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Chapter 1:  Introduction 

Two data assimilation systems have been implemented, each utilizing the 

Geophysical Fluid Dynamics Laboratory’s (GFDL) Modular Ocean Model (MOM2) 

on a 360 x 130 x 20 grid. The first is the Simple Ocean Data Assimilation (SODA) 

system, developed by Carton et al [CCC00]. The second is the 4-Dimensional Local 

Ensemble Transform Kalman Filter (4D-LETKF) system, developed by Hunt et al 

[HKS06]. SODA is a state-of-the-art ocean assimilation system, utilizing an Optimal 

Interpolation (OI) statistical scheme for assimilating historical observations. 4D-

LETKF is a next-generation system that utilizes a type of 4D Ensemble Kalman Filter 

(EnKF). Originally developed for atmospheric applications, here the LETKF system 

has been adapted for use with the ocean and is now capable of assimilating all 

historical oceanic temperature, salinity, and ocean current data on record.   

A framework mirroring the SODA design was used to build the 4D-LETKF 

ocean system. This resulted in specifications such as a multi-day analysis cycle, with 

super-observations collected in 1x1 degree bins. Two methods for performing the 

analysis updates were designed. First, rather than applying the full adjustment to the 

initial conditions of the model at each analysis cycle, a scheme used by SODA for 

incremental analysis updates (IAU) [BT96] was used with LETKF (called LETKF-

IAU). IAU was achieved by applying the analysis innovation in small increments at 

each model integration time step. Second, an iterative dual-pass procedure called 

Running-in-Place (RIP) was used to re-center the background ensemble and generate 

a more accurate analysis (called LETKF-RIP). A less computationally intensive 
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approximation of RIP is called the Quasi-Outer Loop (QOL); both are discussed in 

[KY08]. 

This LETKF implementation also includes an adaptive inflation scheme 

developed by Miyoshi [M11] to adjust inflation to automatically balance the 

background covariance with the estimated observation error. This is especially useful 

to prevent a growing ensemble spread in unobserved regions of the ocean that results 

from the use of a constant inflation parameter.  It also helps to account for 

deficiencies in estimates of the observation errors. Additional considerations for the 

oceanic application included perturbed wind forcing fields to ensure a non-collapsing 

ensemble spread, and accounting for landmasses that obstruct the domain of the 

ocean analysis.  

      The two assimilation systems are compared, showing the benefit of the next-

generation 4D-LETKF system over the current state-of-the-art SODA system. 

Experiments showing the performance of the two systems during a 7-year period are 

used to demonstrate this benefit. The key result is an improvement in 4D-LETKF 

over SODA, particularly in the metric relating the distance of the forecast system 

states to the observed states, both globally and in specified regions. Further 

verification against independent observations and theoretical temperature/salinity 

relationships are given as well. 

Data assimilation is the name given in modern geoscience applications to 

recursive Bayesian estimation, a general approach for estimating an unknown 

probability density function recursively over time using a combination of 

measurements and a mathematical model. The true system state is assumed to be an 
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unobserved Markov process, and the measurements are the observed states of a 

hidden Markov model.  

The procedure for data assimilation is to perform analysis cycles in which past 

and present observations of the system state are combined with a forecast from the 

mathematical model to generate a ‘best estimate’ of the current system state. This 

‘best estimate’ is called the analysis. The analysis is then propagated forward in time 

by the mathematical model, and the result is used as the forecast for the next cycle. 

Because this forecast is a priori information at the beginning of each analysis cycle, it 

is also known as the background. 

The analysis cycle is an application of Bayes theorem. In a theoretical 

framework, the Fokker-Planck1 equation would be used to advance the distributions 

represented by the background and analysis, but to do so in practice is 

computationally infeasible. If the probability distributions are assumed normal, they 

can be simplified by representing the distribution parametrically with the mean and 

covariance. A recursive Bayesian filter that assumes such multivariate normal 

distributions is known as a Kalman filter. This simplifying assumption is not 

sufficient for practical applications. It is also not feasible to maintain the true 

covariance due to the large number of degrees of freedom in the state space of most 

realistic environmental models. Therefore, these methods utilize various 

approximations for the covariance. 

Data assimilation is most often used for forecasting geophysical systems, 

particularly weather forecasting and hydrology, and correspondingly the application 

                                                
1 The Fokker-Planck equation is discussed in the Appendix 
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given here is of Numerical Weather Prediction (NWP). However, the applications are 

far reaching to areas such as tomography (e.g. cloud imaging, medical imaging), 

trajectory estimation (e.g. for NASA’s Apollo program), GPS applications, 

atmospheric chemistry, air traffic management, mathematical finance, artificial 

intelligence, and path planning. 

1.1 General Problem Statement 

Find the trajectory of a dynamical system that best fits a time series of data, given a 

model for the time evolution of the system and observations of the system state at 

various times. Specifically, given the ordinary differential equation (ODE), 

!!
!"
= !(!,!), where x is an m-dimensional vector representing the system state at 

time t, and a set of l observations made at times t=t1,t2,t3,t4,… find the trajectory x(t) 

that best fits the observations. 

There is a further complication that errors exist in both the model and the 

observations. It is desired to account for as much of the existing error as possible. 

Typically observation errors come from both instrument error as well as subgrid-scale 

variability that is not represented in the grid-average values of the model, called the 

‘error of representativeness’ [K03]. The background errors are caused in part by 

model error, which encompasses errors in the model formulation, the model forcing, 

model resolution, and numerical rounding errors. These errors are not well quantified, 

but must be accounted for within any solution approach. 
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1.2 Reanalysis of the Global Ocean 

A retrospective historical data assimilation is typically termed ‘reanalysis’. Such 

reanalysis efforts have been performed for the global ocean, e.g. by Carton et al 

[CCC00a],[CCC00b], with several others described in [CS08]. The observability 

condition states that it is possible to uniquely infer the state of a dynamical system 

from measurements of its inputs and outputs. The primary challenge in performing 

reanalysis using the historical ocean record is that the observational data sets are 

extremely sparse. Obviously with sufficient observations the observability condition 

would be satisfied and the state of the ocean could be determined with great accuracy. 

But, there is no guarantee that the ocean system satisfies this condition within the 

timeframe of the historical record, given these limited observations. A second 

difficulty is that the ocean is highly influenced by surface forcing such as surface 

wind stress, radiative heat flux, precipitation and evaporation. In stand-alone ocean 

models, these forcing terms are incorporated as inputs to the model. Thus near the 

surface, the ocean state will constantly be forced back toward prescribed values, 

regardless of changes made via data assimilation with a non-coupled ocean model. 

The current variety of data assimilation methods used to estimate the physical 

state of the global ocean (particularly temperature, salinity, currents, sea level) is 

evident in the nine reanalysis efforts spanning multiple decades as described in 

[CS08]. Among the nine there are three alternative state estimation approaches. The 

first approach is the ‘no-model’ analyses, where temperature or salinity observations 

update a background provided by monthly climatological estimates. The second 

approach is a sequential data assimilation analysis, which iterates forward in time 

from a previous analysis using a numerical simulation of the evolving ocean state 
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produced by an ocean general circulation model. The third approach is 4D-Var which, 

in ECCO, uses the initial conditions and surface forcing as control variables to be 

modified in order to be consistent with the observations as well as a numerical 

representation of the equations of motion through iterative solution of a single large 

optimization problem. 

Of the cases enumerated by [CS08], Ishii and Levitus began with a first guess 

of the climatological monthly upper-ocean temperature based on climatologies 

produced by the NOAA National Oceanographic Data Center. The innovations were 

mapped onto the analysis levels. Ishii used an alternative 3D-Var approach to do an 

objective mapping with a smaller decorrelation scale in midlatitudes (300 km) that 

elongated in the zonal direction by a factor of 3 at equatorial latitudes (to 900 km). 

Levitus began similarly to Ishii, but used the technique of Cressman and Barnes with 

a homogeneous scale of 555 km to map the temperature innovation onto a uniform 

grid. 

The sequential approaches can be further divided into those using Optimal 

Interpolation and the Kalman Filter, and the variational approaches as those using 

3D-Var or 4D-Var. Among the nine approaches, INGV and SODA 

[http://www.atmos.umd.edu/~ocean/] used versions of Optimal Interpolation, while 

CERFACS, GODAS [http://www.cpc.ncep.noaa.gov/products/GODAS/], and GFDL 

all used 3D-Var. [CS08] 

The ECCO series of assimilation approaches include: ECCO1, ECCO-

GODAE [http://www.usgodae.org/], GECCO, ECCO-JPL, ECCO-SIO, ECCO2 

[http://ecco2.org/], and OCCA. The ECCO Near Real-Time Ocean Analysis of 
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Fukumori and Lee and JPL/Caltech is based on the MIT general circulation model. 

German ECCO (GECCO) is based at the University of Hamburg's Institut fuer 

Meereskunde. GECCO applied 4D-Var to the decadal ocean estimation problem to 

cover the full 50-year NCEP/NCAR re-analysis period. This approach provided some 

benefits including satisfying some conservation laws and the construction of the 

ocean model adjoint. ECCO2 is a high-resolution global-ocean and sea-ice data 

synthesis that intends to produce an analysis of all available global-scale ocean and 

sea-ice data at resolutions that resolve ocean eddies and narrow current systems. 

[http://www.ecco-group.org/about.htm] JAMSTEC has a 4D-Var data assimilation 

system developed by the MEXT K7 project using a 1x1º version of the MOM3 ocean 

model dynamics. [http://www.jamstec.go.jp/e/medid/dias/kadai/clm/clm_or.html] 

Operational forecasting systems include the Forecasting Ocean Assimilation 

Model (FOAM) from the Met Office. The FOAM data assimilation method is based 

on a version of the analysis/correction scheme devised by [LB91]. This system 

produces 5-day forecasts and assimilates temperature profile data, altimetry data and 

surface temperature data on a global 1º grid with 20 vertical levels. High-resolution 

model configurations are nested inside the global configuration: the Atlantic and 

Arctic Oceans and the Indian Ocean use 35 km grids; and the North Atlantic, the 

Mediterranean Sea and the Arabian Sea use 12 km grids. 

[http://research.metoffice.gov.uk/research/ncof/foam/system.html]  

The ECMWF reanalysis system is based on the HOPE-OI scheme. The 

background field is given by forcing the Hamburg Ocean Primitive Equations 
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(HOPE) ocean model with daily fluxes of momentum, heat, and fresh water. The 

observations are assimilated using an Optimal Interpolation (OI) scheme.  

Ensemble methods have been applied to the Parallel Ocean Program (POP) 

ocean model by researchers at NCAR 

[http://www.image.ucar.edu/DAReS/Presentations/]. In their assimilation, they 

encountered problems with an under-represented ensemble spread. They initially used 

identical forcing for each ensemble member, but have since adapted the forcing to 

include influence from an atmospheric ensemble. 

[http://www.image.ucar.edu/pub/DART/2010/2010_CESM_Breck_TJH.pdf] 

Keppenne et al have developed an Ensemble Kalman Filter and applied it to 

the Poseidon model using operational data sources of temperature and SSH. [KR08] 

They use the Bloom [BT96] method of IAU on a uniform 576x538x27 grid. They 

assumed 0.5ºC error for temperature profiles and 1.4 cm error for SSH. An 

observation window of 6-days is used for an analysis cycle of 4-days. A thorough 

review of ensemble analysis methods prior to 2003 is given Evensen in [E03]. 
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Chapter 2:  Developing the LETKF System for the Global Ocean 

2.1 Motivation 

Main Points: 

• Naive application of the LETKF algorithm to the ocean model is inadequate to 

generate a reliable and accurate reanalysis. The ensemble spread collapses for 

fixed inflation values that are too small, or diverges for fixed inflation values 

that are too large. Spinup is a problem, especially due to the sparseness of 

available observations. 

• The sparse observation network presents difficulties not typically encountered 

in synoptic scale atmospheric data assimilation. (As identified by [LKM08], 

analysis sensitivity to observations increases with lower observation coverage) 

• Unlike atmospheric models, ocean models are highly influenced by surface 

forcing. Thus, adequate representation of forcing and forcing errors is 

necessary. Land/sea boundaries cause additional complications. 

• Depending on the desired application, different configurations of the LETKF 

assimilation system may be desirable (IAU for smooth reanalysis and model 

bias correction, RIP for near-term forecasting, QOL for forecasting with 

computational constraints, Hybrid method for balancing the benefits of all 

methods and exploring greater solution space) 

The main purpose here is to determine a practical framework for 

implementing an oceanic data assimilation scheme that is easy to implement, is 

computationally efficient, and that scales well to high dimensional systems (on the 

order of 107) and a wide range of observations (e.g. from 102 to 105). The sequential 
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Ensemble Kalman filter (EnKF) is the general approach used. The Local Ensemble 

Transform Kalman Filter (LETKF) is the specific variant proposed [HKS07], which 

borrows ideas from the Local Ensemble Kalman Filter (LEKF) of [OH04] and the 

Ensemble Transform Kalman Filter (ETKF) of [BEM01]. 

Various spaces are defined: the model space, with dimension m; the 

observation space, with dimension l; the ensemble space with dimension k. Generally 

m >> l >> k, but this need not be the case. A mapping H is defined from the model 

space to the observations space so that operations may be performed in the 

observation space. Here H is an interpolation operator, but it may also perform 

physical transformations to convert model parameters to observed quantities. Thus, it 

may be linear or non-linear, depending on the application. 

Using a maximum likelihood approach, a cost function is generated for the 

background model state (represented by xb) and the current observations (represented 

by yo). Namely, 

 . (1) 

Pb and R are the covariance matrices for the background and observations, 

respectively. Observations are assumed to have random errors with zero mean, 

therefore if , where ε is a Gaussian random variable, then R is the 

covariance matrix associated with ε,  defined . And we assume that the 

outer product of the perturbations of the ensemble of forecasts about its mean 

approximates the error covariance matrix of the state estimate. That is, 

, where the columns of Xb are the perturbations from the 

! 

J x( ) = x " x b[ ]
T

Pb( )
"1

x " x b[ ] + yo "H x( )[ ]
T

R "1 yo "H x( )[ ]
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yo = H x t( )( ) + "

! 

R = E(""T )
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background mean . The covariance matrices effectively weight the background and 

observations based on the estimated uncertainty in each. 

The desired output of this data assimilation procedure is an analysis ensemble, 

 with the associated mean, , and analysis 

covariance, , where again the columns of Xa are the 

perturbations from the mean .  

2.2 Local Ensemble Transform Kalman Filter 

The method used to determine the analysis ensemble differentiates a number 

of the data assimilation methods. LETKF is one of a series of methods classified as 

ensemble square root filters that use deterministic algorithms to generate an analysis 

ensemble with the required sample mean and covariance. The key advancement 

offered by LETKF is the combination of localization and transformation applied to 

the data assimilation process. (Refer to the summary in Chapter 1) 

Because there are typically many more state variables than there are ensemble 

members (by multiple orders of magnitude), the ensemble covariance in this form is 

rank deficient and has large terms for pairs of points that are spatially distant. Since 

the values of physical fields at distant locations should not be significantly correlated, 

the covariance matrix is weighted with decreasing significance as distance from each 

grid point increases, which gives rise to localized EnKF algorithms. Some of these 

methods modify the covariance matrix used in the computations, others (e.g., LEKF), 

perform the analysis locally in space. As a result, the analysis ensemble is no longer 

! 

x b
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made of only a linear combination of the background ensemble, but instead comprises 

many different linear combinations of small portions of the background ensemble.  

To see the need for transformation, note that by definition 

 has rank at most k-1 and is therefore not invertible. However 

because it is a symmetric matrix, it is 1-to-1 on its column space S [HKS06]. S is also 

the column space of Xb, the space spanned by the background ensemble perturbations 

from the mean. However, Xb has been defined so that the sum of the columns is zero 

(recall it is a set of Gaussian perturbations with mean 0). One can regard Xb as a 

linear transformation from a k-dimensional space S` onto S. Thus if w is a vector in 

S`, then Xbw is in S and  is the corresponding vector in model space. 

Therefore, the analysis can be performed in the space S` and transformed back to the 

space S to determine the appropriate analysis ensemble. 

In ensemble methods, the dimension of the solution is limited to the size k of 

the ensemble. Localization improves the situation. “By allowing the local analysis to 

choose different linear combinations of the ensemble members in different regions, 

the global analysis is not confined to the k-dimensional ensemble space and instead 

explores a much higher dimensional space.” [HKS07] It further reduces correlations 

between distant locations that are most likely spurious. 

EnKF methods tend to underestimate uncertainty in the model, partially due to 

unaccounted-for model error. As this phenomenon occurs recursively, over time the 

analysis under-weights the observations. Thus, an ad hoc method of inflation is often 

used in practice on the background covariance. Current implementations of LETKF 

! 

Pb = k "1( )"1X b X b( )
T

! 

x = x b + X bw
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use a multiplicative inflation approach, though [Ka09] has also used additive 

inflation. 

For operational-scale atmospheric applications, the 4D-LETKF algorithm has 

been implemented with the National Center for Environmental Prediction’s (NCEP) 

Global Forecast System (GFS) model by [SKG07]. This implementation was 

validated against NCEP’s implementation of 3D-Var, called Spectral Statistical 

Interpolation (SSI). Observations were assimilated every 6 hours on a 192 x 94 x 28 

grid (about 500,000 grid points). Local patches of as high as 7 grid points were used. 

Experiments were run on a Beowulf cluster of 40 3.6 GHz Intel Xeon processors. The 

assimilation of a typical observational data set (about 330,000 observations) took 

about 9-10 minutes, 14-16 minutes, and 24-27 minutes for a 40, 60, and 80-member 

ensemble, respectively. A later implementation was designed and applied to the Earth 

Simulator AGCM by [MY07] and with the Japan Meteorological Agency (JMA) 

global model by [MS07] and [MSK10]. This implementation contains numerous 

advancements, including a distance-based Gaussian localization function [MYE07] 

and an adaptive inflation procedure [M11], and thus was selected for this study. 

2.3 Ocean 

The Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model (MOM) 

is a 3D primitive equation model that was based on work done since the late 1960’s, 

and was first released in 1990 as MOM 1. Improvements were made on the design of 

this system and it was released in 1995 as MOM2. MOM2 has four prognostic 

(predicted) variables calculated at all levels: temperature, salinity, and velocity in the 

zonal and meridional directions. All other state variables are determined from these 
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prognostic variables, thus these are the primary variables of interest when working 

with the time evolution of the model. MOM version 2.4 was used for all simulation 

experiments, utilizing the model parameters as defined in [Carton et al 2000a]. 

MOM2 uses finite differencing applied to the primitive equations governing 

ocean circulation: the Navier-Stokes equations using the Boussineq (replacing mean 

ocean density profile ρ0(z) by the vertically averaged value ρ0 = 1.035 g/cm3), 

hydrostatic (implying the vertical pressure gradients are due to density variations 

alone, i.e. Δp = ρ g Δz) and rigid lid approximations (to filter out external gravity 

waves, though there is an option to solve with a free-surface boundary, or coupled 

with an atmospheric model). The thin shell approximation is also made. The Coriolis 

and viscous terms involving vertical velocity in the horizontal momentum equations 

are ignored. [P96] 

The continuous equations used by MOM2 in spherical coordinates are: 

 !! + ! ! − !"  !"#$
!

− !" =   − !
!!!⋅!"#  !

!! + !!!! ! + !! (2) 

 !! + ! ! + !!!"#$
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 where T is potential temperature and S is salinity, u is zonal velocity, v is 

meridional velocity, w is vertical velocity, p is pressure, ρ is the potential density, g is 

the mean gravity (980.6 cm/s2), a is the mean radius of the Earth (6370 x 105 cm), κm 

is vertical eddy viscosity (cm2/s), κh is diffusivity coefficient (cm2/s), Am is horizontal 

eddy viscosity (cm2/s), Ah is horizontal diffusivity coefficient (cm2/s), F is horizontal 

friction, and L is advection. 

 Boundary conditions are supplied at the ocean surface for heat, salt and 

momentum. At the sides the boundary conditions are set as no-slip no-flux for heat or 

salt. At the ocean bottom there is a no-flux condition for heat and salt, while 

boundary conditions on the horizontal velocity may either be free-slip or linear 

bottom drag. If the model is started from scratch, then initial conditions are required 

to specify a density structure via potential temperature and salinity with zero velocity 

(i.e. ocean at rest). Potential temperature T is the temperature of a parcel of water at 

the sea surface after it has been raised adiabatically from some depth in the ocean. 

[S05]. Potential temperature is used for two reasons: (1) local stability is dependent 

on potential density gradients, and (2) both salinity and potential temperature are 

materially conserved tracers in an adiabatic ocean. 

 Time integration in MOM is done with the leapfrog scheme but uses an 

occasional Forward Euler step to eliminate the computational mode. 

[http://www.ocean-modeling.org/docs.php?page=GFDL-MOM] A restart procedure 

allows the model to be stopped at each time step, output all prognostic oceanic state 

parameters, and restart using this data file combined with a Forward Euler finite 

differencing scheme. While the model uses a 3-timestep scheme, only 2 timesteps are 



 

 16 
 

stored in the restart file. To perform a traditional update of the initial conditions, the 

two timesteps are differenced, the new model state is updated in the most recent 

timestep, and the difference is added back on to determine the older timestep. This 

means that the tendencies are not analyzed. An additional I/O functionality was added 

to allow a steady forcing term added onto the prognostic equations in order to 

implement the Incremental Analysis Update (IAU) of [BT96]. 

The key fields of interest are the prognostic variables. All diagnostic variables 

are derived from these. Prognostic fields available in the restart option include the 

following fields for two consecutive model timesteps: 

• Temperature (T) in degrees Celsius 

• Salinity (S) as a deviation from 0.035 g/cm3 

• Zonal velocity (u) in cm/s 

• Meridional velocity (v) in cm/s 

MOM2 utilizes a ‘memory window’ to reduce the use of volatile memory 

during runtime. This approach places much less restriction on the actual grid size 

computable with the model. The data for each grid point is read into memory along 

rows of latitude, by default 3 rows at a time (a larger window may be selected if 

desired). These rows are then used to calculate central differencing formulas, and 

from that point, a single row can be read into memory at each new time step, 

replacing one of the oldest of the previous rows in memory while the other two are 

shifted in the time index. 

Much of the ocean data necessary for computation is read in from databases 

containing historical data. These include ocean bottom topography, surface wind 
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information, sea surface temperature, boundary sponge layers, and a variety of other 

fields. 

The MOM2 implementation used in this study uses a 130x362x20 grid with 

periodic boundary conditions, using an approximate 1º horizontal resolution with 

higher horizontal resolution near the equator and 15m vertical resolution near the 

surface. The longitude grid overlaps at the endpoints. Levitus climatology [LB94] of 

temperature and salinity is used to form a sponge layer on the northern and southern 

boundaries at about 60ºN and 60ºS. Bottom topography is included. Monthly average 

surface winds from NCEP reanalysis [K96] centered at the middle of each month 

were linearly interpolated to the model time.  

The main observation datasets prior to the introduction of the Argo floats in 

1999 are profile measurements of temperature from mechanical bathythermographs 

(MBTs), expendable bathythermographs (XBTs), conductivity-temperature-depth 

devices (CTDs), measurements from thermistors, reversing thermometers and salinity 

from CTD and station measurements obtained from the World Ocean Database 2005 

[http://www.nodc.noaa.gov/OC5/WOD05/pr_wod05.html]. The XBTs infer depth 

and drop rate, which make them subject to random systematic errors that increase 

with depth. [CCC00a].  Additional data includes moored thermistor chains, stations, 

and ship intake temperatures. A historical record of subsurface temperatures from 

these sources is provided by [CCC00a] and is reproduced here in Figure 1. Sea surface 

temperature data were not used in order to reduce the computational costs of the 

many experiments that were run, while still providing an adequate comparison of the 

various assimilation approaches.  
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Figure 1. Distribution of combined subsurface temperature observations at 75 m. [CCC00a] 

The Argo float network (Figure 2) is a globally distributed array of floats that 

profile temperature and salinity in the upper 2,000 m of the ocean at approximate 10-

day intervals. Between 2000 and 2007 the network was brought up to about 3,000 

operational free-drifting floats. [http://www.argo.ucsd.edu/] “The float program and 

its data management system began with regional arrays in 1999, scaled up to global 

deployments by 2004, and achieved its target of 3000 active instruments in 2007.” 

[RJR09] 
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Figure 2. Historical Argo coverage in the years 2001, 2004 and 2009. The colors in the Jan. 
2009 plot indicate the various source countries of the floats. [RJR09] 

Satellite altimeter sea level is available continuously since 1991 from a 

number of satellites (T/P, ERS1/2 and Jason).  Monthly combined, gridded estimates 

of sea level obtained from the French Aviso were kept out of the assimilation 

procedure so that they could be used for validation of the assimilation experiments. 

The introduction of these satellite data sources is depicted in Figure 1. An example of 

instantaneous altimetry sea surface height (SSH) data is shown in Figure 3. 
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Figure 3. Average Topex altimetry SSH anomaly for January 2000. 

2.4 Implementation of the Data Assimilation System 

Implementation of the oceanic LETKF data assimilation system was performed in 

three steps: design, verification and validation, and historical reanalysis. This chapter 

will focus on the steps required to create a working data assimilation system with 

LETKF – primarily the design, verification and validation stages. Historical 

reanalysis is the primary goal of this research, and that discussion will be presented in 

Chapter 3. 

 The LETKF data assimilation system is composed of multiple components 

that interact with each other throughout the analysis cycle. These components include 

the LETKF System, which prepares and runs the core LETKF algorithm, the ocean 

model, the observation network, an initialization routine, and an overall control script. 

The LETKF System is the encompassing code that prepares all parameters 

and input data in the format required by the LETKF Core algorithm. The LETKF 

system was designed and coded by Miyoshi [http://code.google.com/p/miyoshi/]. The 

model-specific components of the interaction between the model and assimilation 

algorithm are located here. Many of the adaptations required to use LETKF with an 

ocean model were performed at this level. Some of the changes included converting 
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to the MOM2 model grid, changing the vertical coordinates from pressure to fixed 

depth, designing new filters for observation data (e.g. removing points in lakes and 

unmodeled ocean areas, removing points outside of the range 60ºS to 60ºN, 

transferring quality control to a preprocessing step), customizing the localization 

scheme, outputting additional diagnostic metrics, bypassing computations over land 

grid points, adapting interpolation procedures. 

The LETKF Core contains the primary algorithm as described in [HKS06] 

and coded by Miyoshi, applied to a model grid point after localization has been 

performed. Modifications to the LETKF Core algorithm have been researched and are 

discussed in Chapter 4. However, for this reanalysis effort the LETKF Core has been 

used without modifications. 

The observing network is provided by historical data as a compilation of ship 

track, XBTs, CTD’s, Argo Floats, and satellite data compiled by [CCC00b]. As was 

performed for SODA, the data is averaged into 1x1 degree bins and vertically 

interpolated to the MOM2 model levels. Prior to use by LETKF, an estimated 

observation error is assigned to each individual observation. The data are prepared for 

input into the LETKF System’s required input format. The observation error profiles 

are discussed in section 2.5.7. 

The MOM2 model is used for forward iteration of the system state and is 

applied one or more times in each analysis cycle, depending on the approach used. 

Typically, the model is applied to the output ensemble generated by LETKF, and 

each member is run forward in parallel to generate a forecast that can be compared 

with the observations during the next 4D-LETKF analysis cycle. 



 

 22 
 

To generate an initial ensemble for the data assimilation system, the model is 

run from climatological temperature and salinity initial conditions (zero velocity) 

starting January 1, 1970 using NCEP derived surface boundary conditions and a 

climatological sponge layer at 60ºN and 60ºS. This run also served as a baseline 

‘Free-Run’ for comparison with assimilated results. 

An initialization routine was used to create customized initial ensemble sets. 

The initial ensemble was created as a linear combination of a base Free-Run 

corresponding with the experiment start date and various Free-Run run data from past 

historical dates. Specifically, starting one year prior to the experiment start year, a 

selection of days was taken at the base day (e.g. Jan. 1), and 25 days before and after 

the base day. Further ensemble members were added by stepping backward one year 

at a time until all members were generated for the required ensemble size. The 

proportion of each historical day used in the linear combination was parameterized as 

 1− !! !! +   !!!! , ! = 1,… , ! (9) 

where x0 is the model state on the base date, xi is the perturbation state of ensemble 

member i, and αs is the proportion of the perturbation state data to use. Though 

various values were tried, the experiments listed here used αs = 0.5. The initialization 

routine also prepared the surface wind forcing data for the ensemble members. 

The control script was used to initiate and run the data assimilation system. It 

specified the basic parameters of the analysis experiment, managed all file 

manipulation and transfer between components, executed all parallel processing, and 

allowed for halting and restarting of the system during extended experiment runs. The 

basic process is described in Figure 4. 
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2.5 Adaptations for the Ocean Environment 

A number of modifications were made to the baseline LETKF implementation to test 

the benefit of their use in assimilating the global ocean with sparse observation 

coverage. For the analysis cycle, both the widely used meteorological approach of 

adjusting the initial conditions according to the analysis and an incremental approach 

(IAU) [BT96] akin to the nudging method were applied. Various update cycle lengths 

were used: 5-day, 10-day and 30-day analysis cycles. A variety of ensemble sizes 

were used: 10-members, 20-members, 40-members. In some cases, a rolling window 

Background 
Ensemble 

1 2 

k k-1 

3 

… 

Analysis 
Ensemble 

1 2 

k k-1 

3 

… 

LETKF 

Background 
Ensemble 

1 2 

k k-1 

3 

… 

Model 
Runs 

1 

2 

k 

… 

Control Script 

 

Observation Pre-Processing 

Observations 

 Ensemble Wind 
Perturbations 

Initialization Routine 

Ensemble State 
Perturbations 

Figure 4. Design diagram of the Data Assimilation System, depicting one analysis cycle of the 
basic LETKF procedure. 

(At analysis 
cycle t=0) (For all cycles) 



 

 24 
 

of observations that extended beyond the analysis cycle was used to provide loose 

bounds on the analysis solution. The running-in-place (RIP) method [KY08] was 

utilized in some cases to accelerate convergence of the filter. 

 Critical to preventing filter divergence in all cases was the implementation of 

Adaptive Inflation [M11]. Due to the sparse and constantly shifting nature of the 

oceanic observation network, this method also required a modification that applied 

relaxation of the inflation parameter in the instances of accelerating growth in the 

background covariance. 

A nearly unmodified version of LETKF was run to demonstrate the 

difficulties with using the basic atmospheric LETKF approach for the oceanic 

domain. Figure 5 illustrates the result. A 10-day, 40-member ensemble with 5% 

inflation is shown in comparison to the Root Mean Square Deviations (RMSD) for 

the free run. While improving the results at first, as the ensemble spread collapses the 

trajectory actually becomes much worse than the free run in tracking the 

observations. As the observation error is prescribed in advance, a collapsing ensemble 

spread effectively negates any contribution to the analysis that the observations might 

have provided. 

 Thus the following questions arise: How can one maintain the proper balance 

between the observation error and the background error so that each contributes an 

appropriate amount to the analysis? Is it possible to outperform the free-run? Is it 

possible to perform well enough so that the RMSD between the forecast and 

observations are steadily improving until within the range of the combined errors of 

the observations and background? Given that the ocean is a heavily forced system, is 
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it still possible to correct the state in a way that will not be overwhelmed by the effect 

of the forcing terms? Many of these questions will be answered in the sections that 

follow. 

 
Figure 5. RMS errors for a baseline run of the basic LETKF algorithm blindly applied to the 
MOM2 model, with only minor adjustments to allow LETKF to run with the ocean 
environment without model crashes. 

2.5.1 Incremental Analysis Update 

Applying changes to all prognostic variables in the initial conditions causes temporal 

discontinuities in the overall historical reanalysis. To avoid this phenomenon, analysis 

updates were added to the prognostic equations in small increments at each model 

integration time step. Following the approach of Bloom [BT96], a forecast run is 

performed and an analysis centered at the middle of he analysis cycle window is 

computed. Next the analysis increment is divided by {length of analysis cycle in 

days}*24*60*60 (for days, hours, minutes, seconds) is multiplied by the model time 

step dtts (which equals either 3600 or 7200 seconds) and finally added at each dtts-

second time step of the MOM2 model. 
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As discussed in relation to its use by SODA, “This procedure, in effect a form 

of digital filter, has the advantage of maintaining a nearly geostrophic relationship 

between the pressure and velocity fields with a minimum excitation of spurious 

gravity waves. The procedure also reduces bias in the forecast model by 50% relative 

to the forecast bias when the incremental analysis update procedure is not used.” 

[CG08] Similar effects of bias correction were found in the application of LETKF-

IAU. 

MOM2 computes transport from one model time step to the next through the 

combination of diffusion and advection terms for each grid cell T, 

  (10) 

where D() represent diffusion in the cell, and A() represents advection in the cell. The 

scaled analysis increment ainc was added as an additional term to this model 

integration step, 

 , (11) 

where in order to convert the analysis increment to the timescale of seconds, (where 

dt = 3600 s) 

 !"#$ = (!! − !!)/(! ∗ 24 ∗ 60!) (12) 

Utilizing IAU was also an effective way of accounting for model bias, 

particularly in the longer analysis cycle (e.g. up to 30-days). A significant 

hemispherical bias was found to be present in the model forecasts, possibly due to 

bias in the surface forcing, either having a strong warm bias in the northern 

hemisphere and cold bias in the southern hemisphere, or vice versa. 

! 

t"+1 = t"#1 + 2dt D(Tx ) +D(Ty ) +D(Tz) # A(Tx ) # A(Ty ) # A(Tz )[ ]

! 

t"+1 = t"#1 + 2dt D(Tx) +D(Ty) +D(Tz) # A(Tx) # A(Ty) # A(Tz) + ainc[ ]
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2.5.2 Running in Place 

As an alternative to the IAU approach, Running-in-Place (RIP) [KY08] was also 

applied to LETKF, which will be designated LETKF-RIP. This approach more 

closely mirrors that of the meteorological applications, in that it directly adjusts the 

initial conditions of the ensemble members. However, the method allows one or more 

iterations of the analysis cycle over the same time period. It proceeds by applying the 

weights from the LETKF analysis computed for the end of the analysis cycle to the 

background at the beginning of the cycle. This is valid if the analysis cycle is short 

enough to have approximately linear growth of the errors. Because the new 

background ensemble was influenced by ‘future’ observations, the background 

ensemble has thus effectively been re-centered at a more accurate mean state 

estimate. Small Gaussian noise (calculated as a Gaussian random variable between 0 

and 1, scaled by the background mean state multiplied by 10-5) is then added to the 

new background ensemble members. This has dual benefits of decoupling the 

background ensemble from the observations that were just used, as well as creating 

potential for the ensemble to find solutions outside of the linear space spanned by the 

original ensemble. While this procedure could be iterated many times per cycle, only 

one additional iteration of the RIP procedure was used for this study. 

2.5.3 Managing a Sparse Observation Network 

Observations are available on a daily basis, but prior to the introduction of the global 

Argo observing network the data distribution is very sparse. A representative example 

of the observation distribution over five days in 1990 is shown in Figure 6. 
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Figure 6. Horizontally binned observed temperature data in a 5-day bin centered at Jan. 1, 
1990. 

 A number of approaches were used to manage this situation temporally. 

Because SODA used an extended observation window that included observations 

within +/- 45 days, a similar approach was attempted with LETKF with a 5-day 

analysis cycle and +/- 25-day window of observations (Figure 7). This resulted in the 

Extended Observation Window version of LETKF (LETKF-EOW), which is 

discussed in the appendix. The approach has two drawbacks. First, it reuses the 

observations numerous times (between 1-11x, depending on quality control measures 

relating to the distance from the background ensemble mean state to the observed 

value), which can result in over-fitting the observations and causing a collapse in the 

ensemble spread. This is not a problem for SODA because its background covariance 

is constant in time rather than dependent on the analysis. Second, it uses ‘future’ 

observations (as does SODA) that occurred after the analysis cycle, which is 

acceptable for reanalysis but limits the conclusions that can be drawn for using 

LETKF as a forecasting tool.  
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Figure 7. Historical temperature observational coverage, including 5-day analysis cycle and 
25-day extended radius before and after the analysis cycle centered on March 14, 2001. 

An alternative approach (LETKF-IAU) applied IAU over a longer 30-day 

analysis cycle window, thus including more observations within the analysis without 

the potential pitfalls of reusing the same observations across multiple analysis cycles. 

Finally, the RIP approach was used on a 5-day analysis cycle window. In this 

approach (LETKF-RIP), each observation is reused once, but random errors are 

applied to the background ensemble to reduce the chance of over fitting the 

observations. 

Spatially, the localization approach used by LETKF allows the grid points 

near observations (within a range of the localization radius) to be adjusted toward the 

observations, with somewhat less impact as the points that are adjacent to the 

observations (as defined by a Gaussian weighting function). Thus the specific 

localization approach used plays a large part in how the system utilizes the available 

observations. 

2.5.4 Surface Forcing Fields 

Ocean models are highly influenced by forcing that is introduced through the surface 

and boundaries. This forcing comes in the form of wind stress, radiative heating, and 

fresh water flux via precipitation and evaporation at the surface. On the boundaries, it 
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comes through fresh water river deposits from coastal areas and freezing/melting ice 

in polar regions. 

The wind fields demonstrated a significant influence over the evolution of the 

MOM2 ocean model. This was most evident when observing the perturbed ensemble 

runs with identical wind fields, in which all ensemble members collapsed toward the 

nature run within 1 year of simulation time. Thus, an approach was required which 

would maintain variation in the ensemble members to ensure a non-collapsing 

ensemble spread. 

 A collection of wind data was taken from the identical month in randomly 

selected years, and then iterated forward in time to the end of the experiment period 

to ensure continuity of the forcing perturbation in time. A percentage of these wind 

fields was combined with the NCEP reanalysis wind field to create an ensemble of 

wind fields. This perturbation was added to half of the ensemble members and 

subtracted from the other half to result in an ensemble mean that was equal to the 

base nature wind field. 

The wind forcing was parameterized as a linear combination similarly to the 

initial ensemble members, 

 1− !! !! +   !!!! , ! = 1,… , ! (13) 

where w0 is wind data from the base year, wi is the wind forcing of ensemble member 

i, and αw is the proportion of the historical perturbation to use. A variety of values 

were used for αw, from 0 (no wind perturbations) to 1 (completely different historical 

winds used for each ensemble member). Large values of αw caused extreme ensemble 

spreads near the surface in areas such as the Gulf Stream and Kuroshio Current. 
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Because the model is sensitive to fluctuations of the surface forcing, and the ensemble 

was intended to contain slight perturbations of the mean wind field (which was 

equivalent to the NCEP reanalysis), smaller perturbations were used (αw=0.1). 

Additional discussion of this selection is in Section 2.6. 

2.5.5 Land/Sea Differentiation 

A land/sea map was coded into the LETKF system to ignore non-modeled grid points, 

including landmasses, lakes, and areas of the ocean not included in the model. There 

is also the difficulty of applying localization to areas that are not connected water 

masses. For example, points in the Gulf of Mexico and the Pacific Ocean are usually 

within the range of the localization radius of grid points off the coast of Mexico. 

Therefore unless further steps are taken, the background error determined at a grid 

point in the Gulf of Mexico is affected by the values of grid points and observations 

in the Pacific, and vice versa. 

A basic table-lookup was applied to the Pacific, Gulf of Mexico and 

Caribbean to identify points that were in separate basins to prevent observations being 

used from non-local regions. An automated approach that has been developed to 

apply localization in a general domain with constraints is discussed in Chapter 4. 

However, this approach has not yet been implemented in the assimilation system. 
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2.5.6 Extrapolation of Coastal Ocean Data 

The three-dimensional interpolation scheme of LETKF caused large errors near the 

coasts because the land grid points were treated as zero-valued. The simplest solution 

to this problem would be to drop any 

observations that occurred at these 

boundary points. However due to the 

scarcity of observations, it was 

preferable to keep as many quality 

observations as possible. One solution 

for keeping these observations would be 

to design an ad hoc interpolation scheme 

that uses a customized interpolation for 

each possible configuration of land and 

ocean points near the coasts. Instead, a 

general technique was designed to 

manage these land points, and is 

described below. 

 The points of the ocean grid and 

land grid were separated. The ocean grid was then ‘shaken’ by n gridpoints (for 

example n=1), in 3 orthogonal directions. In all places where this grid overlapped 

with the land grid, the values were averaged together, thus creating an extrapolated 

value on the coastal boundary points. These extrapolated values were then used for 

interpolation of the model grid to the observation space with the H operator. The 

pseudo-code is given in the Appendix. 

Figure 8. Profiles of scaled standard error 
used by LETKF for temperature and 
salinity observations. Values are plotted at 
model levels up to 1100 m. 
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2.5.7 Pre-Processing of Observations 

The MOM2 model was used with an approximate grid resolution of 1-degree. 

However given the sub-grid scale ocean dynamics, patterns in the observational 

values may not be resolved by the model. In this case, it is preferred to average out 

these fluctuations so that the model can resolve this generalization of the data. 

Consequently, the observations were binned and averaged on a 1x1 degree grid. 

 As input, SODA requires observations on a 1x1 degree grid. Because LETKF 

interpolates the background state to the observation locations, the binned super-

observation approach is not necessary for LETKF to generate an analysis. However 

reducing the set of observations in a densely covered region to a small set of 

representative averages, accounting for adjustments in the error characteristics, 

reduces the computational burden on LETKF. 

Observation errors were assigned based on profiles calculated from high-

resolution SODA reanalysis, given in Figure 8. While instrument error typically 

increases with depth, mixed layer dynamics often cause a greater degree of 

representation error that dominates the error characteristics of the observations. The 

best standard error on modern instrumentation is 0.001º C for temperature and 0.02 

psu for salinity [S05]. However, the error profiles calculated from a high-resolution 

SODA run for temperature super-observations range from 0.25º to 0.85º and for 

salinity from 0.1 to 1.1 psu, indicating that the representativeness error dominates the 

error profile. 

 Because the SODA analysis used observations grouped in 5-day bins, but 

LETKF used observations binned daily, the prescribed observation error was scaled 

down (multiplied by 0.625) to account for some reduction in temporal 
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representativeness error (Figure 8). Such a possibility was mentioned in Step 4 of the 

LETKF algorithm in [HKS06]. This can be thought of as a form of inflation, by 

increasing the weight of the observations prior to the analysis. 

2.5.8 Utilization of Adaptive Inflation for Sparse Observation Networks 

Inflation is an empirical approach for countering underestimation of background 

covariance, a common problem in ensemble data assimilation systems due to the 

limited sample size of the ensemble, model error, and nonlinearity. If using a perfect 

model, with a large ensemble size, the forward integration of the computation model 

should provide enough growing dynamic instability to create the necessary increasing 

spread in the background ensemble covariance. However, the ocean has lower 

instability on the larger spatial scales that are captured on the approximately 1x1 

degree grid resolution and the 5-10 day analysis cycle within the data assimilation. 

This is exacerbated by the fact that surface forcing plays a dominant role in the 

evolution of the ocean state. Furthermore, the highly unstable ocean eddies that 

dominate the ocean dynamics are not resolved at this grid resolution. [S05] 

Due to the sparse distribution of observations in the historical record, the use 

of a constant inflation parameter would lead to steady growth in the background 

variance in any region without observation coverage. In the deep ocean, where no 

observations are present, this would cause unphysically large error and eventual 

model blow-up (Figure 9, Figure 10). In areas of the upper ocean this would cause 

growing errors in much of the southern hemisphere and some specific areas of the 

equatorial regions and northern hemisphere, especially prior to the introduction of the 

Argo network. 
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Figure 9. Various levels of inflation for basic LETKF with a 10-member ensemble using 
10%, 100% and adaptive inflation initiating at 0%, calculated over the entire domain. For 
constant inflation parameters, the model blows up after 2 months with 100% inflation. Using 
10% inflation merely delays this effect to 21 months. With adaptive inflation the model blows 
up at 11 months, but with relaxation it is extended indefinitely. 

 

 
Figure 10. Growth of background spread at 3000 m depth. Shown over 9 months from 1/1/97 
to 9/14/97 for 10% inflation and over 3 months (just before model blow-up) from 1/1/97 to 
3/6/97 for 100% inflation. Observations are only present to depths of 1000 m, thus the spread 
will grow unchecked until it is outside of model parameters and causes a model crash. At that 
rate, the 10% case is expected to cause a model blow-up after about 18 months. 

Model blow-up 

10% inflation, after 9 months 100% inflation, after 3 months 
 

adaptive inflation, after 11 months 10% inflation, after 21 months 
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 An adaptive inflation procedure, developed by Miyoshi [M11], was chosen to 

ensure inflation was automatically tuned and applied only to the regions in which 

observational information was present (Figure 11). The method was designed 

assuming observation coverage constant in time and had a tendency to generate 

increasing background covariance in areas where observational coverage was limited 

in duration. This required that I modify Miyoshi’s technique to relax inflation values 

where the observation coverage dropped from one cycle to the next. 

 
Figure 11. Adaptive inflation after 4 months for 10-member LETKF. (0-400% inflation) 

 For each grid point, the ratio of analysis ensemble spread to background 

ensemble spread was computed. A value between 0 and 1 indicates that the spread 

was reduced by the analysis, which was typical for the first 10 analysis cycles. After 

about 10 analysis cycles, the analysis usually increased the ensemble spread over the 

background. When combined with a growing inflation, this tended to cause LETKF to 

diverge, particularly in areas devoid of observations (as shown in Figure 12).  This 

phenomenon could likely be reduced by the use of satellite SST data, particularly 

because this growth is most prevalent near the surface levels. Though, it does occur at 

lower depths as well and will likely still require relaxation. 

Surface (7.5m), 4/3/97 
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Figure 12. Background ensemble spread of Temperature (ºC) at the surface (shaded contours) 
and observation locations (gridded) at analysis cycle t=21 (Apr. 13, 1997) in the Equatorial 
Pacific. As observations appear, they cause positive inflation. If those observations disappear 
in a later analysis cycle, the inflation continues to compound and generates larger and larger 
ensemble spreads. The areas with background spread greater than 2 had inflation rescaled to 
prevent filter divergence. 

To counter this problem, the inflation parameter was divided by the ratio of 

the analysis ensemble spread to background ensemble spread at every grid point for 

which the latter ratio was greater than 1. This effectively reduced the impact of the 

inflation at all locations where it was the most likely to cause growing errors, and 

prevented filter divergence. However, results showed the benefit of the adaptive 

inflation was greatly reduced, as reflected by an increase in overall RMS error. Thus a 

limit was introduced that only applied inflation relaxation to areas where the 

background spread was greater than a specified value. Using a limit of 2ºC (applied at 

all depths) for the temperature spread was effective in maintaining the benefits of 

adaptive inflation while still preventing filter divergence. 
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Figure 13. Adaptive inflation parameter. Shaded regions between 1 and 2 (0-100% inflation) 
and contoured regions from 1 to 10 (0-900% inflation) at 97.5 meters depth, for December 
14th 1997.  

Results of applying adaptive inflation are shown in Figure 13 and Figure 14 

for depths of 97.5 m and 443.79 m, respectively, after about 1 year of model time. 

Values between 1 and 2, representing an inflation of 0 to 100 percent, are shaded. 

Values from 1 to 10, representing an inflation of 0 to 900 percent, are contoured. Note 

that the peak inflation occurs in the more dynamically unstable regions, such as the 

equatorial regions, the Gulf Stream, and the Kuroshio Current. The density of 

observations available in a particular area also influences the adaptive inflation. As a 

result, the inflation can be seen to follow some of the ship tracks across the Pacific. 

 
 

Figure 14. Adaptive inflation parameter. Shaded regions between 1 and 2 (0-100% inflation) 
and contoured regions from 1 to 10 (0-900% inflation) at 443.79 meters depth, for December 
14th 1997.  
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2.5.9 Localization as a function of Latitude 

Before the introduction of the Argo Float observing system, the collection of 

temperature and salinity observations were isolated to specific regions, primarily 

dictated by ship tracks. Thus, heavily traveled routes often had many observations, 

while other regions of the world’s oceans had little to no observations for most time 

periods throughout the history of oceanographic record. 

 Previous implementations of LETKF used a constant radius localization 

scheme [MY07] or entered manually according to latitude and depth [HKS06]. For 

the ocean, a variable localization radius was calculated in LETKF as a function of 

latitude, with the largest sigma-radius at the equator (about 301 km sigma-radius, 

maximum extent 1100 km) linearly decreasing to the smallest radius at 60.01º N/S 

(about 82 km sigma-radius, maximum extent 300 km). 

2.6 Verification and Validation 

An important part of the development of any large-scale computation system is 

verification and validation. Some of the experiments used to do this testing are 

described here. Reading and writing a restart file generated by the model validated the 

file I/O interface. The initial file was compared against the resulting file, and it was 

verified that there was no difference in the data. The control script was run without 

activating LETKF and using identical wind forcing to verify that it matched the 

control run. When applying IAU, the individual model time steps were output to 

verify that the analysis was indeed shifting toward the observation at selected points 

(Figure 15). 



 

 40 
 

 
Figure 15. Two consecutive analysis cycles at a selected observation point during the 
execution of the MOM2 model. Using IAU, the analysis is shown to shift gradually toward 
the observed value during analysis cycle 1. In analysis cycle 2, a slightly different observed 
value was recorded. The background for analysis cycle 2 starts where the analysis left off 
from the previous cycle and continues to shift toward the observed value. 

The ensemble forecasts were run with a uniform initial ensemble and various 

values of the wind forcing ensemble weighting parameter αw to identify the rate and 

degree in which initial perturbations grow in the assimilation system. The largest 

possible values were used for αs and αw to examine the behavior at such a level. This 

uses completely different historical state data for each ensemble member and 

completely wrong wind data (randomly selected from the historical record) for each 

ensemble member. At these levels, it is clear the wind forcing dominates, as the error 

structure from the initial ensemble is almost completely reformed by the second 

analysis cycle (Figure 16). 

 



 

 41 
 

 
Figure 16. Background spread of Temperature (ºC) at the surface for an initial ensemble (t=0) 
with a 40-member ensemble generated for Jan. 1, 1990 from historical data sets, with αs = 1, 
and at the second analysis cycle (t=10 days) with αw = 1.  

It was expected that the ensemble would converge given uniform forcing 

applied to all ensemble members. An ensemble forecast was run to verify this 

behavior. Using no observations, and the value αs = 0.1 for the initial ensemble 

perturbations, the ensemble members converged to nearly identical states within 18 

months simulation time (Figure 17).  

 
Figure 17. Background ensemble spread of Temperature (ºC) at the surface for a 4-member 
ensemble generated for Jan. 1, 1997 from historical data sets for t=0 and t=500 days (about 
16 months), using αs = 0.1 and αw = 0. 

 Thus it is apparent that the wind forcing is critical to the model, and an 

appropriate variety of wind forcing fields are necessary to maintain an ensemble with 

a spread representative of the true errors of the system. Using αs = 0 and αw = 0.1 are 

shown in Figure 18. Because the initial spread is 0, this implies the spread depicted 

here is due entirely to variation in the wind forcing field. Note that the spread 

generated by the wind forcing in Figure 18 is similar to that generated by the method 

t = 0 days t = 10 days 

t = 0 days t = 500 days 
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for selecting the initial ensemble shown in Figure 17. This value of αw was chosen for 

the experiments presented in Chapter 3. 

 
Figure 18. Background ensemble spread of Temperature (ºC) at 100 meters for a 4-member 
initial ensemble generated for Jan. 1, 1990 from historical data sets for t=10 and t=200 days 
(about 7 months), using αs = 0 and αw = 0.1. 

Single observation experiments in several isolated areas were used to test the 

impact of the observations on the assimilation system, as shown in Figure 19. The 

horizontal localization radius can be seen to reduce with distance from the equator. 

The second panel in Figure 19 shows the impact of one observation profile throughout 

the top 500 m along the equator. 

 
Figure 19. (a) Analysis increments of temperature (ºC), shown at the surface for 5 synthetic 
observations at grid coordinates: (181,109), (220, 65), (321, 99), (241, 12), and (76, 42). The 
varying radii reflect the latitude-dependent localization radius. (b) Top 500 m vertical cross 
section of the analysis increment at the equator for point (220, 65) in the Pacific from 150W 
to 130W. 

The Bayesian approach to data assimilation is most effective when the 

uncertainty in both the model state estimate and observations is well quantified 

[HKS06]. However, there is unknown error in both the observation network and the 

(a) (b) 

t = 10 days t = 200 days 
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model. Error in the background state estimate usually comes either from uncertainty 

in the initial conditions generated by the previous analysis or model error. For 

example, a prominent hemispheric model bias was noted on the initial conditions of 

the data assimilation (after a 27-year spinup) when compared with the temperature 

observation data (Figure 20). This hemispheric bias is acknowledged but is restricted 

primarily to the surface fields (though other forms of model bias likely exist in the 

model) and should be corrected in part by the data assimilation. 

 
 

Figure 20. Observation minus background Temperature (ºC) at the surface for initial 
ensemble mean, centered at free-run values for January 3, 1997. There is a clear warm model 
bias in the northern hemisphere and cold model bias at the equator and in the southern 
hemisphere. 

The phenomenon shown in Figure 20 is present over time, yet oscillates in the 

northern and southern hemispheres. This is shown in Figure 21. The northern 

hemisphere starts too hot, while the southern hemisphere is too cold. At the middle of 

the calendar year, the bias switches – the northern hemisphere becomes too cold and 

the southern hemisphere too hot. This pattern continues to oscillate, to varying 

degrees, year after year. Each year the winters are too warm and the summers are too 

cold. 
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Figure 21. Observation minus background Temperature (ºC) at the surface from 1997 to 2004 
for the Northern (10ºN to 60ºN) and Southern (60ºS to 10ºS) hemispheres. 

 The equatorial model bias is shown in Figure 22. While it also has an 

oscillating pattern, it seems to be less regular. Overall, there is a pattern of dips that 

hit their bottoms around August-October of each year. The exception is during the 

1997-98 ENSO. 

 

Figure 22. Observation minus background Temperature (ºC) at the surface from 1997 to 2004 
for the equatorial region (10ºS to 10ºN). There is clearly an oscillation, but it is not as 
predictable as the mid-latitudes. 
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2.7 Conclusions for Chapter 2 

When developing and implementing LETKF, it was important to balance many 

factors to obtain an effective assimilation system. For example, the optimal length of 

the analysis cycle window is related the degree of nonlinearity in the model. The 

growth in background error covariance when propagating the nonlinear model should 

approximately match the magnitude of the observation errors. If it does not, then 

inflation is needed to grow the background covariance to a suitable magnitude. The 

size of the localization window is dependent on the number of ensemble members 

available and also on the degree of nonlinearity in the system. 

 In general, the stronger the nonlinearity in the system, the more ensemble 

members are needed, the smaller the localization that should be used, the shorter 

analysis cycle windows that should be used, and the less need for artificial inflation. 

Forcing adds an additional complication. Due to the strong impact that surface 

forcing has on the ocean model, if uniform forcing is used the entire ensemble tends 

toward a single outcome. Thus perturbations were added to the wind fields, taken as a 

small proportion of historical winds added onto the baseline reanalysis winds. 

However, it would be preferable to use the atmospheric reanalysis ensemble members 

directly to populate the forcing for the oceanic reanalysis ensemble. And ultimately, 

assimilating a coupled model is preferable to allow the nonlinear dynamics to evolve 

naturally in an integrated earth system. 

From the results of numerous experiments running various configurations of 

LETKF, the inflation values resulting from the adaptive inflation seemed to give an 

indication of the quality of the analysis. Whether the result or the cause, high inflation 

tended to be correlated with over-fitting of the data. This was most prevalent in the 
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LETKF-EOW method, which required additional safeguards to prevent unphysical 

analysis increments caused by large inflation. The LETKF-RIP method resulted in 

much lower inflation values and required no additional tuning of the analysis 

increment, indicating that the results may be closer to the truth. 

Thus, it may be possible to use the adaptive inflation as a metric for 

identifying when the ensemble methodology is insufficient for the system being 

assimilated. For example, it may indicate that the forcing is not varying sufficiently, 

or that the analysis cycle is too short, or that more ensemble members are needed, or 

that multiple models should be used to generate the ensemble. Of course, there are 

many possibilities. 

Surface wind data will be taken from past atmospheric reanalysis ensembles, 

rather than perturbed reanalysis winds. Beyond that work, coupled ocean/atmosphere 

models are the obvious next step. 
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Chapter 3:  Comparing SODA and LETKF using a Global 
Ocean Model 

3.1 Abstract 

Many advancements have been made in data assimilation in the meteorological 

community, but they have been slow to make their way to oceanic applications. The 

oceanic applications differ from meteorological applications in several important 

ways.  The ocean observation network is extremely sparse relative to the atmospheric 

network and thus presents a severely underdetermined problem. Approaches that 

leverage the information available in the data most effectively are predicted to be 

most successful. Circulation in the ocean is strongly controlled by the surface wind 

field and thus instabilities play a less important role on the basin-scale. 

The leading methods of data assimilation applied to the atmosphere are 4D-

Var and variants of the Ensemble Kalman Filter (EnKF) [E94]. The EnKF benefits 

from the fact that it generates evolving estimates of the background error covariance. 

In addition, the EnKF does not use an adjoint of the linearized ocean model and is 

thus considerably easier and cheaper to implement. There is an additional problem 

that the oceanic implementation of 4D-Var is likely unstable for large time windows 

as one shifts to high eddy resolution because there are many local minima. For these 

reasons, implementation of LETKF has been explored rather than 4D-Var for the 

global ocean problem. Additionally, implementations of LETKF have been shown to 

outperform 4D-Var [YK11]. 
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Main Points 

• LETKF-RIP forecasts outperform SODA in O-F RMSD for temperature and 

salinity. This is shown on a global, regional, and vertical (level-by-level) 

scale. 

• LETKF-IAU forecasts outperform or are on par with SODA in comparisons 

with independent observations, including equatorial zonal current velocity and 

altimetry. LETKF-IAU analyses outperform SODA in O-A RMSD. 

• LETKF is capable of generating an analysis using a small fraction of the 

number of super observations used by SODA per cycle, and without using 

future data. 

• Run-time is obviously more costly with LETKF, given that it is an ensemble 

method. The additional run-time is proportional to the number of ensemble 

members used. 

• LETKF maintains an evolving estimate of the forecast error covariance, and 

information about the analysis error. 

3.2 Introduction 

The purpose of this section is to detail quantitative and qualitative comparisons made 

between the LETKF approach and the SODA benchmark. Two implementations of 

LETKF, LETKF-IAU and LETKF-RIP are presented, along with a Free-Run of the 

model for comparison. A third implementation, LETKF-EOW is discussed in the 

appendix. 
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3.3 Methodology 

GFDL’s MOM2 global ocean model was implemented with both the LETKF and 

SODA data assimilation systems to examine performance over multi-year historical 

periods spanning January 1997 to January 2004. Only temperature and salinity 

profiles were assimilated in these cases. SST, velocity, and altimetry observation data 

were not assimilated. 

The model was started at rest from climatological conditions and run from 

1970 to 2005 to create adequate initial conditions for various runs. Monthly surface 

wind stress and sea surface temperature (SST) data were used from the NCEP 

reanalysis. Climatology was used for sea surface salinity. 

3.4 Simple Ocean Data Assimilation (SODA) 

The Simple Ocean Data Assimilation (SODA) system was developed by Carton et al 

[CCC00a] and originally implemented on the MOM2 ocean model. SODA uses a 

variant of the Optimal Interpolation (OI) assimilation method, minimizing the mean 

square difference between the model and observations. This leads to the interpolation 

equation for the analysis 

!!! = !!
! + !![!!! − !!!

!], (14) 

assuming that there exists a bias !!
!: 

!!! = !!
! −   !!

! −   !!
!

 
(15) 

in which the bias-corrected model state is defined as: 

!!
! = (!!

! −   !!
!)

. 
(16) 
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Using the observation operator Hk, the observation error is defined   

!!! = !!! − !!!!! , (17) 

and includes measurement error, error of representativeness, and error due to 

unresolved physics. With bias being updated by the following equations, using µ 

equal to 0.5: 

gk = µgk!1  (18) 

!! = !! − !![!!! −   !!!!
!]. (19) 

The following equations are solved locally in a series of patches, with alpha equal to 

0.7: 

Kk = (1!!)Pk
f Hk

T HkPk
f Hk

T + Rk"# $%
!1

 (20) 
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f ! gk
f( ) gkf ! gk

f( )
T

. (24) 

SODA uses estimated forecast errors that are varied with latitude and depth, but the 

errors are not updated in time based on the model state evolution as with an EnKF. 

The modern SODA implementation uses the Parallel Ocean Program (POP) 

global ocean model [http://www.atmos.umd.edu/~ocean/PDF/ccsm-2003.pdf], which 

shares its historical evolution with precursors of the MOM model 

[http://climate.lanl.gov/Models/POP/]. Though SODA was once implemented with 

MOM2 [CCC00a], requiring extensive modification of the model code, the system 
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has gone through a number of modifications and improvements since that time and 

has been developed into an external modular package. It was therefore necessary to 

create a new implementation of the modern SODA with MOM2. 

 Observation data was vertically interpolated to the MOM2 model levels. 

Correlation data was also interpolated from 40 POP vertical levels to 20 MOM2 

vertical levels. To operate on the MOM2 forecast data, the model grid must be 

interpolated to the uniform 1x1 degree grid used by SODA. Surface height must be 

calculated by MOM2 diagnostic routines to input to SODA. Climatology from 

Levitus was used to estimate the temperature and salinity relationship, and was also 

interpolated to the MOM2 vertical levels. MOM2 salinity was converted from a 

perturbation value to an absolute salinity value in psu. 

3.5 Experiment parameters 

The following parameters for the LETKF-RIP analyses were used: a 40-member 

ensemble, perturbation of the initial ensemble αs is 0.5 (defined in Section 2.4), 

perturbation of the surface wind field αw is 0.1 (defined in Section 2.5.4), the σb value 

[M11] indicating time smoothing for adaptive inflation is 0.001, inflation relaxation 

(Section 2.5.8) is limited to areas where the analysis spread for temperature is greater 

than 2º C. A 5-day analysis cycle was used. For LETKF-IAU, identical parameters 

were used with the exception of a 20-member ensemble and a 30-day analysis cycle. 

The LETKF analyses were not sensitive to variations in the parameter αs. The 

spread of the initial ensemble was quickly reduced after a few analysis cycles. There 

was some impact over time to the surface levels when using a large wind perturbation 



 

 52 
 

αw. This created increasing ensemble spread in the Gulf Stream and Kuroshio Current 

after months of simulation time. 

Various configurations of LETKF were used (some additional results are 

reported in the Appendix). The ensemble sizes ranged from 40, 20 or 10 members. 

The analysis cycles ranged from 30, 10 or 5 days.  Adaptive inflation and inflation 

relaxation were used with all runs. In some cases, shown in an appendix, an extended 

window was used (LETKF-EOW) to incorporate information from observations 

outside the current analysis cycle. This approach mirrored that of SODA’s treatment 

of observations. 

The observations were binned as super-obs in 1x1-degree horizontal grid, 

vertically interpolated to MOM2 vertical levels. For SODA the observations were 

placed in 5-day bins, while for LETKF the observations were placed in 1-day bins to 

better utilize the 4D-capability of LETKF. SODA used a 45-day radius window of 

observations combined and centered at the analysis time. LETKF-RIP and LETKF-

IAU used observations only within the analysis cycle window. 

For these experiments, LETKF uses a localization range of 1100 km at the 

equator that decreases linearly to 300 km at +/- 60º latitude. The localization range is 

divided by approximately 3.65, giving an effective sigma radius of 300 km and 82 

km, respectively, with respect to the Gaussian localization weighting function. In the 

vertical, a radius of 300 m was used, giving an effective sigma radius of 82 m. 

SODA is not an ensemble method. While LETKF used an input ensemble 

with perturbations applied to the input members and the surface forcing, SODA used 

an initial background from the model spin-up equivalent to the LETKF ensemble 
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mean. SODA used the baseline NCEP reanalysis for surface forcing. LETKF used 

perturbed forcing fields with the mean equivalent to the NCEP reanalysis used by 

SODA. As a result, LETKF is accounting for some degree of error in the model’s 

forcing fields, which can have a significant effect on the model’s forecasts. 

3.6 Analysis Cycle 

The analysis cycle differed slightly among the various configurations of LETKF and 

SODA. The differences are highlighted below in Figure 23, Figure 24, and Figure 25.  

 

 
Figure 23. Schematic diagram of the SODA analysis cycle. For SODA, the analysis cycle 
length is d=10 days. The forecast is run for 5 days, analysis increments are used to generate 
‘correctors’ to the model integration via a forcing term. Finally, a 10-day model run is 
performed incorporating these correction terms, providing initial conditions for the next 5-
day forecast. 

 
 
 
 

 
 

 

T=t    T=t+d/2    T=t+d 
SODA with Incremental Analysis Updates (IAU) 

SODA 

MOM2 

Correctors 

MOM2 
Forecast 

Analysis Background 

Analysis 
Background 

Observations: 
+/- 45 days 
(Effectively 
totaling  
9*d = 90 days) 



 

 54 
 

 
Figure 24. Schematic diagram of the LETKF analysis cycle using IAU. Guided by the 
approach of SODA, correctors are calculated by differencing the analysis centered in the 
analysis cycle and the corresponding background. These values are added incrementally to 
the model integration via a forcing term. 

 
Figure 25. Schematic diagram of the LETKF analysis cycle using RIP. LETKF produces an 
analysis at the end of the cycle and a corrected background at the beginning of the cycle. The 
corrected background is used to repeat LETKF. 
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3.7 Experiments 

While numerous combinations of ensemble sizes, analysis cycle lengths, and 

configurations of LETKF were used, the results from only three will be presented 

here. The following experiments will be compared in the subsequent sections: 

Table 1. Titles for experimental results throughout the remainder of the report. 

Title Description 
Free Run The MOM2 model run from 1970 to 2004 with NCEP surface forcing. 

It is compared to temperature and salinity profiles for reference. 
SODA An assimilation of temperature and salinity profiles for 7 years from 

Jan. 1997 to Jan. 2004 using SODA with NCEP surface forcing in a 10-
day analysis cycle. 

LETKF-IAU Assimilation of T and S profiles for 7 years from Jan. 1997 to Jan. 2004 
using LETKF with IAU, a 20-member ensemble, with perturbed NCEP 
winds, and a 30-day analysis cycle. 

LETKF-RIP Assimilation of T and S profiles for 7 years from Jan. 1997 to Jan. 2004 
using LETKF with RIP, a 40-member ensemble, with perturbed NCEP 
winds, and a 5-day analysis cycle. 

LETKF-EOW Assimilation of T and S profiles for periods 1997-1998 and 2001-2003 
using LETKF with IAU, 40-member ensembles (except where 
otherwise noted), with perturbed NCEP winds, a 5-day analysis cycle, 
and an Extended Observation Window of +/- 25 days beyond the 
analysis cycle. (Results shown in the Appendix) 

 
 

 
Figure 26. Count of super observations of temperature by region, for all depths. (Regions are 
shaded as a proportion of the total). 
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Results are presented focusing on the 7-year experiment runs showing long-

term performance of the systems. These results include the period from 1997-98 

during a significant El Niño, for which temperature and salinity observation data are 

relatively sparse. In addition, they include the introduction of the Argo float 

observing system, from 2001-2003. Overall, the experiment period contains a wide 

range of observation network conditions. This can be seen for temperature in Figure 

26 and for salinity Figure 27. From the period spanning 1996 to 2004, there is an 

increase in Temperature observations, concentrated primarily in the Equatorial and 

North Pacific. However, during this period there is a dramatic increase in the number 

of Salinity observations, particularly concentrated in the Indian and North Atlantic 

Oceans. 

 
 

 
Figure 27. Count of super observations of salinity by region, for all depths. 
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3.7.1 Observed minus Forecast Results 

A key measure of the performance of the data assimilation systems is the Root Mean 

Square Deviation (RMSD, sometimes called Root Mean Square Difference or Root 

Mean Square Distance) between the Forecast (F) and the Observations (O). The 

RMSD is a common measure of the aggregate difference, or residuals, between a 

model and observed values that the model attempts to predict. This is usually 

described as the (O-F). While comparing the difference between the forecast and 

observed values, it gives an estimate of the actual error between the forecast and the 

truth. [See Appendix for additional discussion] Figure 28 shows the (O-F) for a ‘Free 

Run’ of the model starting from a 20-year spin-up using detrended NCEP surface 

forcing. Results are shown aggregated over all levels in which super observation 

profiles were available, typically ranging from 0 to 1,000 m depth. This figure gives 

an upper-limit on the acceptable RMSD of any of the data assimilation results. The 

Free-Run temperature RMSDs are maintained at a fairly consistent level due to the 

effect of surface forcing and a relatively large dispersed sample of observations 

(compared to the number of salinity observations). There are large fluctuations in the 

salinity observations due to a very small sample size and uneven dispersion, which 

gradually improves as the number of salinity observations increases over 5x during 

this period. 
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Figure 28. RMSD of temperature and salinity in a Free Run of the MOM2 model from 1996 
through 2003, calculated for super observations at all levels. 

In comparison, Figure 29 shows a steady improvement in time using LETKF-

IAU, a conservative configuration of LETKF (incorporating IAU, 20-member 

ensemble, 30-day analysis cycles, adaptive inflation) starting in January 1997. The 

assimilation produces a slow spin-up, but gradually reduces the (O-F) RMSD as the 

cycles proceed. This is particularly true as the number of salinity observations goes 

through the 3rd or 4th doubling. By 2002 the reanalysis (O-F) RMSDs are consistently 

below the Free-Run values. 
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Figure 29. Comparing RMSDs in Temperature and Salinity background (O-F) and analysis 
(O-A) for 30-day analysis cycle, 20-member LETKF with IAU, versus a Free Run of the 
MOM2 model. The salinity observation counts are scaled (divided by 200) and shown as the 
shaded background for reference. 

Figure 29 shows the 15-day ‘free-forecast’ O-F in comparison with the 

LETKF-IAU analysis O-A. However, the adjustment made to the model state in the 

analysis process is not that large. Due to the gradual approach of LETKF-IAU, the 

analysis increment is added in small parts to each model integration step during a 

second ‘forced-forecast’ over the same time period. The forced-forecast resulting 

from use of IAU is shown in Figure 30. SODA uses the same incremental analysis 

update approach, with its 5-day free-forecast shown as the ‘background’. 
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Figure 30. Comparing RMSDs in the 15-day Temperature free-forecast (O-F), the 
corresponding LETKF-IAU analysis (O-A) at the center of the 30-day analysis cycle, and the 
resultant forced-forecast (plotted daily) after adding on the small analysis increments to each 
model integration step. 

LETKF-IAU was run with 10, 20 and 40 members to test the sensitivity of the 

analysis results to the ensemble size. The adaptive inflation values from the end of the 

20-member case were used as the initial conditions for the inflation for the 10-

members case to test the spinup of the inflation parameter. Typically, the RMSD for 

each ensemble size is expected to follow the relation: RMSD(LETKF-IAU40) < 

RMSD(LETKF-IAU20) < RMSD(LETKF-IAU10). This relationship is achieved 

after about 3-4 years in the experiments, as shown in Figure 31. Thus two conclusions 

that can be drawn from this experiment are that (1) the O-F and O-A RMSD for 

LETKF-IAU using various ensemble sizes are relatively similar, and (2) with the 

given parameters, the adaptive inflation procedure takes about 3-4 years (~40 analysis 

cycles) to settle on its inflation values. 
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Figure 31. Comparing RMSDs for Temperature (O-F) and (O-A) with LETKF-IAU using 10, 
20 and 40 ensemble members. To accelerate spin-up, the 10-member case used the inflation 
from the end of the 20-member case as its initial inflation values. It takes about 3-4 years for 
the 10-member case to take its expected place as the ‘lowest’ performer’. 
The Free-Run is compared to SODA, LETKF-RIP and LETKF-IAU in Figure 32. 
 

 
Figure 32. The LETKF-IAU from Figure 29 tracks the SODA well after a longer spinup. 
This is done without reusing observations. The LETKF-RIP (reusing observations once) 
quickly spins up and outperforms relative to temperature and salinity errors.  The count of 
super observations is shown in the background by the filled areas for temperature (light gray) 
and salinity (dark gray) and measured by the second y-axis. The same color scheme will be 
used for all remaining RMSD plots. 
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Figure 33. Comparing RMSDs for Salinity (O-F) and (O-A) with Free-Run, LETKF-RIP, 
LETKF-IAU, and SODA. Periods shown are 7-years from 1997-2004, 3-years from 2001-
2004, and 1 year Jan. 2003 – Jan. 2004. 
 

Due to the complexity of the data, the trends are indicated with a 12-month 

moving average in Figure 34 and Figure 35. 
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Figure 34. 12-month moving average of Free-Run LETKF-IAU, LETKF-RIP and SODA 
Temperature (ºC) RMSD for O-F (Background) and O-A (Analysis) 
 
 

 
Figure 35. 12-month moving average of Free-Run LETKF-IAU, LETKF-RIP and SODA 
Salinity (psu) RMSD for O-F (Background) and O-A (Analysis) 

The results for the LETKF-RIP method are broken down regionally and by 

level the following figures: Figure 36 (at the surface, 100 m and 500 m depths), Figure 

37 (disjoint regions together comprising the entire global ocean), and Figure 38 
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(dynamically active sub-regions of the North Pacific and the North Atlantic, 

respectively the Kuroshio current and the Gulf Stream). 

  



 

 65 
 

 

 

 

 

Figure 36. LETKF-RIP 
RMSD at the surface, 100 
meters, and 500 meters 
for temperature (ºC) and 
salinity (psu). LETKF-
RIP performs best at the 
100 meter depth as it is 
less influenced by the 
model bias at the surface 
and has more dynamic 
variability than the deeper 
levels. Though the 
prescribed observation 
error used for the LETKF 
analysis was determined 
independently from a 
high-resolution SODA 
analysis, the free-run 
reflects a similar error 
profile. (The magnitude 
of the average RMSD 
increases toward 100 
meters where the 
representativeness error is 
the highest, and then 
decreases rapidly down to 
500 meters where the 
representativeness error is 
much lower.) This could 
potentially give guidance 
to determining an 
appropriate error 
covariance to use for the 
observations in different 
regions and depths due to 
representativeness error. 
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Figure 37. LETKF-IAU, LETKF-RIP 
and SODA RMSD at various non-
overlapping regions for temperature 
(ºC) and salinity (psu) versus the Free-
Run. Data are cut-off in some plots to 
maintain a consistent axis across all 
plots. Note that LETKF-RIP 
dramatically outperforms the other 
methods, particularly in the equatorial 
regions. 
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Figure 38. LETKF-RIP and SODA RMSD for the sub-regions Kuroshio (sub-region of the 
North Pacific) and Gulf Stream (sub-region of the North Atlantic). Note the axes are different 
than the previous figure. No salinity data is available in the Kuroshio region during this 
period. 

In Figure 36, there is a clear seasonal bias in the Free-Run data at the surface, 

as identified previously, and is likely related to bias in the model or the model surface 

forcing. The RMSD for all methods are reflective of this phenomenon, though there is 

still a clear improvement shown by LETKF-RIP over the other approaches. The best 

performance is seen at the 100 m depth. 

A regional breakdown is given in Figure 37. Again the hemispheric model bias 

is present and seen in the northern and southern areas of both the Pacific and the 

Atlantic oceans. These model biases are reflected in the RMSD of the various 

methods, though there is still a clear improvement in the LETKF-RIP over the 

remaining methods. While there is also some bias evident for the Free-Run in the 

equatorial regions, the clearest example of LETKF-RIP outperforming the other 

methods is seen in these areas. 

Thus we see that LETKF-IAU, even without reusing observations, is 

competitive with the SODA method. Because SODA has undergone significant 

tuning throughout its development, it is presumed that the same conclusion would be 

true when comparing to any straightforward OI or 3D-Var reanalysis approach. 
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Furthermore, with careful reuse of the observation data as in LETKF-RIP, spin-up 

can be accelerated. In the following sections, results of these and additional 

experiments will be explored. 

3.7.2 Altimetry and Thermocline Heat Content 

Sea surface height is closely related to the depth of the thermocline, particularly in the 

tropics [CGX96]. The relationship typically breaks down in the mid-latitudes. 

Because the altimetry observations of sea level have not been used in the assimilation, 

they are used here for verification of the results from each of the assimilation 

methods. The cross-correlation between altimetry and the integrated heat content of 

the top 300 meters is shown in Figure 39 for the period 1997-2002. In all methods, 

high correlation ( > 0.8) is shown throughout most of the equatorial Pacific. Further, 

there is relatively high correlation ( > 0.5) in the Equatorial Atlantic, Equatorial 

Indian, North Atlantic and some areas of the North and South Pacific. 
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Figure 39. Monthly average top 300m analyzed heat content correlated with altimetry sea 
level during 1997-2002. Altimetry is calculated as cm perturbations and heat content as 
vertically integrated temperature perturbations from the time mean. 

The first and second Fourier terms of the altimetry and vertically integrated 

heat content (300m) are shown in Figure 41. As would be expected based on the 

correlation patterns, there is a strong matching pattern in the equatorial areas. 
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Figure 40. Monthly average top 300m analyzed heat content correlated with altimetry sea 
level shown for every year from 1997 to 2002. Altimetry is calculated as cm perturbations 
and heat content as vertically integrated temperature perturbations from the time mean. 
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Figure 41. First (cos) Fourier terms for monthly averaged altimetry and 300 m heat content 
anomaly over the 6 years during 1997-2003. Altimetry is shown as cm perturbations and heat 
content as vertically integrated temperature perturbations from the time mean. 

 

 

 

 

 

 

 
Figure 42. Second (sin) Fourier terms for monthly averaged altimetry and 300 m heat content 
anomaly over the 6 years during 1997-2003. Altimetry is shown as cm perturbations and heat 
content as vertically integrated temperature perturbations from the time mean. 
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3.7.3 Temperature-Salinity Relationship 

Because temperature and salinity determine the density at a fixed pressure, an 

understanding of ocean circulation can come from examining the flow of water 

masses via the balance of temperature and salinity at various depths. Temperature and 

salinity obtained at the surface is usually retained by water masses as they are 

subducted into the ocean interior.  The water masses are named and described in 

Figure 43 based on their temperature-salinity relationship. 

 

 
Figure 43. Temperature-Salinity relationships of water masses in various ocean basins 
(Tolmazin 85). 

An investigation of selected water masses is shown for LETKF and SODA in 

Figure 44. Water masses identified theoretically in Figure 43 are shown to be present 

in the  analyses of both LETKF and SODA. 
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Figure 44. Temperature-Salinity relationships for overlapping analysis cycles LETKF-RIP 

(1/12/2001) and SODA (1/10/2001). Points are colored by vertical levels. 

3.7.4 Temperature, Salinity and Velocity at the Equator 

Differences in temperature and salinity anomalies from the SODA time mean are 

shown in Figure 45 and Figure 46, respectively. Over time, LETKF-RIP establishes 

warmer areas in the east-central Pacific and east Atlantic compared with the other 

methods. There is a large difference between LETKF-RIP and SODA salinity 

analyses. On average, LETKF-RIP shows a much fresher Indian Ocean and saltier 

Pacific Ocean at the equator. Few salinity observations were present in the Pacific 

over the first half of the experiment period, thus most of this impact was due to 

covariance between temperature and salinity as identified by the ensemble. There was 
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a large increase in salinity coverage throughout the Indian Ocean by 2003, which 

coincides with an increase in salinity, thus indicating a potentially under-predicted 

salinity during the earlier period. Inflation is currently applied uniformly across all 

variables. It is expected variable-dependent inflation will remedy this situation. 

LETKF-IAU fell between LETKF-RIP and SODA. 
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Figure 45. Average yearly temperature anomaly at the equator in the top 300 m during 1997-
2003 for Free-Run, LETKF-IAU, LETKF-RIP, and SODA, versus Free-Run time mean. 
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Figure 46. Average yearly salinity anomaly at the equator in the top 300 m during 1997-2003 
for Free-Run, LETKF-IAU, LETKF-RIP, and SODA, versus Free-Run time mean. 
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Figure 47. Mean temperature and salinity at the equator in the top 500 m over 1997-2003 for 
the Free-Run, LETKF-IAU, LETKF-RIP, and SODA. 

The following are independent velocity observations compared with analysis 

results from LETKF and SODA. The velocity observations were not used in the 

analyses. Acoustic Doppler Current Profiler (ADCP) observations are averaged every 

5-days. LETKF-RIP, LETKF-IAU, SODA and a Free-Run control are shown for 

comparison. The spatial and temporal patterns of LETKF-IAU appear to most closely 

match that of the ADCP observations. The wind forcing for the LETKF-RIP was 

changed in mid-2000, which may account for the stronger currents in the upper 90 m. 

It is clear in Figure 48 that while the new wind forcing may improve the magnitude, it 

has negative effects on the zonal currents in relation to the observed values. LETKF-

IAU and SODA share two features that may account for better matching of the 

observed currents. First, is the use of IAU, which applies a steady forcing rather than 

a sudden change to the system state at each analysis time – a possible disruption to 

the currents. The second is the use of a much larger window of observations, LETKF-

IAU using a 30-day window and SODA using a 90-day window. Because LETKF-

RIP is capable of making frequent adjustments, 4x per SODA analysis cycle and 12x 

per LETKF-IAU analysis cycle, it has higher frequency oscillations.  
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Figure 48. Zonal velocity (cm/s) in the top 300 m from Jan. 1 1997 to Jan. 1 2004. 
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3.7.5 Station Data 

Time series results are shown for the top 500 meters at two stations: the Bermuda 

Station (30.55,-63.5) and the Aloha station (24.75,-158.0), for the observed values, 

LETKF-RIP, LETKF-IAU, and SODA (Figure 49). 

 

 

 

 

 

 
Figure 49. Temperature and Salinity at Station S (Bermuda; (30.55,-63.5)) from Jan. 1997 to 
Dec. 2001, and Aloha Station (24.75,-158.0) from Jan. 1997 to Dec. 2003 for the top 500 m. 

The model is forced with climatological sea surface salinity. Thus the 

observations are providing the only influence of the true salinity state over time. The 

primary sources of observations are of temperature, and the methods adjust salinity 

relative to covariances between temperature and salinity state variables. Station S was 
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a recurring observation of both temperature and salinity within the experiment period 

and thus the results in Figure 49 indicate the influence of this observation on the 

analysis. The state of model adjustment to the inclusion of the salinity data can give 

an estimation of the model spin-up. Due to the 30-day analysis cycle used, LETKF-

IAU experiences a greater spin-up time (on the order of years). That can be compared 

to LETKF-RIP, which spins up over a few months.  

3.7.6 Error estimation and Inflation 

Small perturbations in the analysis ensemble grow nonlinearly during the forecast 

(using model integration). The areas with larger spread (standard deviation) represent 

greater uncertainty in the forecast. 

 
 

Figure 50. Background temperature ensemble spread at the surface in the Equatorial Pacific 
for Dec. 2 1997, LETKF-RIP. 

 As discussed in Section 2.6, the variation in the wind forcing fields has an impact on 

the ensemble spread at the 100 meter depth. Compare the ensemble spread at 100 meters 

using LETKF-IAU (Figure 51) with that of the perturbed wind forcing in Figure 18. There is 

similar growth in spread, particularly in the eastern Equatorial Pacific and Equatorial 

Atlantic. 
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Figure 51. Background temperature ensemble spread at 100-meter depth for Sep. 3 1999, 
LETKF-IAU. 

 
Figure 52. Background temperature and salinity ensemble spread at the equator from 0-500 
meters for Sep. 3 1999, LETKF-IAU. 

Larger inflation values indicate that the growth of the ensemble spread due to 

the model is not large enough in these locations, and artificial inflation of the 

ensemble spread is necessary to find an appropriate balance between forecast and 

observation errors. 
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Figure 53.  Inflation values generated by adaptive inflation at the surface on April 1, 2001, for 
the LETKF-RIP assimilation commencing Jan 1997 (values from 1 to 3 are equivalent to 0-
200% inflation). Adaptive inflation typically decreases with depth. 

Because the wind forcing variability has a dominant effect on the ensemble 

spread, an experiment was run to identify the dynamic variability that resulted from 

the coupled model/assimilation process. Figure 54 shows this experiment using 

LETKF-EOW with αw=0. The ensemble spread tends to be largest in areas devoid of 

observations. The uncertainty in these regions is grown by inflation. 

 

 
Figure 54.  Ensemble Temperature (ºC) spread at the surface and 100 meters on Feb. 2, 1998, 
for the LETKF-EOW assimilation commencing Jan 1997. This case uses αw=0, thus 
eliminating any impact on the spread from wind forcing. 
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3.8 Computational Performance 

LETKF scales approximately linearly in the number of observations used. Thus, the 

use of the extended observation window for LETKF-EOW caused an excessive 

slowdown in runtime, as each analysis cycle used about 10x more observations than 

contained within the analysis cycle alone. 

 Another consideration is the analysis cycle length and the repetitive execution 

of LETKF in a given timeframe. For example, using a 5-day analysis cycle, one 

would perform 6-7 analyses in a month. While with a 30-day analysis cycle, only one 

analysis would be performed. Though the number of observations used may be 

identical, there is overhead to perform multiple cycles and thus the longer analysis 

cycle typically performed faster. 

 With LETKF-RIP there is continual repetition of the analysis cycles. In the 

experiments presented here, only one cycle of RIP was used. However, that has the 

impact of effectively doubling the runtime of LETKF. 

 In regards to any of the LETKF approaches, statistical accuracy can be 

sacrificed for faster runtimes by reducing the ensemble size. Cutting the ensemble 

size in half approximately cut runtime in half as well. It has been shown for LETKF-

IAU that ensemble sizes as small as 10-members have performed comparably to 40-

members for assimilation using the MOM2 system. Longer analysis cycle windows 

would typically require larger ensemble sizes to account for the greater opportunity 

for errors to grow with the model dynamics. The forced nature of the LETKF-IAU 

approach, as well as the use of surface forcing in general with ocean models, may 

mitigate the effect of such error growth. 
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 Results are shown in Figure 55 and Figure 56 for the main experiments 

reported in this work. This is not intended to be a formal benchmarking of these 

assimilation approaches. The LETKF and SODA systems were run on different 

machines, with different architectures, and different compilers. The timings reported 

here are the actual times required to run the main experiments presented in this 

chapter and are given simply as a means of conveying the relative differences in 

computational effort for each approach. 

 

 

 
Figure 55.  Wall Clock Time for analysis cycles of LETKF-RIP, LETKF-IAU and SODA. 
LETKF-RIP was parallelized on 40 processors, LETKF-IAU on 20 processors. SODA was 
run on a single processor. 
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Figure 56. Due to the use of various analysis cycle, an average estimate of Wall Clock Time 
per analyzed day is reported here for a more accurate comparison. LETKF was parallelized 
on 20 (-IAU) or 40 (-RIP) processors. SODA was run on a single quad-core processor. 

3.9 Conclusions for Chapter 3 

LETKF-RIP outperforms SODA in the metric measuring RMS error between 

observations and forecast (O-F), and observations and analysis (O-A). LETKF-IAU 

outperforms SODA in terms of O-F when using an extended observation window, 

and performs on par with SODA after sufficient spin-up when limited to using 

observations only once. 

LETKF provided much more adjustment to the salinity field than SODA. 

Based on comparisons with individual station observations as well as overall RMSDs, 

it appears LETKF, while noisier, is more accurately representing the salinity field. 
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Comparison to independent observations of equatorial velocity indicate that 

LETKF-IAU seems to best capture the temporal pattern at 3 specific locations in the 

equatorial Pacific. In general though, the model appears to underestimate the 

magnitude of the currents, which may be due to partially to the lack of model 

resolution and partially to the particular surface forcing used. LETKF-RIP, LETKF-

IAU and SODA are also approximately equal in their upper level heat content 

correlation with satellite altimetry. 

 Due to the application of a steady forcing term to the model prognostic 

equations at all analyzed grid points, the IAU approach limited growth of nonlinear 

dynamical errors that are critical to establishing a representative ensemble. For this 

reason, IAU required much larger inflation to be effective. However, IAU countered 

effects of surface forcing and model bias so as to allow for longer analysis cycles. 

Therefore, there may be some circumstances where using IAU may be advantageous 

and preferable to RIP. However, RIP has the benefits that it allows the solution space 

to explore outside of the linear combination of ensemble members, and it only adjusts 

initial conditions and therefore allows the model more freedom in developing more 

realistic nonlinear growth of errors. 

The choice of analysis cycle window length is related to the resolution of the 

forecasting model, the dynamics of the model, and the frequency and coverage of 

available observation data. Further study is required to identify the optimal analysis 

cycle length for capturing various dynamical features of the ocean. A combination of 

multiple analysis cycle lengths may be appropriate. 
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Ultimately, the perturbed surface wind fields forcing each ensemble member 

should be replaced with an atmospheric analysis ensemble. Results using various 

sources of surface forcing should be compared (e.g. NCEP and ECMWF). 

Potentially, a system that utilizes surface forcing from various sources could be 

advantageous. 

The model will be upgraded from the basic lower fidelity MOM2 model to a 

more modern high fidelity model that resolves eddy dynamics. Greater variations in 

the model makeup may prove beneficial, either through variations in model 

parameters or via the use of completely different modeling schemes for subsets of the 

ensemble. The potential for a hybrid combination of LETKF and a 3D-Var variant 

such as SODA will be explored. This will allow benefits of both methods to be 

realized simultaneously. 

Also, the observation set should be expanded with the inclusion of SST, 

altimetry, and velocity data, which were not used for the present analysis. Satellite 

data is numerous and will naturally increase run-time of the LETKF assimilation 

system. However, methods have been developed which analyze the impact of 

observations, which would allow clever selection of which observation to assimilate 

[KMK11]. Additional concepts in Chapter 4 will allow the selection of the nearest 

lowest-error observations. Many additional ideas for future work are listed in Chapter 

5. 
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Chapter 4:  New Algorithms and Designed Advances for the 
LETKF 

4.1 Introduction 

Some enhancements to the oceanic data assimilation system were developed but not 

yet implemented in the production system. These enhancements will be implemented 

in future versions of the oceanic 4D-LETKF data assimilation system. These include 

customization of the localization procedure utilizing computational geometry 

methods, reformulation of the LETKF core algorithm to provide faster performance 

and computational feasibility to using a non-diagonal observation covariance matrix 

R, as well as further treatment of observation error within the framework of a data 

assimilation system.  

4.2 External Customized Localization and Preprocessing 

As stated in [HKS06], the choice of which observations to use for the analysis at each 

grid point during localization is up to the user of the method. Therefore, a number of 

customized localization schemes were designed an implemented in a stand-alone test 

package. The main components of this package were the Boost library and the 

Computational Geometry Algorithms Library (CGAL), both written in C++. These 

were combined with I/O routines in a new package written in Fortran 90 to interface 

with the data files produced by the LETKF assimilation system and the MOM2 ocean 

model. 

In this study, a horizontal localization radius was varied by latitude, and 

should be varied by depth as well. A generalized approach to localization is needed. 

For example, a technique was used to identify points in all regions that were occluded 
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by land. A general A* heuristic graph search algorithm was applied to a search graph 

generated over the ocean grid points of the MOM2 model grid using the model’s 

ocean grid points as vertices and connecting adjacent points in the grid as edges. For 

each ocean grid point, a shortest path is computed to every observation within a 

localization radius using the A* graph search. The heuristic for the A* search is the 

great circle distance to the target observation. The shortest path will necessarily avoid 

land obstacles, both horizontally and vertically. The exact great circle distance path is 

also computed between the grid point and each observation. Using a tolerance 

parameter, tol, the ratio of the shortest path to the great circle distance can be used to 

identify paths that make too much deviation (e.g. around continents versus around 

islands). Paths that make no deviations around non-ocean grid points will have a ratio 

close to 1 (the ratio will not be exactly 1 due to the discrete nature of the search grid). 

This shortest path can be weighted based on the density of the water mass within 

which it is searching. Therefore, the localization range can follow areas of constant 

density. 

A Delaunay triangulation of the observations, including the land points as 

obstacles, allows a fast lookup of the nearest observations to any given grid point. It 

may also be used to generate a Voronoi diagram, which can be used to quickly 

extrapolate point data to closest surrounding regions. 

The spatial range search version of the k-nearest neighbor search is used with 

the Gaussian weighting function to scale observation errors in both space and time. 

By using the resultant observation errors as a distance metric, the k-nearest neighbors 

in the observation error space are found (independently for each grid point). Thus the 
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observations used in the LETKF analysis can be limited only to the k most accurate 

set of observations (i.e. the closest in the observation error space) for each grid point. 

For data rich areas, this will result in a small physical (and temporal radius for 

LETKF-EOW). For data sparse areas, this will result in a larger radius, limited by a 

maximum physical spatial localization value. 

To create flexibility in the design and testing of localization methods, as well as 

greater efficiency and improved run-times of the LETKF system, the custom 

localization procedures were implemented externally to the LETKF system. This 

required the design of a procedure with the LETKF system that allowed for the input 

of a general customized localization for each grid point. For each grid point, the 

observation indices are input to identify which observations to use for the local 

assimilation. This approach requires very little computation during the run-time of 

LETKF. 

4.3 Reformulation of LETKF Algorithm 

Due to the scarcity of observations in the ocean assimilation application, the general 

assumption in [HKS06] that k << l << m is not necessarily satisfied. The LETKF core 

algorithm is separated into 9 steps in [HKS06]. Steps 4, 5, 6 and 7 are performed 

locally at each grid point, thus approximately O(m) times per analysis cycle. The 

main thrust of this reformulation is to remove the computation of (1) the eigenvalue 

decomposition, and (2) any computations of matrix inverses. Both are known to be 

costly operations, O(k3) floating point operations, and the latter is associated with 

numerical errors. [H02][http://www.cs.umd.edu/~oleary/c660/660mxfacthand.pdf] In 

situations where the number of observations in a localized region is large, the method 
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of Nearest Neighbors can be used to reduce the set of observations to the nl ≤ k most 

relevant observations (after scaling observations spatially and temporally by Gaussian 

weighting factor, considering the statistics on the innovations). 

4.3.1 Reformulation of LETKF Core Algorithm Step 5 

Using the Sherman-Morrison-Woodbury (SMW) identity, applied to step 5 of the 

LETKF algorithm, we can eliminate the need to calculate the inverse of the matrix R 

as well as eliminate the overall inverse calculation of step 5: 

 (For reference, step 4 is to compute the k x l matrix C = (Yb)T R-1 ) 

Step 5 of LETKF is [HKS06]: 

! 

˜ P a =
(k "1)
#

I + (Y b )T R"1Y b$ 

% 
& 

' 

( 
) 
"1

 
(25) 

The SMW identity is given by, 

! 

A +UCV( )"1 = A"1 " A"1U C"1 +VA"1U( )
"1
VA"1 . (26) 

So by SMW, 
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so that, 
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(Y b )T B "
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then solving the linear system 
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for B will allow us to compute 

! 

˜ P a =
"

(k #1)
I # "2

(k #1)2 (Y b )T B . (31) 

Since Yb is k x l, computing B amounts to solving l linear systems of the form 

Ax=b, typically at a cost of l3/3. Therefore depending on the relationship between k 

and l, e.g. if 3ck > l, where c is the constant multiplier for the inverse computation or 

eigenvalue decomposition, both of cost O(k3), then this method may also be 

preferable. For example, if using an ensemble of size k=40, then this approach would 

be advantageous as long as the number of observations in a local region around the 

grid point was less than 120c. For the ocean, most areas satisfy this criterion, or can 

be made to satisfy it using super observations, selecting an appropriately small 

localization radius, or reducing the observation set to a subset of the most influential. 

Alternatively, the method of computation can be chosen at runtime independently for 

each grid point based on the relative size of k and l. 

Making this modification to a basic implementation of the LETKF algorithm 

with the 3D-Lorenz model [K03] (with m = k = l = 3) in MATLAB gave just under 

10x speedup over the inverse computation in the Step 5 process, and a 13% 

improvement over the eigenvalue decomposition inverse computation (which is used 

in the current LETKF implementation). If Step 7 is reformulated as below, then 

computing R-1 is not necessary anywhere in the algorithm and solving the linear 

system in Step 4 can be eliminated, replaced elsewhere in the algorithm by matrix-

vector multiplications. It should be noted that R is simplified in the current LETKF 
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implementation as a diagonal matrix, implying no correlation between observations. 

However, correlations between observations do exist in real-world observing 

networks. This reformulation makes the inversion of R unnecessary and allows the 

use of a non-diagonal (though likely sparse) covariance matrix R computationally 

feasible. 

4.3.2 Reformulation of LETKF Core Algorithm Step 6 

At present, an eigenvalue decomposition, O(k3), is used to compute Steps 5 and 6. 

Though expensive for Step 5 compared with the alternate method proposed above, it 

is also utilized for the matrix symmetric square root computation in Step 6.  

! 

W a = (k "1) ˜ P a[ ]
1

2
 (32) 

Several alternative efficient methods exist for determining a matrix square 

root. The first is a modified Cholesky decomposition with pivoting (pivoting is 

required due to the matrix being semi-positive definite rather than positive definite) 

which would provide a unique triangular matrix as the weight matrix Wa.  

Tests with a basic implementation of the LETKF algorithm using a Lorenz96 

model (with m =40, k =20, l =10) in Matlab suggested a 12% speed improvement 

when combining the Step 5 reformulation with a Cholesky decomposition in Step 6, 

as compared to using the eigenvalue decomposition to compute both Steps 5 and 6. 

Of course, the matrix square root computed by Cholesky is triangular, while the 

symmetric square root computed using the eigenvalue decomposition is symmetric 

and minimizes the mean square distance between Wa and the identity matrix. The 

latter may be preferable for smoothness between weight matrices of adjacent local 

grid points. 
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Another is the family of iterative methods derived from Newton’s method for 

the matrix square root. These can be used to find the principal square root of Wa (a 

numerically stable version proposed by Higham [H86]), by producing the solution of 

the iterative matrix equation, 

! 

F(X) " X 2 # (k #1) ˜ P a = 0 . (33) 

Further, iterative method can be seeded by previous iterations or results from 

neighboring grid points, potentially speeding convergence. Newton’s method is 

O(n3log2) per step, with local quadratic convergence. However, it has the drawbacks 

that there is instability and lack of global convergence. For those reasons, a variety of 

reformulations of Newton’s iterative method have been derived that improve stability. 

The Denman-Beavers (DB) square root iteration is one such incarnation [DB76]. It is 

given by, 

! 

Y0 = A
Z0 = I

Yk+1 =
1
2
Yk + Zk

"1( )

Zk+1 =
1
2
Zk +Yk

"1( )
 

(34) 

 For this iteration, Yk converges quadratically to A1/2 and Zk converges 

quadratically to A-1/2. Implementing using LU factorization, for symmetric positive 

definite matrices the operation counts are the same as using Cholesky factorizations. 

[H97] A stable variant that uses Cholesky with pivoting is given in [H97] as 

‘Algorithm 2’. Using one of these iterative methods and assuming the diagonal 

simplification of covariance matrix R, stages 5 and 6 can be combined using a single 

iterative solution method for computing Wa.  
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Because 
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The benefits and drawbacks of many approaches to computing the matrix 

square root are discussed in [H97]. If any of these are deemed viable as alternatives to 

the symmetric square root computation, the total of these modifications may provide 

significant speedup to the overall algorithm. 

4.3.3 Reformulation of LETKF Core Algorithm Step 7 

Stage 7 performs the computation, 

! 

w a = ˜ P a Y b( )T
R"1 yo " y b( ) , (36) 

which is straightforward if R is diagonal. However, if it is not than this is better 

computed as the linear system, 

! 

Rz = yo " y b( ) , (37) 

solving for z with sparse l x l matrix R, and then computing from right to left to 

ensure only matrix-vector multiplications, 

! 

w a = ˜ P a Y b( )T
z . (38) 

In this formulation, the inverse computation is avoided and replaced by a simple 

linear system of the form Ax=b. 
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4.4 Observation Error 

Within the LETKF system, there is a mechanism for quality control of input 

observations. When using raw observations, such a check is necessary to avoid 

adjusting the analysis toward an observation that is far from the mean background. 

LETKF uses a multiple of the observation error (e.g. 5.0-10.0 in the oceanic 

implementation) as a measure of the allowable distance from the mean background to 

incorporate this observation data. However, as the ocean data has been quality 

controlled against climatology and averaged into super observations, the quality of 

the observations is considered fairly good. As a result, the more likely explanation of 

the background mean being far from the observation is either a poor forecast or 

systematic model error. However, if the observation is kept, the combined large 

distance from the mean with the small prescribed observation error will cause an 

excessive correction to the background and potential filter divergence. For this 

reason, it is preferable to inflate the observation error and retain the observation. The 

analysis can then be pushed more gradually toward the observed values without an 

unnecessarily large analysis increment. 

 Such an approach is used explicitly in the current ocean implementation for 

LETKF-IAU and LETKF-RIP, and is achieved in effect for LETKF-EOW by the 

extended window of observations. For the latter case, because low weight is applied 

to temporally distant observations via increased observation error, these observations 

are used when the more accurate observations are too far from the background mean 

to be retained by the LETKF quality control mechanism. 

Raw observations were binned into 1x1 degree super observations for the 

ocean analysis. In many locations the bins contain only a few observations. However 
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in other areas the observation coverage is very dense. The variance of the observed 

values within these bins gives a measure of the representativeness error within each 

bin. Therefore this variance information should be used to modify the prescribed error 

for each super observation. 
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Chapter 5:  Conclusions and Future Research 

Three versions of the Local Ensemble Transform Kalman Filter (LETKF-IAU, 

LETKF-RIP and LETKF-EOW) have been implemented and tested against a Free-

Run baseline and an Optimal Interpolation system (SODA) benchmark. All 

assimilation methods improved upon the Free-Run baseline. Further, LETKF 

implementation now provide a means of generating error estimates for the analyzed  

or forecasted ocean state. 

As noted by [http://www.image.ucar.edu/pub/DART/2011/JLA_sec_seattle.pdf], 

ensemble filters are optimal and exact when the following conditions are satisfied: the 

model is linear, the observation operator is linear, the observation error is Gaussian, 

the ensemble size is sufficiently large, and the filter is a variation of EAKF [A01]. 

For weather and geophysical applications, these conditions are most certainly not 

satisfied, and thus any application of an ensemble filter to such an area is the result of 

approximations to these conditions. This can lead to problems such as 

underestimating ensemble variance and overestimating correlations within the 

system. These problems have been mitigated by the use of inflation and localization 

in most EnKF systems (LETKF uses an adaptive inflation approach). However, these 

are ad hoc techniques designed to compensate for applying EnKF methods to cases in 

which the method’s assumptions are violated. The effect of these approximations 

should be studied, as well as developing and implementing methods that rely on more 

general initial assumptions, as in [S95], [HS96] who utilize stochastic differential 

equation approaches. 
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LETKF-RIP performed best (defined by RMSD) in areas with the highest 

observation coverage, particularly if those areas had higher dynamic instability. 

LETKF-RIP performed better than SODA, with lower RMSD, in all regions with an 

adequate level of observation coverage. In regions and vertical levels with very 

limited observation coverage, LETKF-RIP was on par with SODA. However, it is 

noted that areas with higher observational coverage are typically the more 

dynamically active areas. The lower coverage areas, such as the deep ocean, have 

much lower variability. This may explain why the performance of LETKF was better 

in the areas with higher coverage.  

 Due to the sparse nature of the ocean observing system, reuse of the 

observations in the reanalysis was necessary to produce reasonable results. Both the 

SODA and LETKF-RIP systems reuse portions of the observation data to produce a 

smoothed reanalysis. Using its extended observation window SODA reuses each 

observation with varying weights approximately 9 times. Utilizing a similar extended 

window, LETKF-EOW reuses each observation temporally about 5 times. Using the 

RIP method with a single iteration, LETKF-RIP uses each observation 2 times. The 

LETKF-IAU and the basic LETKF use each observation only once. 

 For a reanalysis effort, it may be preferable to utilize a combination of the 

approaches presented. During the earlier historical period of very low observational 

coverage (which typically also had larger observational errors), an extended window 

of observations can be used to provide sufficient guidance to the dynamical model. 

Upon the induction of the Argo float system, a conversion to the RIP method would 
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be advantageous, and ultimately as the observation coverage increases further a single 

pass of LETKF may be sufficient. 

 Extending the analysis cycle to larger windows made more noticeable the 

effects of systematic model/forcing bias. In this case ‘noticeable’ means the 

magnitude of the bias errors were of a similar magnitude to the prescribed 

observations errors. Using the IAU, these effects were mitigated. 

It is anticipated that the post-2007 complete observation coverage provided by 

the Argo float network (consisting of over 3000 floats) will greatly improve the 

LETKF analysis. Results showed that sparse observation data coverage had the most 

detrimental impact on analysis quality. However, as observation coverage increases, 

the computational runtime of the LETKF system also increases. Preliminary results 

show the Temperature RMSD for LETKF-RIP oscillating around 0.6 ºC between 

2004-2007 (Figure 57). 

 
Figure 57. Preliminary results extending LETKF-RIP to the high-coverage Argo era, 
achieved by the end of 2006. Temperature RMSD have leveled off and salinity continues to 
improve as the global count of temperature super observations doubles from around 2000 in 
2003 to around 4000 in 2007. 
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Results from this work enlightened many future areas of research in oceanic 

data assimilation. The remainder of this section describes some of those research 

topics. 

Implementation of the algorithmic enhancements discussed in Chapter 4 will 

improve the speed of the LETKF analysis performed at each model grid point, thus 

multiplying the performance benefits by the number of degrees of freedom within the 

model. Implementation of the computational geometry pre-processing discussed in 

Chapter 4 will allow for greater flexibility in the localization scheme used by LETKF. 

Localization plays a critical part in the assimilation process and a well-designed 

localization method may provide significant improvements to the overall analysis 

product. The localization distance is closely tied to the length of the analysis cycle, 

the flow of the dynamics, the nonlinearity of the system, and the size of the ensemble. 

Practically speaking, a well-chosen localization scheme can reduce computations by 

limiting the number of observations used for the analysis at each grid point to only 

the most influential. 

The LETKF system will be extended to more advanced ocean models with 

higher resolution model grids (the most natural extension being an upgrade from the 

MOM2 to the MOM4 model). As the resolution of the models increase, the smaller 

scale instabilities within the ocean will be resolved. The method for incorporating 

observations into the analysis must be revisited to determine whether to continue 

using binned super-observations or revert to raw observations. If binned, the 

appropriate scale for binning these observations must be determined. Along with the 
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upgraded model, all available datasets will be assimilated, such as SST, SSH, and 

SSS. 

The adaptive grids of finite element methods present great opportunities for 

ensemble data assimilation. Finite element meshes can be designed to fit the error 

estimation and observation coverage of the system. Further, multiple meshes can be 

used for different subsets of the ensemble. 

There is a tradeoff between increasing resolution and increasing the number of 

ensemble members. Keeping computational resources fixed, increasing model grid 

resolution will necessarily require a reduction in ensemble size. Various methods 

balancing this issue have been proposed, such as multi-resolution assimilation  

[YKH08], Quasi-Outer Loop (QOL) assimilation [KY08], and hybrid methods 

[WHW07]. 

Due to the limitations in computational resources, the ensemble size must 

remain fairly small. While the ensemble method is effective, the accounted-for 

uncertainty is limited to the space of linear combinations of ensemble members on a 

local scale. The 3D-Var and OI schemes do not suffer from this limitation. Thus there 

is potential for a hybrid system that utilizes the prediction of background error 

covariance from the ensemble method while using 3D-Var to explore the space 

outside of the ensemble space. A hybrid system may be developed that combines the 

benefits of the ensemble assimilation scheme with a variant of 3D-Var or SODA’s OI 

approach. 

One approach to handling the sparseness of the data prior to the Argo era 

would be to utilize climatology as an ‘observation’ at all points in which the 
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observations are absent, using historical variability as an error estimate for these 

‘observations’. Used in conjunction with adaptive inflation, this could ensure that the 

analyses remain within the realm of physically realistic solutions. This is not unlike 

hybrid methods that utilize similar information by combining ensemble covariance 

with a constant covariance matrix B. Alternatively, a climatology perturbation could 

be subtracted from the ensemble perturbations and added as an additional ensemble 

member at each analysis cycle. Thus, as the ensemble mean diverges from the 

climatology, the background covariance would automatically increase. This could 

potentially reduce the reliance on inflation. 

Further, the observation network is constantly improving due to increased 

coverage and upgraded technology. While much attention has been given to evolving 

forecast error covariance in ensemble forecasting, far less attention has been given to 

the evolving observation error covariance, though there has been some work [LKM], 

[KLM], [DBC05]. Effort should be made to analyze and estimate the changing nature 

of the observation data, specifically the spatial and temporal variations of the error 

profiles. With a highly trusted model, the observation outliers can be estimated from 

the ensemble spread in the EnKF. However, the observation error itself is an input to 

LETKF for each individual observation used in the assimilation. Thus, it may be 

preferable to do an independent statistical analysis of the observations, the sample 

variance in selected areas, regional and depth-dependent bias trends, and spatial and 

temporal correlations among observations. Alternatively, the online method proposed 

by [KLM] may be implemented and validated with such an independent statistical 

analysis. 
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Forecasting capability is limited due to the large influence of surface forcing 

and forcing error on the ocean models. In future work, the perturbed wind forcing 

ensemble will be replaced by an ensemble atmospheric assimilation product. Due to 

the strong dependence on surface forcing, and the presence of growing errors on 

multiple time scales [HKC09], an obvious extension is to a coupled 

atmospheric/oceanic assimilation system. This has implications for potentially 

extending predictions of the ENSO cycle beyond current temporal limitations. 

 A focused effort should be conducted to identify the optimal analysis cycle 

length, ensemble size, and model resolution for a desired decorrelation scale and a 

given set of computational resources. There is support for running multiple loops of 

LETKF for a number of reasons. (1) Using a nested loop that does a larger low-

resolution ensemble and interpolates the analysis weights to a smaller high-resolution 

ensemble. (2) Using the Quasi-Outer Loop (QOL) to do a less-computationally 

intensive version of RIP. (3) Combining all of the above: Using a longer-range, low-

resolution analysis cycle as an outer loop to capture the slow-moving dynamics and 

estimate model bias, while using a short-range, high-resolution analyses to do short-

term predictions of detailed dynamics, while incorporating estimated model bias and 

long-term analysis weights. 

Model bias was found to be an influencing factor, particularly near the 

surface. An examination of model bias and the bias correction facilitated by the IAU 

procedure will be examined. An adaptation of the methods of Danforth [DKM07], 

and Li [LKM09], will be applied to account for model bias. 
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As the error structure of the observation data set becomes more complicated, 

from a constant observation error used in previous work, to the vertical profile used in 

this work, to an adaptive grid-based estimates of observation error, a new metric for 

measuring analysis quality is required. Rather than simply observe the RMS distance 

between the model and observations, a metric should be developed that accepts the 

estimated observation error, and potentially the estimated forecast error, to identify 

whether the analysis and forecast are within the specified range of statistical 

parameters in both the observation space and the model space. Ideally, an estimate of 

the continuous error over the field would be preferred, possibly weighted in areas 

with the greatest dynamic instability so as to indicate better initial conditions for 

forecasts. Once such metrics are developed, they can then be incorporated back into 

data assimilation systems to further correct analyses. 

The varying levels of temporal dynamics must be analyzed to allow for 

potential improvements in predicting large-scale oscillations such as ENSO and 

utilizing these predictions to improve long-term forecasting of small-scale oscillations 

such as eddy dynamics. This should be commenced by investigating techniques to 

address both slow and fast degrees of freedom. 

[http://www.cimms.caltech.edu/workshops_dir/w-

ipam/presentations/posters/Hartmann/hartmann_poster.pdf]  

A suite of automated diagnostic/analysis tools should be developed to 

accelerate the verification and validation of assimilation results. As with Desroziers’ 

diagnostics [DBC05] that were developed into online analysis improvements [KLM], 

new automated diagnostics will likely lead to improvements in analysis methods. 
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Parameter variations for LETKF should be performed and documented in an 

organized matrix. In particular, the relationship between the length of the analysis 

cycle and the range of the localization is dependent on the ocean model dynamics and 

the modes that one attempts to capture. But, many other parameters should be 

examined, including the initial ensemble spread composition, the selection of the 

surface forcing, the choice of adaptive inflation forgetting factor, the amount of 

relaxation applied to the adaptive inflation, the amount of error added to each 

ensemble member for LETKF-RIP, independent vertical and horizontal localization 

for each variable, and the observation error. 

In conclusion, the implementation of 4D-LETKF for the oceanic domain is a 

versatile and effective system for assimilating sparse observations with a coarse 

resolution model. While the number of ocean observations are increasing, particularly 

due to the introduction of the Argo floats and satellite measurements of surface 

parameters such as SST, SSH, and SSS [http://aquarius.nasa.gov/], increasing the 

model resolution will again render these observations relatively sparse relative to the 

model dynamics. For that reason, regardless of the increases in observation coverage, 

robust methods that handle sparse observations will always be needed. 
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Appendices 

Fokker-Planck Equation 

The term Fokker-Planck Equation refers to the work of two physicists on Brownian 

motion, namely A.D. Fokker [F14] and Max Planck [P17]. Kolmogorov obtained the 

same equation in his fundamental paper on markov processes [Ko31].  He referred to 

it as the second fundamental differential equation and it has since become known as 

the Kolmogorov forward equation, while his first fundamental equation is now called 

the Kolmogorov backward equation. Kolmogorov was not familiar with the papers of 

Fokker and Planck in 1931 but from 1934 he referred to the Fokker-Planck equation, 

though his backward equation had not previously appeared. [D89] 

[http://jeff560.tripod.com/f.html] 

The general form of the Fokker-Planck equation can be derived in terms of 

“the evolution of a non-stationary probability distribution from a defined initial 

condition, or in terms of the evolution of the conditional probabilities for a stationary 

random process.” [http://www.pma.caltech.edu/~mcc/Ph127/b/Lecture17.pdf] 

For calculating the time-dependent probability distribution of an N-

dimensional vector x, the stochastic differential equation (SDE) is: 

!!! = ! !! , ! !" + !(!! , !)!!!, (39) 

where Xt is an N-dimensional random variable and Wt is an M-dimensional Wiener 

process. The probability density f(x,t) for the random variable Xt satisfies the Fokker–

Planck equation with the drift coefficient µ (representing the drift of the function 
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mean), and the diffusion coefficient σ (representing the diffusion of the function’s 

standard deviation).  

This equation can also be expressed as the sum of a Lebesgue and an Itō 

integral in the integral equation, 

!!!! = !! + !!!!
! !!, ! !" + !!!!

! !!, ! !!!. (40) 

This equation characterizes the behavior of the continuous time stochastic process Xt. 

This may be interpreted: in a time interval [t, t+δ], Xt changes its value by a normally 

distributed amount with expectation µ(Xt, t) δ and standard deviation σ(Xt, t) δ.  

Because the increments of a Wiener process Wt are independent and normally 

distributed, the change in Xt is independent of the past behavior of the process. This 

stochastic process Xt is thus a Markov process. There also exist more general SDEs 

where the coefficients µ and σ depend on both current and previous values of the 

process Xt and possibly on values of other processes as well. In that case the solution 

process is called an Itō process. 

Note: Depending on the application, the general equation is also sometime 

written in this way, 

!"
!"
= − !

!!!
!!! !!,… , !! !!

!!! + !!

!!!!!!
!!"! !!,… , !! !!

!!!
!
!!!  (41) 

where D1 is the Itō drift vector and D2 the diffusion tensor resulting from the presence 

of stochastic force, 

!!! !, ! =   !! !, ! ,  (42) 

!!"! !, ! = !
!

!!" !, ! !!" !, !! . (43) 



 

 109 
 

Pseudo-code for coastal extrapolation 

set mask to 0 
set vcnt to 0 
*Create a buffer that is larger than the map grid size 
set buf3d(1:nlon+buffer,1:nlat+buffer,1:nlev+buffer) to 0 
 
*Flutter grid up, down left, right and diagonal within range of buffer. (Use v3d to 
store the boundary data during computation, then add it to v3d0 to get new grid) 
 
*Put the data in the middle of the buffer 
buf3d(buffer:nlon+(buffer-1),buffer:nlat+(buffer-1),buffer:nlev+(buffer-1)) = v3d0 
 
*Sum all the values on this gridpoint that have water in them 
do i=0,buffer 
  do j=0,buffer 
    do k=0,buffer 
       where(v3d is ocean .and. buf3d(1+i:nlon+i,1+j:nlat+j,1+k:nlev+k) is positive) 
            v3d= v3d+ buf3d(1+i:nlon+i,1+j:nlat+j,1+k:nlev+k)  
            vcnt = vcnt + 1 
 
 *If it intersects land (kmt<lev), then it's a boundary point (on the land side). 
 *Average the flutter values to get an approximate extrapolation value. (being careful 
not to divide by zero...) 
 where(vcnt is positive)  
    v3d= v3d/ vcnt 
 
*Add back on the pre-existing values 
 v3d = v3d0 + v3d 
 

Analysis of RMSD as a performance metric 

Root Mean Square Deviation (RMSD) is a common metric for examining the 

difference between a model and observations of the system that model is trying to 

predict. It is an aggregate measure of many local deviations, or residuals, between the 

observations and the model forecast. Because of its derivation, outliers have a larger 

impact on the RMSD. 

When applied to two elements x and y, the various means satisfy: 

H(x,y) ≤ G(x,y) ≤ E(x,y) ≤ RMS(x,y), (44) 



 

 110 
 

representing the Harmonic, Geometric, Arithmetic, and Room Mean Square, 

respectively. Using this information, we may convert the forecast and truth to the 

observation space for comparison.  

If we let F=Hxf, T=Hxt, O=yo, and et = (T-F), ef = (O-F), eo = (O-T), then et = 

ef – eo represents the error between the truth and the forecast, and 

 

E(et) = E(ef – eo) = E(ef) – E(eo) ≤ E(ef) + |ßo| ≤ RMS(ef) + |ßo|, (45) 

or, E(et) ≤ RMS(ef) + |ßo| (46) 

That is, within an error of ßo (the mean observation bias), the RMSD bounds 

the mean error of the forecast. If there were sufficient observations to satisfy the 

observability condition, then this would guarantee the accuracy of the forecast. 

Unfortunately that is not typically the case for a sparsely observed system, and further 

investigation must be done to verify that the assimilation system is generating 

accurate forecasts.  

 
Figure 58. Diagram of the comparison between truth and forecast made using the RMSD 
measure. 
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Decorrelation Scale Length 

In the spatial dimension, the decorrelation scale length, sometimes called the e-

folding scale length, is analogous to the localization radius used by LETKF. A 

latitude-dependent fixed value was used based on previous studies, e.g. the method of 

ISHII described in [CS08], and adjusted slightly based on experimental results. In 

some cases, the temporal decorrelation length has been defined as the length of time 

before the autocorrelation function switches regimes from positive to negative. The 

temporal decorrelation length is tied closely to the length of the analysis cycle 

window used by LETKF. 

 Spatial decorrelation scale lengths tend to vary proportionately to the local 

Rossby deformation radius for ocean color data in the North Atlantic 

[http://remotesensing.whoi.edu/~david/decorr/decorr_text.html]. In the study 

[RRC06], yearly SST decorrelation scale lengths were between 70 and 125 days. 

[GK96] find that the Geosat altimeter data indicate a spatial decorrelation scale of 85 

km and a temporal e-folding scale of 34 days in the Southern Ocean, particularly 

focused on the Antarctic Circumpolar Current (ACC). Work is currently underway to 

identify spatial decorrelation scales based on statistical analysis of Argo data 

[http://www.euro-

argo.eu/content/download/21530/310958/file/17.%20Lorna%20McLean.pdf]. 

In the instance that the LETKF analysis window is larger than the temporal 

decorrelation scale, additional measures must be put into place to ensure proper 

treatment of the observations. For example, temporal scaling should be applied to the 

errors for observations within the analysis window in this case. It should be noted that 

because both the true physical system and the model are both dynamical systems, it is 
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possible that both have different spatial and temporal decorrelation scales. For a 

method such as LETKF-IAU, which is heavily forced by analysis increments 

throughout the forecast stage, the model’s temporal decorrelation scale length may be 

lengthened. 

LETKF with the Extended Observation Window (LETKF-EOW)  

Due to the sparse distribution of observations throughout the ocean, particularly 

before the implementation of the Argo network, a rolling window of observations was 

used extending weeks before and after the analysis cycle. Reusing the observations 

has the effect of adding weight to the observations in the analysis. In essence, this has 

an effect similar to inflation, a common technique used to compensate for the effects 

of model error, the small sample size of the ensemble, and the linear approximations 

used by the Kalman filter. For this reason, a Gaussian weighting function was applied 

to the observation errors, increasing the error from the endpoints of the analysis 

window to +/- 25 days beyond the assimilation window. A 25-day window was 

chosen rather than SODA’s 45-day window to balance the added benefit of the 

extended window with computational run-time. 

The temporal error scaling was applied as: , where rs is the 

scaled observation error, ro is the original prescribed observation error, do is the date 

of the observation and da is the date of the analysis, and σt is the sigma scale of the 

Gaussian weighting. The inverse of rs is applied in the LETKF algorithm, effectively 

weighting the observations far from the analysis time very low in the analysis. This 
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weighting is applied similarly to the spatial weighting already implemented within 

LETKF. 

With σt = 10.0, this allowed for a range of weighting applied to ro between 1 

and 4.8. Thus observations that were +/- 25 days from the analysis time had 

approximately 5-times the prescribed error compared with the analysis cycle 

containing the observation, prior to spatial weighting. After applying spatial 

weighting, this prescribed error increased yet further. Thus the observations at the tail 

ends of the window are only a very loose constraint on the analysis. Yet, they provide 

the benefit of keeping the model within the range of observed quantities in an 

otherwise very sparsely observed system. 

It should be noted that in the theory of linear Kalman filters, observations 

should not be reused, following a common approach in ocean data assimilation 

[ICG97]. For this reason, the LETKF-IAU and LETKF-RIP methods are preferred. A 

number of other ocean assimilations have taken this approach, however, including 

[CCC00a] [KR08] [OBG08] [HXB08] [SH09] [DT10]. While the observations are 

indeed reused by LETKF-EOW, they are applied within the given analysis cycle, 

against a different background time for each analysis, and with different prescribed 

observation errors. 
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Figure 59. Diagram of Extended Observation Window used by LETKF-EOW and how the 
weights are applied to the observation errors. Because the errors on these observations are 
much larger after this weighting process, they have little impact on the analysis and serve 
only to maintain the trajectory within a range (e.g. keeping temperature within +/- 5 ºC) of 
the near past and near future observed values. 

In some regions there were numerous overlapping observations at various 

times within the extended window. For regions in which the background was close to 

the observations at the analysis time, this weighted most the impact from observations 

that occurred within the analysis cycle. However for regions in which the background 

was far from the observations, the quality control in LETKF would drop these 

observations (because they were too far from the mean state value) and instead the 

observations outside of the analysis cycle window with larger prescribed error would 

be the only observations to impact the analysis in this region. 

The original approach used in LETKF was to remove any observations that 

were 5 standard deviations of R, (5σο), away from the mean background state. If the 

assimilation settles on the correct trajectory then this is an adequate form of quality 

control. However, if that is not the case then this ‘quality control’ actually removes 

the highest quality observations and retains only observations with large error. 

Unfortunately, if kept these observations could cause a trajectory shift that is too large 

for the filter to handle. In the LETKF-IAU and LETKF-RIP methods, this approach 
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was modified. Instead of removing observations that did not satisfy the 5σο 

requirement, the value of the observation error σο was increased to satisfy the 

requirement instead, thus allowing the higher quality observations to be retained but 

only gradually pushing the filter toward the observed trajectory. 

In a sense, the extended window acts as a loose boundary condition on the 

LETKF analysis. The start and end of the analysis cycle window are constrained by 

the observations extending beyond the analysis cycle window, with increased error 

applied to those observations. 

Prior to the implementation of the extended time window, experiments 

showed large growth in RMS observation minus background [o-b] from one cycle to 

the next. This is primarily due to the sparse and changing nature of the observation 

network. While the analysis corrects the areas at locations for one cycle, in the next 

cycle the locations of the observations are different and have not yet been corrected, 

thus registering a larger [O-F] RMSD. In comparison, SODA uses an extended time 

window and the background RMSD closely follows the analysis RMSD. 
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Figure 60. RMSDs in Temperature between observations and the background and analysis 
fields, with observation error at 1º C. The overall trend of the observations minus LETKF 
analysis RMSD was computed via a spline method. The observation count is scaled as a 
percentage of 10,000. 

The 1997-1998 El Niño was the strongest on record, and had one of the fastest 

onsets. Effects of the event were seen as early as August-October 1997. 

[http://www.pmel.noaa.gov/tao/elnino/faq.html] Thus, the first period of interest that 

is to be examined spans from January 1, 1997 to January 1, 1999. The salinity 

observations during this period provide relatively low coverage compared with the 

temperature observation coverage. 

The following figures report results using a configuration of LETKF (LETKF-

EOW) that closely mirrors SODA. Both use an extended window of observations 

extending beyond the analysis cycle. Both use the IAU method of incremental 

updates within the model’s prognostic equations. LETKF uses a 40-member 

ensemble with perturbations applied to each member’s wind forcing. In these cases, 

SODA assimilates only temperature and relaxed observation errors (causing an 

improvement in SODA’s temperature RMSD, but a higher salinity RMSD). Figure 61 
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and Figure 62 show the (O-F) and (O-A) RMSDs for Temperature and Salinity. The 

global RMSD for temperature is lower overall for LETKF versus the SODA baseline. 

The RMSD for salinity fluctuates during spin up, then eventually levels off. Data 

points are shown at the analysis time; at day 3 of the 5-day analysis cycle for LETKF 

and at day 6 of the 10-day analysis cycle for SODA. Only observations corresponding 

to the day of the analysis were used for reporting the RMS departures. 

 
Figure 61. Temperature RMSDs for SODA and LETKF-EOW. 

 

 
Figure 62. Salinity RMSDs for SODA and LETKF-EOW. 
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As shown in Figure 63, the primary benefit of LETKF-EOW is realized in the 

data-rich equatorial areas. There is some marginal improvement in the North Pacific. 

In other areas in which historical observation coverage is sparser, LETKF-EOW 

performed proportionately with SODA. 

  

 

 

 
Figure 63. Regional breakdown of RMS temperature differences for SODA and LETKF-
EOW. (notation as in Figure 61) 
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Figure 64. Regional breakdown of RMS salinity differences for SODA and LETKF-EOW 

Ensemble methods typically perform better when the ensemble size is large 

enough to adequately sample the dimensions of instability in the model. However, 

there is a tradeoff to increasing the ensemble size, as it requires either increasing 

computational runtime of the overall assimilation procedure, or reducing the 
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resolution of the model to maintain this runtime. A variety of ensemble sizes have 

been used to test the assimilation quality, with results shown in Figure 65 and Figure 

66. As one would expect, the errors improve when increasing the size of the 

ensemble. Notably, there is still a competitive advantage with LETKF even when 

using only 10 ensemble members. 

 
Figure 65. RMSDs in Temperature (o-b) for SODA and LETKF-EOW using 10, 20 and 40 
ensemble members. 

 
Figure 66. RMS errors in Salinity (o-b) for SODA and LETKF-EOW using 10, 20 and 40 
ensemble members. 
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With the configuration used so far, both LETKF-EOW and SODA were set up 

for solving a reanalysis problem. In the interest of addressing the forecasting problem, 

a variety of additional configurations were used for both methods. In Figure 67, both 

methods were run with a 1-sided window of observations, subtracting all future 

observation data from the analyses. Using half the observations resulted in naturally 

higher RMSDs, but still results show relatively even performance between the two 

methods. 

 
Figure 67. RMSDs in Temperature (o-b) for SODA and LETKF-EOW using a 1-sided 
observation window, to simulate forecasting. 

Next, the analyses generated using the two-sided extended observation 

window were used to initialize 1-month forecasts starting from each analysis time. 

Figure 68 shows both the short-term forecasts corresponding with the analysis cycle, 

and the 1-month forecasts generated by those analyses. As is expected, the longer 

forecasts have higher RMS error. Using a 10-member ensemble, LETKF and SODA 

show similar performance. 
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Figure 68. Comparing RMSDs in Temperature (o-b) for SODA and LETKF-EOW using 1-
month forecast starting from respective backgrounds generated from 2-sided extended 
observation window. 

Argo deployments began in the year 2000. Thus the period from 2001-2003 is 

studied to determine the impact of growing observation coverage on the oceanic 

LETKF assimilation system. Though not yet utilized, the LETKF system has the 

ability to assimilate the Argo velocity observation data as well as the presently 

assimilated temperature and salinity. As can be seen in Figure 69, there is a dramatic 

increase in global salinity observations, concentrated primarily in the North Atlantic 

and Indian Oceans. 
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Figure 69. Regional breakdown of Observation Counts used by LETKF analysis. 

For this experiment, the SODA experiment was run continuously from 1997 

to 2004. The LETKF analysis was started at the beginning of 2001 due to the 

additional computational time needed to run LETKF-EOW. 

South Pacific South Atlantic 

North Pacific North Atlantic 

Indian Ocean 

Equatorial Pacific 

Equatorial Atlantic 
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Figure 70. Global RMS temperature differences for SODA and LETKF-EOW from January 
1, 2001 to January 1, 2004. 

 
Figure 71. Global RMS salinity differences for SODA and LETKF-EOW from January 1, 
2001 to January 1, 2004. 

Amid a growing number of observations as shown in Figure 69, particularly 

the dramatic increase in salinity observations in the North Atlantic and Indian 

Oceans, the RMSDs remain at fairly steady levels. The increase in both temperature 

and salinity observations in the Indian Ocean has allowed for a large improvement in 

the RMSDs in this region. Observation coverage in the South Atlantic is negligible; 

the results in this region are not expected to be of any sufficient quality. Though, 
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there is some improvement with the small increase in coverage in the last half of 

2003.  

In the regional results, there are notable improvements in RMSD due to 

increased observational coverage. For the temperature RMSDs, this is particularly the 

case in the equatorial Atlantic, southern Atlantic beginning mid-2003, and Indian 

Ocean beginning in late 2001. This improvement is evident in all regions for salinity 

RMSD. 
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Figure 72. Regional breakdown of temperature RMSD for SODA and LETKF-EOW. 
(notation as in Figure 61) 
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Figure 73. Regional breakdown of salinity RMSD for SODA and LETKF-EOW 
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Figure 74.  Inflation values generated by adaptive inflation at selected depths on January 3, 
2002, approximately 1 year after initial experiment time using LETKF-EOW. 
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Figure 75. 300 m analyzed heat content correlated with altimetry during 1997-98 ENSO with 
LETKF-EOW. 

 
Figure 76. First Fourier term for monthly averaged 300 m vertically integrated heat content 
anomaly during 1997-98 ENSO with LETKF-EOW analysis. 

 
Figure 77. First Fourier term for altimetry during 1997-98 ENSO. 
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Figure 78. Vertical level breakdown of temperature observation counts at the analysis times 
of SODA and LETKF. 

The results in Figure 78 indicate that areas with relatively lower observation 

coverage perform worse than those areas with relatively higher coverage. The largest 

improvements in RMSDs for LETKF-EOW over SODA occur in the depths where 

the observation coverage is greatest. The depths in which SODA outperforms 

LETKF-EOW have less than half the coverage of the depths in which LETKF-EOW 

outperforms SODA. The areas in which LETKF-EOW performs best typically have 

greater dynamic instability. 

 

SODA 

LETKF 
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Glossary of Terms 

Analysis The model state resulting from the data assimilation 

procedure after statistically combining the Background 

and Observations. 

Analysis Cycle The processes making up a single sequential data 

assimilation step.  

Analysis Cycle Window The duration of an analysis cycle. For the ocean, 

usually denominated by d days. 

Background The best available initial guess of the system state used 

by the assimilation procedure. When the term 

‘Background’ is used, it typically refers to the 

beginning of the analysis cycle. 

Ensemble Space The k-dimensional space spanned by the k ensemble 

members. 

Ensemble Spread Standard deviation of the ensemble members relative to 

the ensemble mean. 

Error of Representativeness Subgrid-scale variability that is not represented in the 

grid-average values of the model. 

Extended Obs Window A range extending beyond the duration of the analysis 

cycle to include observations that fall before and after 

the analysis cycle window. 

Forecast Synonymous with ‘Background’, but implies the guess 

was generated from some forecasting method such as a 



 

 132 
 

computational model. When the term ‘Forecast’ is used, 

it typically refers to the Background for the next 

analysis cycle. 

Incremental Analysis Update A procedure that applies a small fraction of the analysis 

innovation to the model prognostic equations at each 

model time step (1 second in MOM2) via a forcing 

term.  

Model Space The m-dimensional space spanned by the product of n 

model grid points and v model state variables. 

O-A The difference in the observed value and the analyzed 

value interpolated to observation space. 

O-F The difference in the observed value and the forecast 

value interpolated to observation space. 

Observability Condition The condition that determines whether there is 

sufficient information present in the system inputs and 

outputs to uniquely determine the system state. 

Observation A single point in physical space that consists an 

estimated value of one parameter of the true system 

state and an error associated with that estimate. 

Observation Space The l-dimensional space spanned by the l observations 

made at during any given analysis cycle. 

Quasi-Outer Loop A procedure that iterates within the analysis cycle as 

with Running-in-Place, but which only corrects the 
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ensemble mean without changing the structure of the 

ensemble perturbations. 

Running-in-Place A procedure that iterates within the analysis cycle to 

explore the space outside of the linear combination of 

ensemble members. 

Spread Standard deviation of the ensemble, either referring to 

the analysis ensemble, or to the background/forecast 

ensemble. 

Super Observation A spatially and/or temporally averaged quantity 

representing 1 or more observations used for the 

purpose of smoothing the observed values. 
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Glossary of Mathematical Quantities 

B The constant covariance matrix used by methods such as 3D-Var 

k The dimension of the ensemble space (i.e. the ensemble size) 

l The dimension of the observation space 

m The dimension of the model space 

Pa The covariance matrix of the analysis errors. 

Pb The covariance matrix of the background errors. 

R The covariance matrix of the observation errors. 

x A state vector in model space 

Xa A matrix of state vectors representing perturbations from the analysis 

ensemble mean 

Xb A matrix of state vectors representing perturbations from the 

background ensemble mean 

y A state vector in observation space 

Yb A matrix of state vectors representing perturbations from the ensemble 

mean in observation space 

αs The weighting parameter for the proportion of historical fields to use 

in construction of the initial ensemble (between 0 and 1) 

αw The weighting parameter for the proportion of historical fields to use 

in constructing the surface wind forcing ensemble (between 0 and 1) 
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Acronyms 

3D-Var Three Dimensional Variational 

4D-LETKF Four Dimensional Local Ensemble Transform Kalman Filter 

4D-Var Four Dimensional Variational 

ADCP  Acoustic Doppler Current Profiler 

CTD  Conductivity-Temperature-Depth 

DB  Denman-Beavers Iteration 

EnKF  Ensemble Kalman Filter 

EOW  Extended Observation Window 

GFDL  Geophysical Fluid Dynamics Laboratory 

IAU  Incremental Analysis Update 

LETKF Local Ensemble Transform Kalman Filter 

MATLAB Matrix Laboratory 

MBT  Mechanical Bathythermograph 

MOM2 Modular Ocean Model, version 2.4b 

MOM4 Modular Ocean Model, version 4.1 

NASA  National Aeronautics and Space Administration 

NCEP  National Centers for Environmental Prediction 

NOAA  National Oceanic and Atmospheric Administration 

NWP  Numerical Weather Prediction 

OI  Optimal Interpolation 

QOL  Quasi-Outer Loop 

RIP  Running in Place 
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RMSD  Root Mean Square Deviation (Difference/Distance) 

SDE  Stochastic Differential Equation 

SMW  Sherman-Morrison-Woodbury 

SODA  Simple Ocean Data Assimilation 

SST  Sea Surface Temperature 

XBT  Expendable Bathythermographs 
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