.
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because, as we can see from Eq. (7.33), the forecast sensitivity to covariance inflation

factor is negative (i.e., a stronger inflation will decrease the forecast errors). This

is understandable because, as we described in Section 3.4, the covariance inflation

parameters we used are optimized for the higher resolution operational system;

in EnKF or Extended Kalman Filter (EKF) methods, the background covariance

inflation is introduced to compensate for the model errors that are not accounted for

in the standard Kalman Filter algorithm (e.g., Jazwinski, 1970, Section 8.3). Thus,

it is natural to assume that the covariance inflation that we used in our experiments

is weaker than it optimally should be, since the model errors are likely to be larger

for a lower-resolution model than for a higher-resolution model.

We can also observe from Figure 8.1 that, among all the observation types,

Aircraft, Radiosonde and AMSU-A exhibit higher sensitivities than other types, and

that MODIS winds show negative sensitivity. This feature is consistently seen in any

combination of the lead times and the error norms. Thus, if our EFSR diagnostics

is correct, we can expect to improve the forecast by decreasing the observation error

variances for Aircraft, Radiosonde and AMSU-A, and by increasing the observation

error variance for MODIS winds.

8.4 Tuning-of-R experiment

As we discussed in the previous section, we can expect to improve the forecast

by decreasing the observation error variances for Aircraft, Radiosonde and AMSU-A,

and by increasing the observation error variance for MODIS winds. This motivates
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us to perform a tuning experiment of the observation error variances; this also serves

as a means to validate the results of EFSR diagnostics. This section describes the

experimental setup and the results of our tuning experiment.

8.4.1 Experimental setup

The first thing we need to think of before conducting a tuning-of-R experi-

ment is how much to tune it. As Daescu and Langland (2013) points out, however,

the FSR diagnostics, be it adjoint-based or ensemble-based, does not provide infor-

mation about how much we should tune; it only provides the direction for tuning,

without any clue on the magnitude. Without better option, we decided to tune the

observation error variances in a rather modest way; we multiplied the observation

error variances of Aircraft, Radiosonde and AMSU-A by 0.9 and that of MODIS

winds by 1.1.

Using the new, tuned observation error variances, we re-ran the cycling exper-

iment for the entire period, including the first 7-day spin-up, and we used the last

31 days for verification (see Section 3.7).

8.4.2 Results

By this tuning, we expect to improve the forecast, and more specifically, to

improve the EFSO impacts from the tuned observation types. Figure 8.2 compares

the one-month averages of the EFSO impacts from each observation type before

and after the tuning. The error bars shown in the figure represent the confidence
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interval at 95% level obtained by a standard t-test for the di↵erence of paired data:

Let us fix the observation type and let X
1

and X
2

denote, respectively, the EFSO

impacts from that type. For each of the 31 ⇥ 4 = 124 cases, we compute the

di↵erence di = X
1,i � X

2,i, where i is an index for the cases (samples). Our null-

hypothesis is that the population mean µd is zero. We define the test statistics t by

t = d̄/
⇣

s
dp
n

⌘

where d̄ and sd represent, respectively, the sample mean and sample

standard deviation of d, and n = 124 is the sample size. Under the assumption that

d is normally distributed with zero mean, the test statistics t obeys the t-distribution

with the degree of freedom ⌫ = n � 1. Thus, the confidence interval at 95% level

can be obtained by ±t2.5%⌫ ⇥ s
dp
n where t2.5%⌫ is the 2.5 percentile of the t-distribution

with the degree of freedom ⌫.

From Figure 8.2 we can observe the following features: (1) the EFSO impacts

from Aircraft, Radiosonde and AMSU-A all had statistically significant improvement

by the tuning, for any combination of the lead times and the error norms, (2)

the EFSO impact from MODIS wind had no statistically significant improvement

or degradation, (3) the EFSO impact from IASI is also improved, although its

observation error variance is not tuned; however, the improvement is not statistically

significant in panel (d) (the dry energy norm with 24-hour lead time), and (4) the

EFSO impact from GPSRO is somewhat degraded, especially for 24-hour lead time.

The feature (1) is a desirable result that a�rms our expectation that the EFSR

diagnostics indeed yield meaningful information. The feature (2), on the other

hand, seems puzzling at a first glance; we give an interpretation to this question

in the next paragraph. The feature (3) is also di�cult to interpret but perhaps
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we should not trust this result too much since the statistical significance is not

very large compared to the di↵erences for Aircraft, Radiosonde and AMSU-A. The

feature (4) is also di�cult to explain; here we only speculate that the impacts

from GPSRO are somewhat obscured by the enhancement of impacts from Aircraft

and AMSU-A; GPSRO data are mainly observed in the upper troposphere and in

the stratosphere where Aircraft and AMSU-A data are also abundant. By giving

more weight to Aircraft and AMSU-A observations by decreasing their observation

error variances, GPSRO observations would receive relatively less weight, possibly

resulting in weaker EFSO impacts.

Now, let us consider why the tuning of observation error variance for MODIS

wind did not improve or degrade its EFSO impacts. As we saw in Chapter 6,

during the period of our experiments, MODIS wind observations contained a lot of

“flawed” observations with large negative impacts to the forecast. Figure 8.3 shows

the time series of the EFSO impacts from MODIS wind observations evaluated

for 6-hour lead time with moist total energy norm. As we can see, for most of

the cases, the impact is positive (i.e., negative values; negative values of EFSO

decrease the forecast errors so their impacts are positive) but it sometimes becomes

negative (positive values). In such negatively impacting cases, the MODIS wind are

likely to have large observation errors. Thus, including such “outlier” cases would

lead to non-Gaussianity of observation errors for MODIS wind, which violates the

assumption we made in deriving EFSR formulation that all observation errors obey

normal distributions with zero mean. Including such cases in the statistics thus

would have rendered EFSR diagnostics less accurate, so we can expect to improve
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Figure 8.2: The one-month averages of the EFSO impacts from each observation
type before and after the tuning of observation error variances. The EFSO impacts
before the tuning are shown with blue bars; those after the tuning are shown with
red bars. The error bars represent the confidence intervals at 95% level computed
by a t-test for the di↵erence of two paired data (see text for detail). Shown are (a)
6-hour EFSO impacts measured with the moist total energy norm, (b) as in (a),
but for 24-hour EFSO, (c) as in (a), but measured with the dry total energy norm,
and (d) as in (c), but for 24-hour EFSO. All are verified against the control GSI
analysis. The units are J kg�1.
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the accuracy of the diagnostics by removing such “outlier” cases from the samples.

In Figure 8.4, we show the forecast sensitivity to observation error variance

scaling factors averaged over the period but without using cases in which 6-hour

EFSO impacts from MODIS wind, measured with the moist total energy norm

verified against the control GSI analysis, were negative. The results are mostly

the same with Figure 8.1. The only (and important) di↵erence is that, in Figure

8.4, where the cases in which the observation errors of MODIS wind are likely to

contain outliers are excluded, the forecast sensitivity to observation error variance

for MODIS wind is nearly zero, for any combination of the lead times and the error

norms. This means that a tuning of observation error variance for MODIS wind

would have neutral impact on the forecast, which is consistent with the feature (2)

we observed in Figure 8.2.

The important lesson we learned from this investigation is that, before apply-

ing EFSR diagnostics, we should remove “flawed” observations so that the observa-

tion errors would obey a normal distribution; otherwise, the EFSR diagnostics will

be biased. Also, the flawed observations require a separate tuning from the good

observations.

8.5 Summary and discussion

In this short chapter, we first applied the EFSR diagnostics, whose e↵ective-

ness is confirmed with a toy system in Chapter 7, to the lower-resolution version of

the NCEP’s real operational DA system. The results suggest that the forecast will
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Figure 8.3: The EFSO impacts from MODIS wind observations for 6-hour lead time
measured with the moist total energy norm shown as a time series. The verification
is against the control GSI analysis. Note that positive values correspond to negative
impacts because they increase the forecast errors.
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Forecast Sensitivity to observation error variance scaling factor

6 hours

a)

c)

24 hours

b)

d)

Figure 8.4: As in Figure 8.1, but the average is taken without using cases in which
the 6-hour EFSO impacts from MODIS wind measured with the moist total energy
norm was negative.
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be improved by reducing the observation error variances for Aircraft, Radiosonde

and AMSU-A and by increasing the observation error variance for MODIS wind.

We then conducted a simple tuning experiment by increasing/decreasing the obser-

vation error variances for the the four observation types accordingly, and obtained

results that do support our proposition that the EFSR diagnostics can provide use-

ful guidance for an improvement of R matrix. Curiously, however, tuning of the

observation error variance for MODIS wind did not lead to improved EFSO impact;

by investigating the reason for this, we also obtained an important and practical

lesson: in order for the EFSR diagnostics to work well, we need to first remove

“flawed” observations which, if not removed, result in violation of the Gaussianity

assumption for the observation errors. Failure to remove (or separately treat) the

“flawed” observations biases the EFSR estimation for the “good” observations.

As we discussed in Section 1.5, the observation error covariance matrixR is one

of the few parameters of DA systems that must be prescribed externally. Currently,

operational NWP centers prescribe it in a more or less subjective manner and thus

there should be plenty of room for it to be improved. Without a systematic method

to tune it, however, up to present, operational centers have had to rely on a rather ad

hoc, empirical tuning. Our EFSR-based tuning method is possibly innovative in this

respect because it will allow NWP centers to optimize the R matrix in a systematic

fashion. An advantage of our method that is important from a practical perspective

is that, unlike the adjoint-based method of Daescu and Langland (2013), it does

not require an execution of expensive diagnostics; it can “reuse” the sensitivity

gradient that is readily available from EFSO, which, in turn, is also much more
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computationally e�cient than the adjoint-based FSO.

As we described in Section 7.3.1, our EFSR can also be used to tune the

background covariance inflation factor as well. Li et al. (2009) also proposed an

algorithm that enables simultaneous estimation of the the background covariance

inflation factor and the observation error covariance, based on the consistency di-

agnostics we briefly described in Section 1.5. Since both our method and that of

Li et al. (2009) are applicable to any EnKF system, and they are based on di↵er-

ent, complementary approaches, it would be interesting to compare them in a same

system. One advantage of their approach that is missing in our method is that it

can specify how observation error variances should be tuned; in our approach, as

in the original adjoint-based method of Daescu and Langland (2013), we can only

estimate whether we should increase or decrease them (we could iteratively opti-

mize the scaling factors, as we do in variational DA methods, by using minimization

techniques such as conjugate gradient or quasi-Newton methods, but that could be

prohibitively expensive because each iteration requires a re-execution of DA cycles).

The advantage of our approach over theirs is that, we can use information from

forecast errors so that the tuning of R actually improves the forecast, whereas, the

method of Li et al. (2009) only adjusts R and the inflation so that they satisfy the

consistency condition as closely as possible. Due to this complementary nature of

the two approaches, we can expect to establish a more robust tuning method by

combining the two methods.
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Chapter 9: Summary and Future Directions

9.1 Summary

9.1.1 Proactive QC

One of the major problems in the operational NWP systems is the so-called

“forecast skill dropouts,” that is, abrupt and large drops of the forecast skills. Recent

studies have shown that some of the dropout cases are caused by the failure of

operational QC system to detect and filter out flawed observations. Ota et al.

(2013) showed that such flawed observations can be detected by 24-hour EFSO and

that rejection of the detected observations from the analysis indeed significantly

improves the analysis and forecast. Encouraged by their achievement, in this thesis,

we proposed to exploit the EFSO’s capacity to detect such flawed observations just

after 6 hours from the analysis and then remove them and repeat the analysis and

forecast. The goal of the first part of this thesis is to investigate if this technique,

which we call Proactive QC, can improve the NWP forecast. Before implementing

this technique into the operational system, however, several issues needed to be

addressed.

First, we implemented the EFSO into a lower resolution version of the NCEP’s
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operational global EnKF/3D-Var hybrid DA system whose EnKF part is replaced

by the LETKF. Because we were the first to implement EFSO on a hybrid DA

system, we carefully examined the consistency of our results with other previous

FSO studies. We also examined the validity of using 6-hour EFSO by comparing it

with the tried-and-true 24-hour EFSO using both control GSI analysis and ensemble

mean LETKF analysis as truth.

Having confirmed that, somewhat to our surprise, EFSO results do not depend

sensitively on the choice of the verifying truth and the forecast lead time, we inves-

tigated if we can detect occurrences of regional forecast dropouts after only 6 hours.

Expanding the idea of Ota et al. (2013), we first introduced two di↵erent methods to

divide the globe into smaller regions, the 30 �⇥30 � cells and spherical harmonics Y 6

12

cells, and examined the statistics of two quantities, the normalized regional forecast

errors and the regional forecast error reduction by the analysis, evaluated for both

of the two methods to divide the globe. Based on the statistics we obtained, we

proposed to use the “2�” criterion for the 30 �⇥30 � cells, which selects the regions

if their normalized regional forecast errors and the regional 6-hour forecast error

divided by the regional 12-hour forecast error are both larger than their temporal

averages by at least 2 standard deviations. This criterion picks up about ⇠ 2 regions

per cycle, so operational systems should be able to a↵ord to perform regional EFSO

on the detected regions. Then, we performed 6-hour and 24-hour EFSO and con-

firmed that the “2�” criterion can capture the cases for which, according to EFSO

estimation, large (⇠ 25% or higher) regional forecast improvements can be expected

by the denial of the “flawed” observations.
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We then performed data denial experiments to test whether the rejection of

observations that are identified by EFSO as “flawed” really improves the forecast. In

order to see how many of the observations we should reject given the information on

the EFSO values of each observation, we tried four di↵erent criteria for setting the

threshold of EFSO values above which the observations are rejected. We found that,

in all of the 20 cases examined, we can in fact improve the forecast if we adopt strict

thresholds for the rejection of observations. Forecast improves more dramatically if

we reject all negatively impacting observations of the types identified by EFSO as

“flawed,” but this approach tend to yield some forecast degradation. Thus, strict

and loose thresholds for the rejection of data have their own pros and cons, and the

threshold would have to be chosen somewhat subjectively depending on how much

we can tolerate possibility of forecast degradation. In several of the examined cases,

the forecast improvements attained by the rejection of the “flawed” observations was

quite spectacular, with local relative improvement reaching as much as 30%–50%,

indicating the power of Proactive QC.

In Section 1.7, we started out by posing four key questions. Here we review

the accomplishments of our thesis by providing answers to the four key questions:

1. Are 6 hours long enough for the detection of “flawed” observations?

Our answer is “yes”: we confirmed, in Chapter 4, that 6-hour EFSO and 24-hour

EFSO are highly consistent, both in terms of statistical properties and for individual

cases. The consistency between 6-hour and 24-hour EFSO is also corroborated by

the similarity of the forecast improvements of data denial experiments based on 6-
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hour and 24-hour EFSO, for example, by checking the resemblance of Figure 6.2 (6

hours) and Figure 6.3 (24 hours). In Chapter 4, we also confirmed that the EFSO

is not sensitive to the choice of the verifying truth by using either the control GSI

analysis or the ensemble mean LETKF analysis.

2. How can we detect possible occurrences of “dropouts” after only 6 hours from

analysis?

We found that the “2�” criterion which we presented in Chapter 5 allows us to detect

regional “dropouts” after only 6 hours from analysis. The 219 cases selected by the

“2�” criterion included 15 cases whose estimated forecast improvements are above

25%. Data denial experiments on the 20 cases extracted from the cases that passed

the “2�” criterion showed that, in seven cases, significant forecast improvements

that locally exceed 30% can be achieved by rejecting the observations identified by

6-hour EFSO as “flawed.”

3. What is the best threshold for rejection of “flawed” observations?

We would have to say that this question must be answered rather subjectively. If it is

very important that Proactive QC never degrades the forecast at any location, then

a stricter threshold will be favored; if some degradation of forecast can be tolerated,

loose threshold such as the “allneg” criterion, in which all the observations whose

EFSO impacts are negative are rejected, should be more favorable because it will

allow more dramatic forecast improvement.

4. Does rejection of detected “flawed” observation really improve analysis and fore-
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cast?

Our answer is yes. We confirmed in Chapter 6 that 24-hour forecasts can in fact be

improved by the rejection of observations that are identified as “flawed” with 6-hour

EFSO.

The novel findings of this work include the following: we confirmed that EFSO

also works well with the EnKF within a hybrid DA system; we also confirmed that

EFSO with forecast lead time as short as 6 hours is equally capable of estimating

the impacts of each observation type and of detecting flawed observations to the

one with the widely used 24-hour lead time; we demonstrated that Proactive QC in

fact significantly improves the forecast. We would like to emphasize here that our

proactive QC is a major innovation because it will allow us, for the first time ever,

to carry out fully flow-dependent QC based on whether the observation actually

degraded the forecast.

Our work does have some limitations. First, the resolution of the analysis and

forecast adopted in this thesis (T126 for ensemble and T254 for control) is quite

low compared to the current operational systems. It is not easy to infer whether

the success of our results would be reproduced if we implement Proactive QC to the

actual high-resolution operational system. This concern can be answered only by

repeating the whole procedure of our study in the higher resolution system. Second,

we did not examine if the forecast is also improved if we used the new 6-hour forecast

after the denial of the observation as the background for the next cycle; the data

denial experiments we conducted are “o↵-line” in the sense that the improvement

of the forecast achieved by not assimilating the “flawed” observations is not taken
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over to the next cycle. However, if Proactive QC is implemented in the real-time

operational NWP system, the improved forecast will be used as the background

(first guess) at the next cycle. We do not see any reason by which this cycling

should degrade the forecast or reduce the forecast improvement (on the contrary, it

should reinforce the improvement), but this has to be confirmed before operational

implementation.

9.1.2 EFSR

The observation error covariance matrix R is one of the few external parame-

ters to a DA system and thus, in operational NWP systems, it is specified somewhat

empirically and subjectively. In the second part of this thesis, we showed that the

forecast sensitivity to observation error covariance matrix R (FSR) diagnostics de-

rived with the adjoint technique by Daescu and Langland (2013), which can be used

to optimize the R matrix, can be formulated for any EnKF DA system by using

the approximations used in the derivation of EFSO formulation by Kalnay et al.

(2012). We denote the ensemble based FSR diagnostics by “EFSR.” We verified its

validity with a series of experiments which use a toy system based on Lorenz ’96

model. We then applied the EFSR diagnostics to the lower-resolution version of the

NCEP’s global NWP system that we used for testing Proactive QC and performed

simple “tuning-of-R” experiment in which the observation error variances for the

observation types with particularly high EFSR sensitivities (Aircraft, Radiosonde

and AMSU-A) are reduced by 0.9, and the error variance for MODIS wind, which
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exhibited negative EFSR sensitivity, is inflated by 1.1. We found that, by this sim-

ple tuning of R, we can improve the EFSO impacts from the tuned observations

except MODIS wind. After some investigation, we found that the EFSO impact

from MODIS wind was not improved because the EFSR estimation of MODIS wind

was not accurate due to the “flawed” MODIS wind observations; by taking samples

excluding the cases where MODIS wind observations exhibited negative EFSO im-

pacts, we found that the EFSR sensitivity for MODIS wind in fact became neutral,

which is consistent with the neutral impact of observation error variance tuning.

Our work is the first to derive an ensemble-based FSR diagnostics. Also, it

is the first to apply this technique to the quasi-operational global DA system. Our

work is innovative in that we showed that the tuning of R based on FSR diagnostics

can improve the FSO impact from the tuned observation types.

Although our EFSR work is innovative, we need to perform more detailed

experiments. For example, in showing the EFSR sensitivity, we did not separately

treat the di↵erent channels of satellite radiance observations. It is well acknowledged

that radiance observations, especially those from hyperspectral sounders such as

IASI and AIRS, have very di↵erent error characteristics for di↵erent channels. Thus,

it should make more sense to treat observations from di↵erent channels separately

in evaluating EFSR sensitivity.

Another topic that we did not cover in this dissertation is the EFSR’s capacity

to diagnose the impacts from o↵-diagonal elements of R. EFSR sensitivity can be

computed not only for diagonal elements (i.e., observation error variances) but also

for o↵-diagonal elements of R. Thus, it can be used to address the correlation issues
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between the errors of di↵erent observations. Possible applications of this capacity

include tuning of observation thinning (for dense observations such as AMVs) and

channel selection strategy for hyperspectral sounders.

9.2 Future directions

First, we would like to repeat the entire experiment for Proactive QC with

the operational resolution. In our data denial experiments, we obtained particularly

high forecast improvement by the rejection of MODIS wind observations. Since

MODIS wind observations are very dense, it is possible that a higher resolution DA

system can assimilate these data more e↵ectively than our lower-resolution system.

If so, EFSO diagnostics would not identify MODIS wind as “flawed” observation

type in the first place, or the denial of them do not lead to improved forecast. Thus,

experiments with a higher resolution system will allow us to clarify if the MODIS

wind observations that were identified as “flawed” in our experiment really had

poor measurement error or they were detrimental because of a problem in the DA

system’s side.

In implementing Proactive QC to a real-time operational environment, having

to wait 6 hours after the first analysis can be a bottleneck. It is thus important

to minimize this delay. We have two ideas for mitigating this problem. The first

idea is to exploit the time lag that exists between the so-called “early” analysis and

the so-called “delayed” (or “cycled”) analysis (this idea was suggested by Dr. John

Derber of NCEP): some operational centers, including NCEP and JMA, maintain
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two di↵erent kinds of global DA jobs. One is executed solely to provide the initial

conditions to the extended forecast. This DA job is called “early” analysis. The

analysis from this DA job is used one time and is not taken over to the next cycle.

The name comes from the fact that it has to finish earlier in time and thus has shorter

cut-o↵ time. The other DA job maintains the analysis-forecast cycle. Because it

does not have to provide the initial condition for the extended forecast, it does not

have to finish early, so the cut-o↵ time for observation ingestion is longer, allowing

it to assimilate observations that arrive late. The data dependency is shown in the

schematic Figure 9.1 which is reprinted from JMA (2013). Suppose we would like

to detect flawed observations at 12 UTC. In order to perform 6-hour EFSO for 12

UTC, we need an analysis at 18 UTC. If we only have a single cycled DA job, the

analysis for 18 UTC cannot be computed without the analysis for 12 UTC. However,

in the system shown in Figure 9.1, the early analysis at 18 UTC (labeled “GA18”)

is computed from the forecast from the early analysis at 12 UTC (labeled “GA12”).

Thus, after the completion of GA18 and the cycled analysis at 12 UTC (CA12),

we can compute 6-hour EFSO for the observations assimilated at CA12. We can

then repeat1 CA12 without using the observations at 12 UTC that are identified as

“flawed” by 6-hour EFSO. Note that CA12 can finish later than 18 UTC of physical

time because its output is not used for the extended forecast until GA00. In fact,

in JMA’s operational system, the finish time of GA18 (20:30 UTC) is earlier than

the start time of CA12 (23:50 UTC). We can exploit this time di↵erence for the

computation of 6-hour EFSO after GA18 so that “flawed” observations are rejected

1As we show in the next paragraph, in fact, analysis does not have to be repeated.
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at the second execution of CA12. The only new assumption in this approach is

that, analysis from GA is more accurate than the background from CA, which is

generally true.

Figure 9.1: Schematic of JMA’s global NWP system. The data dependency is
depicted by the thick lines: for example, the oblique dark-orange line connecting
CA06 and GA12 denotes that GA12 (early analysis for 12UTC) depends on the
short-term forecast from CA06 (cycle analysis for 06UTC). Adapted from JMA
(2013).

The second idea for the mitigation of the delay is not to repeat the analysis

and forecast: we showed in Chapter 2 that the analysis that would be obtained

by denying a subset of the assimilated observations can be approximated by EFSO

(Eq. (2.24)) without doing the analysis. Thus, once we have the “flawed” observa-

tions that should be rejected, we can approximately obtain the improved analysis

without even performing an analysis. Similarly, by using the approximate equation

Eq. (2.27) for the forecast that would be obtained by denying a subset of the ob-

servations, we can approximately obtain the improved forecast, without repeating

the forecast. As we discussed in Section 2.2.2.3, in Eq. (2.24) and Eq. (2.27), the

Kalman gain K is assumed to be the same for the original analysis (with full set

of observations including the “flawed” observations) and the new analysis (without
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the “flawed” analysis). This assumption should be reasonably good if the number

of denied observations is much smaller than the total number of the assimilated

observations. The number of observations denied in Proactive QC is at most ⇠ 104

and typically ⇠ 102, which is a tiny fraction of the total number of the assimilated

observations (⇠ 3⇥ 106). We can thus expect this technique to work well. In fact,

Ota et al. (2013) used the same approximation and obtained very good consistency

between the nonlinear forecast change and its linear approximation (see their Figure

9).

In Section 6.5, we argued that the fact that the denial of MODIS wind resulted

in particularly large forecast improvements suggests that MODIS wind might have

had some technical problem and that developers of MODIS wind should look into any

potential deficiencies in their algorithm. This motivates us to explore the possibility

of another major advance from Proactive QC, beside the direct outcome of improving

the forecasts: real-time operation of Proactive QC would enable us to build up a

detailed database of failed observations by collecting all their occurrences along with

relevant metadata. Such database can then be provided to algorithm developers to

help them to identify the problem that produced the bad observations and avoid

them in the future. For this application, close collaboration with the developers of

instruments is indispensable in order to determine what type of information and

metadata would be most helpful to them.

Finally, we would like to propose a very powerful application of EFSO, Proac-

tive QC and EFSR diagnostics that would allow a more e�cient and precise deter-

mination of the optimal way to assimilate new observing systems: if a new observing
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system becomes available to NWP systems, NWP developers typically evaluate the

usefulness of the new data by conducting the OSE-type experiments: namely, the

forecast started from “experiment” (or “test”) analysis, which is made by using

the new observations, is compared to that started from “control” analysis, which

is made without using the new observations. This current approach has di�culties

in obtaining statistically significant results in the presence of the rest of the avail-

able observing systems. This is because the current NWP systems already produce

very accurate analysis by assimilating a myriad of observations from a plethora of

observation types. The Proactive QC should address this problem by finding the

short-term impact of each observation and allowing the comparison of the impact

of di↵erent observation algorithms. In fact, Lien (2014) showed, using the Tropical

Rainfall Measurement Mission (TRMM)-retrieved global precipitation data as an

example of a new observing system, that EFSO can be e↵ectively used to systemat-

ically design a data-selection strategy without which the new observing system fails

to improve the forecast; without EFSO, one would have to perform a huge number

of expensive OSE experiments with trial and error before arriving at an appropriate

data-selection strategy.

In designing an assimilation method for new observing systems, an optimal

specification of the observation error variance for them is also a di�cult problem.

As we discussed in Section 1.5, the traditional approach based on the statistics

of observation-minus-background (O-B) departure assumes the diagonality of R

(Hollingsworth and Lönnberg, 1986). This assumption is becoming increasingly

inappropriate, especially for new, remotely sensed observing systems, because of
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their high resolution both in the horizontal and the vertical. We believe our EFSR

diagnostics will be useful for this purpose, because, as we can see from Eq. (7.23),

it is capable of estimating not only the diagonal elements (i.e., variances) of R but

also its o↵-diagonal element.

The use of EFSO and EFSR will thus allow us to greatly accelerate the devel-

opment of DA methods for new observing systems.
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Appendix

Chapter A: A semi-implicit modification to Lorenz N -cycle scheme

and its application to an AGCM

A.1 Introduction

A unique feature of the atmospheric and oceanic sciences is that, unlike other

fields of natural sciences, controlled experiments are di�cult to perform. Accord-

ingly, numerical experimentation has become an increasingly important methodol-

ogy in meteorology and physical oceanography. A key role in numerical experi-

mentation is played by atmospheric or oceanic models which numerically integrate

hydrodynamic partial di↵erential equations (PDEs) that describe the governing laws

of geophysical fluid flows. There is thus a high demand for improvements of accuracy

of such models.

One of the major challenges in designing numerical integration schemes for

atmospheric models, in particular the Atmospheric General Circulation Models

(AGCMs), is the so-called “sti↵ness” problem: the equations solved by AGCMs

contain, not only the slower waves that are relevant to the actual weather phenom-

ena, but also the faster waves that are of little meteorological interest. The phase
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speeds of the faster waves are typically an order-of-magnitude faster than those of

the slower waves. In order to satisfy the Courant-Friedrichs-Lewy (CFL) stability

condition, an explicit temporal integration scheme necessitates use of an overly short

time step just to maintain stability, making the integration significantly more ex-

pensive. Most AGCMs resolve this issue by adopting a semi-implicit scheme which

treats the terms responsible for the fast waves implicitly and the other terms explic-

itly (Robert, 1969); this treatment clears the CFL condition for the fast waves and

thus allows an e�cient integration with much longer time steps. The availability of

this semi-implicit treatment is thus a prerequisite for a temporal integration scheme

to be used in AGCMs.

In AGCMs, despite recent advancements in computational fluid dynamics, a

rather simple centered-di↵erencing scheme, commonly known as the leapfrog scheme,

remains in wider use than any other schemes. The leapfrog scheme has several

desirable properties, which include: ease of implementation, availability of a stable

semi-implicit version, low cost in computational time, low memory consumption,

and conservation of energy for a non-dissipative system.

The above desirable properties are, however, tainted by the following unde-

sirable features (Durran, 1991): First, the scheme is unstable when applied to a

system with dissipation. Second, being a three-time-level scheme, it necessitates

special treatment at the very first several steps. Lastly, and most importantly, the

leapfrog scheme produces, when applied to a nonlinear system, a spurious com-

putational mode, which, if left unattenuated, results in time-splitting instability.

In AGCMs, the first issue is typically dealt with by applying the leapfrog only to
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non-dissipative dynamics part; dissipative processes such as physics and damping

are treated with separate schemes, such as the explicit Forward-Euler or implicit

Backward-Euler scheme. This treatment unfortunately comes with the side-e↵ect

of making the scheme only first-order accurate. The second issue is commonly dealt

with by running a two-time-level scheme, such as Forward-Euler scheme, at the

very first step. The third issue can be resolved by filtering-out the computational

mode by applying Robert-Asselin (RA) filter (Asselin, 1972; Robert, 1966); this

treatment also introduces the side e↵ect of degrading the scheme to first-order ac-

curacy by damping not only the computational mode but also the physical mode.

Despite these disadvantages, the leapfrog scheme with semi-implicit modification

(Robert, 1969), combined with RA filter and separate treatment of dissipative part,

has long been remained the most widely-used scheme for AGCMs. A better scheme

for AGCMs which is free from these limitations has thus been sought after.

One way to achieve this goal is to alleviate the limitations by improving the

classical RA-filtered leapfrog scheme. Recently, Williams (2009) proposed an im-

provement to the RA filter. The new filter, called Robert-Asselin-Williams (RAW)

filter, preserves the second order accuracy of the leapfrog scheme without any sig-

nificant increase in computational cost. The advantage of the RAW filter over the

RA filter is confirmed also for the semi-implicit leapfrog scheme (Amezucua et al.,

2011; Williams, 2011). Williams (2013) devised further improvements in this line,

leading to schemes with even higher accuracy in amplitude (up to 7th-order; the

phase error remains second-order). While these improved schemes e↵ectively elimi-

nate the undesirable artificial damping of physical modes, other shortcomings of the
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filtered leapfrog scheme remain unresolved. The e�cacy of rendering the RA-filter

second-order is also diminished if a first-order scheme is used for dissipative terms

to suppress instability.

Attempts have also been made to seek for alternative schemes that are better

suited for atmospheric and oceanic models. Multi-step schemes such as the Adams-

Bashforth family of schemes, for example, can have the order of accuracy that is

higher than the leapfrog without increasing computational expenses. Durran (1991)

found, however, that while the three-step third-order Adams-Bashforth scheme is

a viable alternative to the RA-filtered explicit leapfrog scheme, this scheme cannot

replace the semi-implicit leapfrog scheme because the Adams-Bashforth scheme be-

comes unstable if it is combined with a semi-implicit scheme for fast modes. The

Runge-Kutta family of schemes can also be more accurate than the leapfrog. Kar

(2006) and Whitaker and Kar (2013), for example, have successfully developed semi-

implicit versions of Runge-Kutta-type schemes and showed their advantages over the

RA-filtered semi-implicit leapfrog scheme. Their schemes, however, consume more

memory space than the leapfrog.

In 1971, Edward Norton Lorenz devised an ingenious temporal integration

scheme, now called Lorenz N -cycle scheme, for a system of first-order ordinary

di↵erential equations (ODEs) (Lorenz, 1971). Its ingenuity resides in high order

of accuracy, low computational expenses, and the economy of memory usage. It is

self-starting (i.e., it does not require model states at multiple steps for initiating

integration), computationally as e�cient as the leapfrog, both in terms of speed

and memory usage, but yet, can be of N -th order accurate at every N steps for an
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integer N  4. Despite these advantages, Lorenz N -cycle remained rather obscure

in atmospheric and oceanic sciences. Although there is at least one oceanic model

that uses this scheme (Gent and Cane, 1989), it seems not to have been applied to

an atmospheric model. In particular, a semi-implicit modification to this scheme

has not been developed.

The aim of this study is to present a new semi-implicit modification to Lorenz

N -cycle and show that this scheme can improve the accuracy of an AGCM. In de-

signing our semi-implicit version, we put particular emphasis on preserving the low

memory consumption of the original explicit scheme. As we describe in Section A.2,

Lorenz N -cycle schemes can be thought of as a special subfamily of Runge-Kutta

schemes. In fact, treating Lorenz 3-cycle as a special case of Runge-Kutta scheme,

Whitaker and Kar (2013) proposed a semi-implicit formulation. Their scheme, how-

ever, is designed from a di↵erent motivation than ours: while our priority is in mini-

mizing memory footprint, their priority was in ensuring stability. Consequently, the

two schemes have di↵erent pros and cons, which is discussed in section 3.

This Appendix is organized as follows: Section A.2 concisely summarizes the

algorithm of Lorenz N -cycle and discusses its advantages, especially in comparison

with the traditional leapfrog scheme. Section A.3 first describes the traditional

semi-implicit modification to the leapfrog scheme and then presents the formulation

of our semi-implicit modification to Lorenz N -cycle. It then gives the analysis of its

accuracy and stability. Section A.4 briefly describes the AGCM, called SPEEDY

model, whose dynamical core is used to test our schemes. It also describes our

verification method which is based on a standardized baroclinic-wave dynamical
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core test, whose results are presented in Section A.5. Section A.6 concludes the

Appendix with a summary and an outlook for our future research.

A.2 Explicit Lorenz N -cycle

This section describes the algorithm of explicit LorenzN -cycle and discusses its

advantages, especially in comparison to the traditional RA-filtered leapfrog scheme.

A.2.1 The algorithm

Let us consider a problem of numerically integrating the following system of

ODEs:

dx

dt
= F (x) (A.1)

where x = (x
1

(t), . . . , xM(t)) is an M -dimensional vector function of t and F (x) =

(F
1

(x
1

, . . . , xM), . . . , FM(x
1

, . . . , xM)) is a function from RM ! RM . In trying to

find an economical scheme, Lorenz (1971) derived two “isomeric” versions of schemes

for the above problem. Using the elegant notation introduced by Purser and Leslie

(1997), the algorithm of one version of the schemes, which we refer to by “version

A” hereafter, can be schematically written as following:

N -cycle A
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w0 = 1, (A.2)

wk = N
N�k (k = 1, . . . , N � 1) (A.3)

do k = 0, . . .

w  w mod (k,N) (A.4)

G wF (x) + (1� w)G (A.5)

x x+G�t (A.6)

end do

Similarly, the other version, which we call “version B,” can be schematically written

as following:

N -cycle B

w0 = 1, (A.7)

wk = N
k (k = 1, . . . , N � 1) (A.8)

do k = 0, . . .

w  w mod (k,N) (A.9)

G wF (x) + (1� w)G (A.10)

x x+G�t (A.11)

end do
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Note that the two versions di↵er only in the ordering of the “weight” coe�cients wk.

In implementing these schemes, we only need to store the two arrays of M words, x

and G. Also, they require only one evaluation of the tendency term F (x) per time

step.

The mathematical idea behind the above algorithms is simple: to “reuse” the

previously computed tendencies (F (xk�j), j = 1, 2, . . . , k � 1, where xk�j denotes

the value of x at the (k � j)-th step of each cycle) by forming a weighted average

of them to produce a tendency which yields the highest order of accuracy after

the completion of the N -th step, under the constraint that each intermediate step

retains at least first order accuracy. In this sense, Lorenz N -cycle can be regarded as

a special instance of the Runge-Kutta family. In fact, for example, Lorenz 4-cycles,

both versions A and B, are equivalent to the classical 4-step 4th-order Runge-Kutta

scheme with time step 4�t if F is linear.

If F is linear, at everyN steps, both versions A and B give the Taylor expansion

with respect to �t of the true solution truncated at the N +1-th order term. Thus,

for a linear case, if we only look at results at every N steps, the two versions are

identical N -th order schemes.

If F is nonlinear, the accuracy of the N -cycle schemes reduces to second order

for N � 3. However, for N = 3 and for N = 4, the N + 1-th order term in the

truncation error of the versions A and B can be shown to be of the same magnitude

with opposite signs. Thus, for these values of N , N -th order accuracy can be

attained by running both A and B cycles simultaneously and then averaging the

predictions, at the expense of doubling the computational cost in both speed and
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memory consumption.

In order to avoid doubling of computational cost, Lorenz (1971) proposed to

use the versions A and B in a suitable alternating sequence, based on the intuition

that the errors of the two versions should tend to cancel each other. In fact, Lorenz

(1971) claims, without proof, that, for N = 3, true 3rd-order accuracy can be

retained even for a nonlinear case by alternating versions A and B. Likewise, it

is claimed that, for N = 4, full 4th-order accuracy can be achieved by forming

a 4N(= 16)-cycle of the sequence A,B,B,A. Numerical computations for a simple

nonlinear ODE performed by Purser (2007) corroborates Lorenz’s claim for 3-cycle,

but there seems to have been no work that supports or denies the claim for N = 4.

In Section A5.3, we present a result for an AGCM that partly corroborates this

claim for N = 4.

The stability of Lorenz N -cycle schemes is investigated by Lorenz (1971) for

the case of scalar linear F and by Israeli and Gottlieb (1974) for linear partial

di↵erential equations (PDEs) discretized in space by centered finite di↵erencing.

Unlike the leapfrog scheme which is stable for non-dissipative (hyperbolic) systems

but unstable for dissipative (parabolic) systems, Lorenz N -cycle schemes are shown

to be reasonably stable for both hyperbolic and parabolic systems. For example, as

we stated above, Lorenz 4-cycle with a time step of �t and the classic Runge-Kutta

4-th order scheme with the time step of 4�t for a linear system yield mathematically

equivalent results and thus their stability conditions are identical.
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A.2.2 Advantages of Lorenz N -cycle

The principal advantage of Lorenz N -cycle, besides its high-order accuracy, is

its computational e�ciency in terms of both speed and memory consumption. It

requires only one evaluation of F (x) per time step which, in most cases, is the most

computationally demanding part. Also, the scheme consumes only 2M words of

memory. Thus, Lorenz N -cycle has the same computational cost as the widely-used

leapfrog scheme. Compared to the 4th-order Runge-Kutta scheme which is accurate

but too expensive for the purpose of AGCMs, the Lorenz N -cycle consumes less

than half the memory and can run 4 times faster.

Another great advantage of Lorenz N -cycle is the absence of computational

modes: the Lorenz N -cycle, being a two time-level method rather than a three

time-level method like leapfrog scheme, does not su↵er from the presence of compu-

tational modes. This feature proves to be particularly useful for nonlinear systems

for which computational modes can grow exponentially, causing divergence of nu-

merical solution from the actual solution. Being a two-time level (or single step)

scheme also facilitates the initialization process. Unlike schemes with three or more

time levels such as the leapfrog or Adams-Bashforth method, Lorenz N -cycle does

not require any special treatment for the initial step(s).

A.3 Semi-Implicit Modification

As we discussed in the introduction, the equations solved by AGCMs are sti↵:

the external inertia-gravity waves (also known as Lamb waves), which are contained
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in the solutions of these equations but are of little meteorological importance, ex-

hibit very fast phase speed (approximately ⇠ 300 m/s), whereas, waves which are

relevant to the actual weather phenomena, such as internal inertia-gravity waves

and Rossby waves, exhibit an order-of-magnitude slower phase speed. Due to the

CFL restriction, the presence of these fast waves requires an order-of-magnitude

shorter time-stepping than what is otherwise required to resolve the slower, meteo-

rologically meaningful waves. In AGCMs, it is customary to circumvent this issue

by using semi-implicit technique (Robert, 1969).

This section presents our new semi-implicit modification to Lorenz N -cycle

scheme and discuss its accuracy and stability. In deriving our semi-implicit scheme,

we utilize a somewhat non-conventional notation in which the tendency term (not

the model state itself) is modified to account for semi-implicit treatment. To fa-

miliarize the readers with our tendency-based notation, the classical semi-implicit

leapfrog scheme is presented in this notation in Section A.3.1. Section A.3.2 de-

scribes our semi-implicit formulation of LorenzN -cycle. Section A.3.3 then discusses

its accuracy and stability for illustrative linear cases.

A.3.1 Semi-implicit leapfrog scheme

Consider integration of an equation of the form:

dx

dt
= FE(x) + LIx (A.12)
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where FE : RM ! RM is a nonlinear function and LI is an M ⇥ M matrix. It

is assumed that the term LIx is responsible for the fast external inertia-gravity

waves. The semi-implicit modification to the leapfrog scheme which was originally

introduced by Robert (1969) takes the following form:

xn+1 � xn�1

2�t
= FE(xn) + LI

�

↵xn+1 + (1� ↵)xn�1

�

(A.13)

where xn signifies the predicted state at the n-th step and 0  ↵  1 is a “centering

factor.” ↵ = 1/2, ↵ = 1 and ↵ = 0 correspond, respectively, to Crank-Nicolson,

backward Euler, and forward Euler scheme.

To solve Eq.(A.13) for xn+1, let us first define the “tendency” �x by

�x =
xn+1 � xn�1

2�t
(A.14)

and express xn+1 on the right hand side as xn+1 = xn�1+2�t�x. Then, substituting

this expression to Eq.(A.13), we have:

�x = FE(xn) + LIxn�1 + 2↵�tLI�x (A.15)

, �x = (I � 2↵�tLI)�1(FE(xn) + LIxn�1) (A.16)

where I is the identity matrix. Once �x is obtained, the integration can be completed

by

xn+1 = xn�1 + 2�t�x (A.17)

213



In summary, to solve Eq.(A.13) for xn+1, we first evaluate the nonlinear tendency

FE(xn) at the central step, and then evaluate and add the linear tendency LIxn�1

at the older step. We then multiply it by the inverse matrix (I � 2↵�tLI)�1 and

finally integrate the equation by Eq.(A.17). Note that the matrix (I � 2↵�tLI)

is constant as long as the time step �t is unchanged, so that the matrix inversion

needs to be carried out only once for the whole integrations.

A.3.2 Formulation of the semi-implicit Lorenz N -cycle

The important advantage of Lorenz N -cycle schemes over other schemes such

as the leapfrog or the Runge-Kutta scheme is its economy in terms of memory

consumption. Thus, in designing a semi-implicit modification to it, we sought to

preserve this favorable property. Our proposed scheme achieves this goal by applying

tendency adjustment similar to Eq.(A.16) on each step of the N -cycle:

do k = 0, . . .

w  wmod(k,N) (A.18)

G wFE(x) + (1� w)G (A.19)

�x = (I � ↵�tLI)�1(G+ LIx) (A.20)

x x+�t�x (A.21)

end do
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Note that no additional variables are introduced in this semi-implicit formulation.

Also, unlike other semi-implicit Runge-Kutta type schemes (e.g., Whitaker and Kar,

2013), this scheme involves only one matrix inversion, which allows simplicity in

implementation.

A.3.3 Stability and accuracy analysis

Semi-implicit time-stepping schemes are traditionally examined by applying

them to the following split-frequency linear oscillation equation (Durran, 1991;

Whitaker and Kar, 2013; Williams, 2011):

dx

dt
= i!Lx+ i!Hx (A.22)

where the first and second terms on the right hand side correspond, respectively, to

FE(x) and LIx in Eq.(A.12).

By carrying out the algorithm, we can show, as in the case of explicit N -cycle,

that, for a linear system, the versions A and B give identical expression at every N

steps. The truncation errors are:

xN � xExact

x0

=
1

2N
(1� 2↵)!H(!H + !L)(N�t)2 +O(�t3) (A.23)

Thus, the semi-implicit Lorenz N -cycle can be of second order by taking ↵ = 1/2

(i.e., Crank-Nicolson scheme).

Stability of these schemes for each !L and !H can be visualized by plotting the
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modulus of the corresponding amplification factor |A| as a function of (!L�t,!H�t).

The scheme is unstable if |A| exceeds unity. In order for a fair comparison among

di↵erent values of N , we define the average amplification factor per step A by

A := N

p

xN/x0. (A.24)

Figure A.3.3 shows |A| of Crank-Nicolson (↵ = 1/2) semi-implicit Lorenz N -

cycle schemes for values of N from N = 1 to N = 6. The areas of instability are filled

with light gray (1 < |A| < 1.01) or with dark gray (|A| > 1.01). In general, semi-

implicit techniques are applied when the oscillations produced by the implicitly-

treated term are faster than those produced by the explicitly-treated term. Thus,

in interpreting Figure A.3.3, we should focus on the area above the thick red lines

(|!H | > |!L|). From panels (a) and (b), we see that the Lorenz 1- and 2-cycles are

stable when the two frequencies !H and !L are of opposite signs and the magnitude

is larger for !H . Unfortunately, however, these schemes are unconditionally unstable

if !H and !L are of same sign. The 3-cycle scheme (Figure A.3.3c) exhibit better

stability for cases where !H and !L are of same sign, but it also introduces weak

instability for regions where the two frequencies are of opposite signs. The 4-cycle

(Figure A.3.3d) has larger stability region than the 3-cycle, but increasing N further

does not improve the situation; the 5- and 6-cycles (Figure A.3.3e and A.3.3f) show

stability regions that are smaller than that of the 4-cycle. Values of N larger than 6

(from 7 to 12; not shown) result in even smaller stability regions. For these reasons,

hereafter we focus only on Lorenz 3- and 4-cycles.

216



Figure A.1: The modulus of the average amplification factor per step |A| defined by
Eq. (A.24) for the Crank-Nicolson semi-implicit Lorenz N -cycle schemes applied to
the scalar split-frequency problem Eq. (A.22). Panels (a)–(f) correspond, respec-
tively, to N = 1, 2, 3, 4, 5 and 6. The contour intervals are 0.1. However, regions
with 1 < |A| < 1.01 are filled with light gray to show where the schemes are slightly
unstable. Regions of instability with |A| exceeding 1.01 are filled with dark gray.
Red thick lines in each panel represent |!H | = |!L|; we are interested in the region
above these lines.
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Figure A.2 shows the relative phase errors (in percent) of Lorenz (a) 3- and

(b) 4-cycles. Here, the relative phase errors are defined as:

argA� (!L + !H)�t

(!L + !H)�t
⇥ 100 (A.25)

Lorenz 3- and 4-cycles show similar phase errors. The errors are small (less than

10%) in most of the stability regions except very near to the boundaries. Interest-

ingly, the phase errors are predominantly negative, which means the oscillations in

the numerical solutions tend to be slower than the exact solution. This is consistent

with our intuition that semi-implicit method stabilizes the scheme by slowing down

high-frequency waves (Kalnay, 2003).

Stability analysis based on the split-frequency equation Eq. (A.22) provides us

with an insight on how the schemes would behave for a pure, non-dissipative oscillat-

ing system. However, it is also important to examine how the schemes behave for a

system with dissipation because most geophysical fluid systems, including AGCMs,

contain dissipative terms. Following Kar (personal communication, 2013), we ac-

count for dissipation in the stability analysis by introducing imaginary component

to !L in Eq.(A.22):

dx

dt
= i!Lx+ i!Hx = {iRe(!L)x� Im(!L)x}+ i!Hx (A.26)

As in the case of Eq.(A.22), we integrate this equation with the semi-implicit

Lorenz N -cycle schemes treating the !L-term explicitly and !H-term implicitly, and

218



Figure A.2: As in Figure A.3.3, but for the average phase error per step defined by
Eq. (A.25) for the Crank-Nicolson semi-implicit Lorenz (a) 3-cycle and (b) 4-cycle
schemes, applied to the scalar split-frequency problem Eq. (A.22). The contour
levels are ±50%,±10%,±5%,±1% and 0. Non-negative and negative contours are
drawn, respectively, with solid and dashed lines. Regions where the magnitude of
the relative errors exceeds 1% and 10% are filled, respectively, with light and dark
gray. Red thick lines in each panel represent |!H | = |!L|; we are interested in the
region above these lines. Phase errors are drawn only for areas where the modulus
of the amplification factor (shown in Figure A.3.3c,d) is smaller than 1.01.
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examine the stability by looking at the modulus of the amplification factor |A|. We

first fix the frequency of the implicitly treated term, !H�t to a prescribed value

and draw the contour of |A| on a complex plane for !L�t. Figure A.3.3 shows the

stability regions of the semi-implicit Lorenz (a) 3- and (b) 4-cycles. Each curve

represents the boundary of stability region for the corresponding value of !H�t

shown in the legend. For both 3- and 4-cycles, the instability that is present in

the non-dissipative case (Figure A.3.3c,d) for negative Re(!L)�t and positive !H�t

can be suppressed by very small damping (Im(!L)�t . 0.025). If we focus on the

stability of 3- and 4-cycles for small damping (Im(!L)�t . 0.1), we find that 4-cycle

has broader range of stability than 3-cycle.

From the above stability analysis we conclude that, with our semi-implicit

formulation, Lorenz 4-cycle is more stable than Lorenz 3-cycle. For this reason, in

the experiments with an AGCM described in later sections we focus only on Lorenz

4-cycle.

A.4 Experimental setup

A.4.1 SPEEDY model

In this study, we implement and test the semi-implicit Lorenz N -cycle in a

simplified low-resolution AGCM known as Simplified Parametrizations, Primitive

Equation Dynamics (SPEEDY) model (Molteni, 2003). This model was originally

designed as a climate model and thus only had outputs of one-month averages.

Miyoshi (2005) modified it to produce 6-hourly output of snapshot values so that
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Figure A.3: Stability regions of semi-implicit Lorenz (a) 3- and (b) 4-cycles applied
to the split-frequency damped oscillation problem Eq. (A.26) for di↵erent values of
!H�t. Each curve represent the contour of |A = 1| for !H�t labeled in the legend.
The scheme is stable in the regions encircled by theses curves.

221



it can be used in data assimilation researches. This model is a primitive equation

model with T30L7 resolution; its horizontal discretization is spectral representa-

tion with respect to the spherical harmonics triangularly truncated at the total

wavenumber of 30, and its vertical discretization is finite di↵erencing on 7 layers in

�-coordinate system. In grid-point space, it has 96 longitudinal points and 48 lati-

tudinal points. For temporal discretization, the SPEEDY model uses the standard

RA-filtered semi-implicit leapfrog scheme. However, due to the intrinsic instabil-

ity of leapfrog scheme against dissipative processes, SPEEDY model treats physical

parametrizations with first-order Forward Euler scheme (with the time step of 2�t)

to prohibit numerical instability. Moreover, it treats horizontal spectral bi-harmonic

dampings for momentum and temperature equations with implicit Backward Euler

scheme to achieve further stabilization. The scheme can be written in pseudo-code
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as:

do k = 1, . . .

�x FNL

Dyn

(xk) + F
Phys

(xk�1) + L
Dyn

xk�1 (A.27)

�x (1� 2↵�tL
Dyn

)k�1�x (A.28)

�x 
�

I + (2�t)r4

�k�1

�

�x� (2�t)r4xk�1

�

(A.29)

xk+1  xk�1 + 2�t�x (A.30)

xk  xk + ⌫(xk+1 � 2xk + xk�1) (A.31)

t  t+�t (A.32)

xk�1  xk, xk  xk+1 (A.33)

end do

where FNL

Dyn

(x) represents the nonlinear part of the tendency terms associated with

dynamical process, L
Dyn

x the linear part, and F
Phys

(x) the tendency terms from

physical parametrizations.  in Eq.(A.29) represents the di↵usion coe�cient for the

bi-harmonic hyper-di↵usion. Note that, since SPEEDY model is a spectral model

based on spherical harmonics, in spectral space, horizontal bi-harmonic operator r4

and its inverse both become simple scalar multiplication. The smoothing param-

eter ⌫ in the RA filter Eq.(A.31) is set to 0.05. The centering parameter for the

implicit component ↵ is 1/2 for Crank-Nicolson and 1 for Backward-Euler. The use

of implicit Backward-Euler scheme for harmonic damping in Eq.(A.29) reduces the

formal accuracy of the scheme to only first order. This debasement might be justifi-
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able for the SPEEDY’s default dynamical core since its formal accuracy is only first

order due to the use of RA filter. In our study, however, this is undesirable, because

our goal is to achieve second-order accuracy by adopting our semi-implicit version

of Lorenz N -cycle. Also, as we have shown in Figure A.3.3, unlike leapfrog scheme,

Lorenz N -cycle does not su↵er from instability when applied to a dissipative system.

For this reason, in implementing our schemes to the SPEEDY’s dynamical core, we

modified it so that the harmonic dampings are included in the term FNL

Dyn

(x) and

thus are treated explicitly.

The SPEEDY model includes a simplified set of physical parametrizations

whose descriptions can be found in the appendix of Molteni (2003). Simplified phys-

ical process and coarse resolution enable the SPEEDY model to be integrated very

fast. Despite such simplification, this model is able to produce realistic simulations

of a wide range of the atmospheric phenomena including precipitation, mid-latitude

synoptic features and climatology. As we describe in the next section, however,

we switch-o↵ all physical parametrizations in the SPEEDY model to evaluate its

performance under the framework of a dynamical core test.

A.4.2 Jablonowski-Williamson dynamical core test

In our study, we are interested in assessing how our semi-implicit Lorenz

N -cycle schemes behave for various values of time step �t, in particular, com-

pared to the conventional RA-filtered leapfrog scheme. For this purpose, physical

parametrizations are undesirable because some of them are designed to work well
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only for a specific time step. Adjustment processes such as large scale condensation

violates the assumption that the tendency term F (x) is smooth (i.e., has continuous

first derivatives), which also complicates the interpretation of the results. Thus, we

test our schemes under the framework of a dynamical core test.

Several standardized benchmarks have been proposed for dynamical cores of

AGCMs (e.g., Boer and Denis, 1997; Held and Suarez, 1994). Among those stan-

dardized test cases we adopt the baroclinic-wave test case proposed by Jablonowski

and Williamson (2006). Unlike other previously proposed test cases which are pri-

marily focused on quantifying long-term or climatological performance, this baroclinic-

wave test case allows us to evaluate the performance of a dynamical core in an

initial-value problem.

In the baroclinic-wave test case of Jablonowski and Williamson (2006), the

initial and boundary conditions are designed so that a train of unstable baroclinic

waves develops from a small disturbance superposed on a zonally uniform steady

state. This specific configuration enables us to measure the performance of a model

in terms of its ability to simulate baroclinic waves. Precise specification of the initial

and boundary conditions for this test case is given in the next subsection.

A.4.3 The Initial and Boundary Conditions for the Baroclinic-Wave

Test Case

The initial condition for the baroclinic-wave test case of Jablonowski and

Williamson (2006) comprises of two parts: first, a zonally symmetric state which
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is an analytic steady-state solution of the primitive equations, and second, a hor-

izontally localized disturbance to the steady state which triggers development of

a baroclinic wave train. We first describe the steady state and then describe the

disturbance, followed by the description of the boundary condition.

First, we define an intermediate vertical coordinate �v by

�v = (� � �
0

)⇥ ⇡

2
(A.34)

with �
0

= 0.252. Here � 2 [0, 1] represents the �-vertical coordinate. The zonal

wind of the steady state is defined as:

ū(', �) = u
0

cos3/2 �v sin
2 (2') (A.35)

with u
0

= 35m s�1. Here ' represents the latitude in radian. The meridional wind

v̄ is set to zero everywhere:

v̄(', �) = 0. (A.36)

The temperature is defined by

T̄ (', �) = hT (�)i+ 3

4

�⇡u
0

Rd
sin �v cos

1/2 �
0

(A.37)
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where Rd = 289.0J kg�1 K�1 is the ideal gas constant for dry air, a = 6.371229 ⇥

106 m is the mean radius of the Earth, with the horizontal average temperature

hT (�)i given by

hT (�)i =

8

>

>

>

<

>

>

>

:

T
0

�R
d

�/g for 1 � � � �t,

T
0

�R
d

�/g +�T (�t � �)5 for �t > �,

(A.38)

where g = 9.80616 m s�2 is the gravitational acceleration, � = 0.005 K m�1 is the

temperature lapse rate, �T = 4.8 ⇥ 105 K, and �t = 0.2 is the tropopause level.

The surface pressure ps is globally set to a constant value:

ps = 105Pa (A.39)

which completes the specification of the steady state.

On top of this steady state, a horizontally localized disturbance of the zonal

wind u0(�,', �) centered at (�c,'c) = (⇡/9, 2⇡/9) (=(20 �E,40 �N)) is superposed

to form the complete initial condition (other prognostic variables are not touched).

The disturbance in the zonal wind u0 is specified by:

u0(�,', �) = up exp

⇢

�
⇣ r

R

⌘

2

�

(A.40)

with radius R = a/10 and up = 1m s�1. The great circle distance r from the center
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(�c,'c) is defined by

r = a cos�1 {sin'c sin'+ cos'c cos�� �c} . (A.41)

Finally, we describe the boundary condition. The orography (or surface height)

zs is also zonally uniform and is specified by:

zs(�,') = u
0

cos3/2 (1� �
0

) (A.42)
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For the upper boundary condition, Jablonowski and Williamson (2006) requires that

no Rayleigh friction near the model top be applied. Thus, in our experiment, we

switched-o↵ the Rayleigh friction which, in SPEEDY model, is applied to only the

horizontal winds at the topmost layer.

A.4.4 Verification method

An analytic solution is not known to this problem. Jablonowski andWilliamson

(2006) thus provides a set of reference solutions that can be used by the users of

this test case. Their reference solutions are produced by integrating multiple dif-

ferent high-resolution models. The di↵erences among these reference solutions can

be used to quantify their uncertainties. We do not use their reference solutions,

however, because our main focus of this study is on temporal integration schemes:
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comparison with solutions from a higher-resolution model would complicate the

interpretation by introducing spatial discretization as another factor. In order to fa-

cilitate a fair comparison among di↵erent temporal integration schemes, we produce

a reference solution by implementing the traditional explicit 4th-order Runge-Kutta

(RK4) scheme to the SPEEDY model and then integrating it with a very small

time step �t = 10 s. The reference solution thus obtained is regarded and used as

“truth” in our verification.

Following Jablonowski and Williamson (2006), for quantitative comparison, we

use the di↵erence of surface pressure ps from the reference RK4 solution measured

with l2-norm:

l
2

(ps(t)) :=

"

1

4⇡

Z

2⇡

0

Z ⇡/2

�⇡/2

�

ps(�,', t)� pRK4

s (�,', t)
 

2

cos'd'd�

#

1/2

(A.43)

where �,' and t denote, respectively, the longitude, latitude and forecast time.

pRK4

s denotes the reference solution produced from RK4 scheme described in the

last paragraph. Jablonowski and Williamson (2006) reports that choice of verified

variables (temperature or vorticity vertically interpolated to some specified pressure

level, in addition to surface pressure) and error norms (l1 and l1, in addition to l2)

do not sensitively a↵ect results of verification.

A.4.5 Temporal Integration Schemes implemented to SPEEDYmodel

The temporal integration schemes implemented to SPEEDY model in our

study are summarized in Table A.1. This table also defines the abbreviated names
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of each scheme that we use in the following sections. As we described in Section

A.4.1, SPEEDY model, by default (ImLF+CN), adopts a somewhat complicated

combination of di↵erent schemes. This is necessary because of the limited stability

of leapfrog scheme when it is applied to dissipative terms. In contrast, our Lorenz

N -cycle schemes (ImL4+CN, ImL4+BE and ExL4) treat all the terms consistently

with a single scheme; this is possible because Lorenz N -cycle, being a variant of

Runge-Kutta scheme, can better tolerate dissipation.

Since Lorenz N -cycle scheme has two versions (which we refer to by A and

B), we can construct several variants of our Lorenz N -cycle schemes by using one of

the two versions or by using them in alternating sequences. For each of our Lorenz

N -cycle schemes (ImL4+CN, ImL4+BE and ExL4), we tried versions A, B, AB and

ABBA. For example, the ImL4+CN scheme with Lorenz 4-cycle version ABBA is

referred to, hereafter, by ImL4+CN-ABBA.
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A.5 Results

This section presents the results of Jablonowski-Williamson baroclinic-wave

test case described in the previous section. Particular emphasis is placed on compar-

ison between our semi-implicit Lorenz 4-cycle scheme and the traditional RA-filtered

semi-implicit leapfrog scheme. To grasp the qualitative features of these schemes,

we first show the snapshot pictures of the evolution of the baroclinic waves. We

then show the results of the estimation of the orders of accuracy.

A.5.1 Snapshots

Figure A.4 shows the snapshots of surface pressure field at the 9th day of in-

tegration for di↵erent integration schemes. In the reference solution produced from

RK4 scheme with a small time step �t = 10 s (Figure A.4a), a deep low with a min-

imum of less than 960hPa develops on a grid (61.23oN, 146.25oW). The SPEEDY’s

default scheme ImLF+CN with the time step of �t = 1200 s (Figure A.4b) also

produces a low with its minimum at the same grid as the reference solution, but

with a weaker intensity. With this traditional leapfrog scheme, successful simulation

of the intensity of the low requires a much smaller time step, as shown in Figure

A.4c (ImLF+CN with �t = 10 s). On the other hand, our new ImL4+CN-A scheme

successfully produces the deep low even with the longer time step of �t = 1200 s

(Figure A.4d). Other versions of ImL4+CN schemes (versions B, AB and ABBA;

not shown) also produced solutions that are visually indistinguishable to Figure

A.4d. This qualitative result suggests that ImL4+CN is the most advantageous
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scheme in that it alone successfully reproduces the deep low with the larger time

step. Quantitative results shown in the following section strongly supports this

supposition.

Figure A.4: Snapshots of surface pressure (in hPa) at the 9th day of integration.
(a) Reference solution produced from RK4 scheme with time step �t = 10 s, (b)
SPEEDY’s default ImLF+CN scheme with �t = 1200 s, (c) as in (b), but with
�t = 10 s, and (d) ImL4+CN-A scheme with �t = 1200 s. Contour intervals are
10 hPa.

A.5.2 Order estimation

As we discussed in Section A.3.3, theoretically, our Lorenz 4-cycle schemes

combined with Crank-Nicolson scheme for the semi-implicit part (ImL4+CN-A,

ImL4+CN-B, ImL4+CN-AB and ImL4+CN-ABBA schemes) should have second-
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order accuracy. Figure A.5 verifies this expectation. For 5-day forecasts (the

left panel), if we focus on small values of time step (�t < 300 s), all versions of

ImL4+CN schemes collapse on a single line which has a slope of 2.0 (meaning that

they are of second-order accuracy). The errors for these schemes are clearly bet-

ter than that of ImLF+CN scheme whose slope is 1.0 (first-order accuracy). If we

look at larger values of �t, however, the curves begin to saturate as �t becomes

larger. Curiously, all the schemes with Backward-Euler scheme for the implicit part

(ImLF+BE, ImL4+BE-A, ImL4+BE-B, ImL4+BE-AB and ImL4+BE-ABBA) ex-

hibit slopes of 0.4 instead of the theoretical expectation 1.

The result becomes somewhat di↵erent if we look at 20-day forecasts (Figure

A.5, right panel). All the schemes with Backward-Euler scheme for the implicit part

now exhibit first-order accuracy, which is consistent with theoretical expectation.

ImL4+CN-A and ImL4+CN-B schemes continue to be of second-order accuracy,

with the latter being more accurate for �t > 300 s. However, the alternating

combinations of the two versions (ImL4+CN-AB and ImL4+CN-ABBA) exhibit

larger errors for �t > 300 s. In fact, ImL4+CN-ABBA scheme with �t = 1200 s

even blows up at the 30th days of integration. It is not clear why the alternation of

versions A and B does not improve the accuracy of ImL4+CN schemes. Nonetheless,

superiority of uncombined versions ImL4+CN-A or ImL4+CN-B over the traditional

ImLF+CN is clear for all time steps. Interestingly, ImL4+CN-B is more accurate

than ImL4+CN-A, although, for a linear system, the two schemes give identical

predictions.
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A.5.3 Explicit Lorenz 4-cycles

While the main focus of this study is on our new semi-implicit Lorenz N -

cycle scheme, it would be interesting to see how the original explicit Lorenz N -cycle

schemes perform when applied to the AGCM. As we mentioned in the penultimate

paragraph of Section A.2.1, we show a result that supports the claim of Lorenz

(1971) that explicit Lorenz 4-cycle can attain 4th-order accuracy by running it in

the alternating A-B-B-A sequence.

Figure A.6 shows equivalent of Figure A.5 for explicit Lorenz 4-cycle schemes

(ExL4-A, ExL4-B, ExL4-AB and ExL4-ABBA). Unlike Figure A.5, the left and

right panels show, respectively, errors of 10-day and 30-day forecasts. At the 10th

day, all versions exhibit 4th-order accuracy, while, at the 30th day, the versions A

and B only have second-order accuracy. However, their alternating combinations

AB and ABBA both retain 4th-order accuracy. These results are consistent with

theoretical expectations that both versions A and B of Lorenz 4-cycle should be

4th-order accurate for a linear problem. In the Jablonowski-Williamson’s baroclinic-

wave dynamical core test, the integration starts from a zonally-uniform steady-state

solution which is superposed with a weak and small localized perturbation. Thus,

during the initial period of the integration, the system is only weakly nonlinear,

until the breaking of the baroclinic wave occurs at ⇠ day 10. By day 30, the system

develops into a fully nonlinear regime, making versions A and B only second-order.

As claimed by Lorenz (1971), the combination ABBA actually regains 4th-order

accuracy. What is surprising is that, unlike what was suggested in Lorenz (1971),
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the simpler combination AB also regains 4th-order accuracy; in fact, for �t > 150 s,

it yields more accurate predictions than ABBA.
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Figure A.5: Errors of surface pressure measured with the l2-norm for various semi-
implicit temporal integration schemes plotted against time steps �t on a log-log
plane. Shown are the errors for �t = 1200, 600, 300, 180, 120, 90, 60, 45 and 30 s.
The errors are computed with respect to the reference solution produced by running
RK4 scheme with �t = 10 s. The slopes of regression lines fitted using errors for
30 s < �t < 180 s are shown for each scheme in the legend. The names of the
schemes are defined in Table 1 and Section A.4.4. The left and right panels show,
respectively, the results for 5-day and 20-day forecasts.

A.6 Summary and discussion

Lorenz N -cycle scheme for numerical integration of ODEs proposed by Lorenz

(1971) has remained less widely used in the atmospheric and oceanic sciences despite

its major advantages, notably its economical use of memory, higher-order accuracy

and the ease of implementation. Part of the reasons is perhaps lack of its semi-

implicit formulation. Recently, Whitaker and Kar (2013) proposed a semi-implicit

scheme based on Lorenz 3-cycle and reported promising results with both an ideal-

ized shallow-water system and an operational numerical weather prediction (NWP)

model. Their focus, however, was on improving stability of their previously pro-
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posed scheme and thus the economical memory use of Lorenz N -cycle was lost in

their formulation. In this study, we presented a new semi-implicit formulation of

Lorenz N -cycle which can preserve the memory e�ciency.

The accuracy and stability analysis conducted for a linear, univariate split-

frequency oscillation equation shows that the accuracy of our new schemes all can

be made second-order if we adopt Crank-Nicolson scheme for the implicit part. For

a purely oscillatory equation with no damping, our semi-implicit Lorenz N -cycle

combined with Crank-Nicolson scheme for the implicit part is found to be unstable

for N = 1 and N = 2. The stability is improved by increasing N to 3 and 4, with

the latter having larger stable region, but it becomes less stable again if N is further

increased. A linear stability analysis which allows dissipation shows that the small

instability regions found in the semi-implicit 4-cycle scheme disappears if a small

damping is present in the system.

Numerical experiments performed using the dynamical core of the SPEEDY

AGCM under the framework of the baroclinic wave test case of Jablonowski and

Williamson (2006) confirmed that our semi-implicit Lorenz 4-cycle scheme combined

with Crank-Nicolson scheme for the implicit part, both version A (ImL4+CN-A)

and version B (ImL4+CN-B), exhibit second-order accuracy and are more accurate

than the traditional semi-implicit leapfrog scheme (ImLF+CN) for any time step

�t. Intriguingly, however, contrary to our expectation that running the two versions

in alternating sequence should improve the scheme because their truncation errors

tend to cancel each other, the alternating combinations of the two (ImL4+CN-AB

and ImL4+CN-ABBA) actually proved to be less accurate than the non-alternating
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versions. ImL4+CN-ABBA even proved to be unstable for �t = 1200 s although

other versions were stable for this �t.

We have also confirmed that, for explicit Lorenz 4-cycle, running the two ver-

sions (ExL4-A and ExL4-B) in alternating sequences (ExL4-AB and ExL4-ABBA)

in fact improves the accuracy to 4th order. In view of the critical comment posed

by Purser (2001) that “the e�cacy of this strategy [alternation of the two versions]

in a highly nonlinear numerical weather prediction model is extremely doubtful,”

the fact that the alternation strategy suggested by Lorenz (1971) in fact worked for

the primitive equation system is itself a surprising result. Unlike what is claimed by

Lorenz (1971), however, for this particular problem, a simpler combination ExL4-AB

turned out to be more accurate than the suggested ExL4-ABBA.

It remains unclear why, for our semi-implicit scheme, alternation of the two

versions did not lead to improved accuracy. One possible reason is that, unlike in

the original explicit scheme, truncation errors of the two versions that arise from

nonlinearity of the explicit tendency (FE(x) of Eq.(A.12)) do not cancel each other.

In summary, the semi-implicit Lorenz 4-cycle schemes we propose in this

work are computationally as e�cient as the traditional Robert-Asselin-filtered semi-

implicit leapfrog scheme, in terms of both the amount of computation and memory

usage. Moreover, our scheme have second-order accuracy, which is higher than that

of the traditional scheme. Another advantage of our scheme over the traditional

leapfrog is that it is a two-time level scheme, meaning that it requires only the

model state at a single time to initialize the integration. Being a two-time level

scheme also means that it is free from troublesome computational modes.
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Given our success with the primitive-equations model, it is tempting to hope

that we might be able to improve operational weather forecasts by adopting our

scheme to operational NWP systems. We conclude this work by suggesting some

future work in this direction. Most advanced operational NWP centers, includ-

ing European Centre for Medium-Range Weather Forecasts (ECMWF), Environ-

ment Canada, Japan Meteorological Agency (JMA) and UK MetO�ce, all adopt

semi-implicit semi-Lagrangian temporal integration schemes in their global models.

National Centers for Environmental Prediction (NCEP) is also developing semi-

Lagrangian version of their global model. Our next challenge is therefore to formu-

late a semi-implicit semi-Lagrangian version of Lorenz N -cycle.

The trend in regional NWP is to use non-hydrostatic models which include

acoustic waves in their solutions. In fact, for example, JMA, NCEP, UK MetO�ce

and the German weather service (DWD) are already using non-hydrostatic regional

models in their operation. In such models, the very fast acoustic waves are typically

accommodated by using split-explicit techniques. Implementing Lorenz N -cycle

within a split-explicit scheme should be straightforward. Thus, application of Lorenz

N -cycle in regional non-hydrostatic models would also be an attractive research

topic.
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Figure A.6: As in Figure A.5, but for explicit Lorenz 4-cycle schemes. Shown are the
errors for �t = 240, 180, 150, 90, 60, and 30 s. The slopes of regression lines fitted
using errors for 30 s < �t < 120 s are shown for each scheme in the legend. The
left and right panels show, respectively, the results for 10-day and 30-day forecasts.
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