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In this thesis we explore four new applications of the Local Ensemble 

Transform Kalman Filter (LETKF), namely adaptive observations, analysis 

sensitivity, observation impact, and multivariate humidity assimilation. In each of 

these applications we have obtained promising results. 

In the adaptive observation studies, we found that ensemble spread strategy, 

where adaptive observations are selected among the points with largest ensemble 

spread (with the constraint that observations cannot be contiguous in order to avoid 

clusters of adaptive observations) is very effective and close to optimal sampling. The 

application on simulated Doppler Wind Lidar (DWL) adaptive observation studies 

shows that 3D-Var is as effective as LETKF with 10% adaptive observations sampled 

with the ensemble spread strategy. With 2% adaptive observations, 3D-Var is not as 

effective as the LETKF.  

  



In the analysis sensitivity study, we proposed to calculate this quantity within 

the LETKF with low additional computational time. Unlike in 4D-Var (Cardinali et 

al., 2004), in the LETKF, the computation is exact and satisfies the theoretical value 

limits (between 0 and 1). The results from simulated experiments show that the trace 

of analysis sensitivity qualitatively reflects the observation impact obtained from 

independently computed data addition or data denial OSSE experiments. 

In the observation impact study, we derived a formula to estimate the impact 

of observations on short-range forecasts as in Langland and Baker (2004), but without 

using an adjoint model. Both methods estimate more than 90% accuracy the actual 

observation impact on the short-range forecast error improvement. Like the adjoint 

method, the method we proposed detects observations that have either large random 

error or unaccounted bias. This method can be easily calculated within the LETKF, 

and provides a powerful tool to estimate the quality of observations.   

 Finally, for the first time, we assimilate humidity observations multivariately 

in both perfect model experiments and real data assimilation. We found that 

multivariate assimilation is better than univariate assimilation. The assimilation of 

pseudo-RH (Dee and da Silva, 2003) is better than the choice of specific humidity 

and relative humidity. The multivariate assimilation of AIRS specific humidity 

retrievals on NCEP GFS system shows positive impact on the winds analysis.  
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Chapter 1  Introduction 

Data assimilation is a process combining observation information and model 

forecast (background) based on their uncertainty estimation (e.g., Kalnay, 2003). 

Ensemble Kalman Filter (EnKF, Evensen, 1994; Anderson, 2001; Bishop et al., 2001; 

Houtekamer and Mitchell; 2001; Whitaker and Hamill, 2002; Ott et al., 2004; Hunt et 

al., 2007) is a type of data assimilation in which the time changing background error 

covariance is estimated from an ensemble of forecasts. The Local Ensemble 

Transform Kalman Filter (LETKF, Hunt et al., 2007) is an efficient type of EnKF, 

which calculates the ensemble analyses in a local patch centered at each grid point. 

The analysis at each grid point is independent from each other, so the scheme is 

highly parallel. The analysis mean state in the LETKF is  

 ))((~ bobba h xyKXxx −+= (1.1)

The vectors ax  and bx  are the mean analysis and background field.  is the 

observation vector, and   is nonlinear observation operator interpolating the mean 

background to the observation space. X is the matrix whose columns are the 

ensemble perturbations, which are the difference between ensemble forecasts and 

ensemble mean state. 

oy

)(⋅h

b

[ ] 111 )())1()()(~ −−− −+= RHXIHXRHXK TbbTb K  is the 

Kalman gain in the ensemble perturbation space, with K  equal to the number of the 

ensemble members. R  is the observation error covariance. HX is the matrix whose 

columns are the ensemble perturbations in the observation space. The analysis 

ensemble perturbations in the LETKF are a linear combination of the background 

ensemble perturbations:  

b

 1



 

 [ ]21~)1( aba K PXX −=  (1.2)

where [ 11 )1()( ]~ −− −+= IHXRHXP KbTba is the analysis error covariance in the 

ensemble perturbation space. The background error covariance and the analysis error 

covariance are estimated as: 

 bTbb

K
XXP

1
1
−

=  (1.3)

 bTaba

K
XPXP ~

1
1
−

=  (1.4)

Throughout this thesis, we will study adaptive observations, analysis sensitivity, 

observation impact on the short-range forecast, and assimilation of humidity 

observations with the LETKF scheme.  

1.1 Adaptive observations 

Conventional atmospheric observations, such as rawinsondes, are fixed with 

time, and are concentrated over land. The locations that do not have conventional 

observations at all, such as most of the ocean areas, were never observed before the 

advent of satellite data. In the satellite period (from 1979 on), satellites provide global 

observational coverage, but each location can be at most observed twice a day. Due to 

cloud contamination and some other reasons, some locations may not have any 

observations for more than a day. This insufficient observational coverage problem is 

more severe over ocean than over land. However, the predictability over land is 

determined by the analysis accuracy of the upstream regions, i.e., over ocean. 

Therefore, in 1996, Snyder (1996) proposed to allocate limited rawinsonde 

observation resources adaptively, an approach called “targeted” or “adaptive” 
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observations. The idea of adaptive observation is to select the location of observations 

where they can be mostly useful in improving the forecast results. 

 

Later on, some field experiments were carried out to test the effectiveness of  

adaptive observations, such as the Fronts and Atlantic Storm-Track Experiment 

(FASTEX), the North Pacific Experiment (NORPEX), Winter Storm Reconaissance 

Program and Atlantic TOST/TReC (Snyder, 1996; Joly et al., 1997; Emanuel and 

Langland, 1998; Bergot, 1999; Langland et al., 1999a; Langland et al., 1999b; Pu and 

Kalnay, 1999; Szunyogh et al., 1999; Majumdar et al., 2002; Toth et al., 2002; 

Langland, 2005). In most of these field experiments, they aimed to improve the short 

range forecast over land (verification region represented by∑ , grey area in Figure 1.1) 

by observing a limited area over the targeted area (white area in Figure 1.1 represented 

by T).  

 

 

Figure 1.1 Schematic illustration of the concept of the ‘adaptive /target observations’: 
the grey areas identify land, while the white region identifies the ocean. T is the target 
area and ∑  is the verification region. (From Buizza et al., 2007) 
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The concept of adaptive observations has been mostly used in designing 

dropsonde aircraft routes to improve short range forecasts over some verification 

region in field campaigns. However, it is also a useful tool to save energy for any 

satellite instrument designed to “dwell” in regions of high uncertainty rather than 

providing uniform coverage along the orbit as conventionally done. Doppler Wind 

Lidar (DWL) is such an instrument which gives ‘line of sight’ wind estimate by 

measuring the reflection of a lidar shot on either molecules or aerosols. Detecting 

such a signal requires a large amount of energy. Therefore, the U.S. DWL will be 

operated in an adaptive mode, in which the goal is “to obtain 90% improvement from 

10% coverage”. Shown in Figure 1.2 is an example of targeted DWL observation 

distribution from Observing System Simulation Experiments (OSSEs). The white 

symbols are the full coverage, and the red symbols are the adaptive observations. The 

adaptive observation locations are either the area that the verification region most 

sensitive to or the areas that have largest uncertainty.  

 

Our study will focus on selecting adaptive observations based on reducing the 

analysis uncertainty. The central issue in this problem is how to get the dynamical 

uncertainty estimation. LETKF, like any other EnKF, provides both the background 

uncertainty as well as analysis uncertainty estimations along the analysis (Equation 

(1.3) and (1.4)). Therefore, it is straightforward to do adaptive observation within the 

LETKF data assimilation framework. We will explore the ensemble-based adaptive 

observation strategies in both a simple model (Lorenz-40 variable model, Lorenz and 
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Emanuel, 1998) and in a global primitive equation model to sample the simulated 

DWL observations.  

 

                       

EXAMPLE TARGETED LOCATIONS FOR DWL OSSE
( White symbols: full lidar coverage; Red symbols: targeted coverage)

Figure 1.2 Example of targeted locations for DWL OSSE. From a presentation by Mike 
Hardesty (2006). The white symbols: full lidar coverage; Red symbols: targeted 
coverage. 

 

In Chapter 2, we will compare several ensemble-based adaptive observation 

strategies using Lorenz-40 variable model (Lorenz and Emanuel, 1998) following the 

same experimental setup as previous studies (Lorenz and Emanuel, 1998; Hansen and 

Smith, 2001; Trevisan and Uboldi, 2004). We will show the performance of each 

strategy and compare with the best results published so far with this simple model. In 

Chapter 3, we perform OSSEs with the global primitive equation model known as 

SPEEDY (Molteni, 2003). We compare different strategies by sampling the simulated 

DWL observations uniformly, randomly, based on the background uncertainty 

estimated from the LETKF, and also the climatological uncertainty estimation. We 
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compare the analysis improvement due to the DWL observations from these different 

adaptive strategies in both the LETKF data assimilation system and the 3D-Var 

assimilation system. We further study the effectiveness of 3D-Var and LETKF with 

both dense sampling (10% of DWL total coverage in six-hour) and sparse sampling 

scenarios (2% of DWL global coverage in six-hour). This paper has been published in 

GRL (Liu and Kalnay, 2007). 

1.2 Analysis sensitivity and observation impact  

Modern operational data assimilation systems have evolved into very 

complicated systems combining high resolution dynamical model and the 

observations from both routine network and satellites. With the assimilation of kilo-

channel satellite, such as Advanced InfraRed Satellite (AIRS), assimilation systems 

become more complicate, though only about 300 channels have been assimilated (e.g., 

Joiner et al., 2004). In such a complex system, it is necessary to monitor the role of 

each factor, such as how much the information comes from the background, and how 

much comes from each type of observations. Cardinali et al. (2004) proposed a 

method to calculate analysis sensitivity in a 4D-Var system, which measures how 

sensitive the analysis value is to the observations. It is complementary (adding up to 1) 

to the sensitivity to the background at the observation location. The sum of the 

analysis sensitivity of each type observation gives the information content of that type 

observation. The comparison of the information content can show the relative 

importance of each type observation in the data assimilation system, such as the result 

obtained by Cardinali et al. (2004) in a 4D-Var system (Figure 1.3). However, in the 

4D-Var system, the calculation of analysis error covariance, which is part of the 
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analysis sensitivity calculation, needs some approximations, which creates some 

values of the analysis sensitivity outside the 0 to 1 range.  

 

 
Figure 1.3 Average analysis sensitivity (%) for each of the main observation types (See 
Table 1 in Cardinali et al. 2004 for the full name of each observation type). (a) for 
Northern Hemisphere extratropics, (b) for the tropics, (c) for the Southern Hemisphere 
extratropics. From Cardinali et al. (2004) 

 

Analysis sensitivity allows monitoring the sensitivity of the assimilation 

system to each component within the data assimilation system (Figure 1.3) and the trace 

of analysis sensitivity has also been used in selecting the channels from kilo-channel satellite 

(Fourrie and Thepaut, 2003). However, the diagnostics based on analysis sensitivity can 

not evaluate the actual quality of observations. Though statistically the assimilation of 

observations improves the analysis and so it improves the short-range forecast, in 

some cases, some observations may actually deteriorate the analysis. In addition, 

analysis sensitivity can only show the relative importance of different observations. It 

can not show the actual observation impact on the forecast.  
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The method proposed by Langland and Baker (2004) is pioneering in being 

able to detect poor observations, and showing the actual impact of each type of 

observations, even each channel of satellite, on the forecast. As shown in Figure 1.4 is 

the actual impact of some sensors of AQUA satellite on the improvement of forecast 

accuracy due to assimilation of the observations at 00hr. The positive values indicate 

that the observations from those channels actually increase the forecast error. It shows 

that the assimilation of the radiance from some channels makes the forecast worse, 

which identifies problems with either observing systems or assimilation systems, and 

provide the guidance for further improvement. By grouping the observations based on 

instrument types, it can further compare the actual observation impact of different 

instrument types on the forecast, as shown in Figure 1.5. 

 

Aug 15-26, 2006 

Figure 1.4 Assessments of AQUA sensors. Red: AMSU/A; Green: AIRS longwave14-
13µm; Grey: shortwave 4.474µm; Blue: AIRS shortwave 4.180µm (From the 
presentation by Bishop in University of Maryland, 2007) 
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Figure 1.5 Summed global observation impact for June and December 2002, partitioned 
by instrument type. Includes all observations assimilated at 00UTC. The key is as 
follows: ATOVS, temperature retrievals; RAOB, rawinsondes; SATW, cloud and 
feature-track winds; AIRW,, commercial aircraft observations; LAND, land surface 
observations; SHIP, ship surface observations; AUSN, synthetic sea level pressure data 
(Southern Hemisphere only). From Langland and Baker (2004) 
 

 

LETKF provides a framework to calculate analysis sensitivity and obtain the 

observation impact without using the adjoint model. Since analysis uncertainty is 

calculated along with the data assimilation in the LETKF (Equation (1.4)), the 

calculation of analysis sensitivity needs no approximation. In the LETKF, the 

analysis ensemble perturbations are linear combination of the background ensemble 

perturbations (Equation (1.4)). The analysis ensemble can also be written as a linear 

combination of the background ensemble (Chapter 5). When the forecast length is 

short enough that the perturbations with respect to the ensemble mean grow linearly, 

we can estimate the ensemble forecasts at the verification time t using the same 

weights as at the initial time. With this approximation, we derive a new procedure to 

calculate the observation impact on any short-range forecast using ensemble but 

without using adjoint (Chapter 5).  

 
In Chapter 4, we give a detailed calculation procedure of the analysis 

sensitivity without any approximation in the LETKF data assimilation system. We 
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verify our calculation procedure in the Lorenz-40 variable model, and further explore 

the usefulness of analysis sensitivity in a global primitive equation model (SPEEDY) 

by comparing the information content and the results from “data denial” and “add-on” 

experiments. In Chapter 5, we derive an ensemble method which can calculate the 

same observation sensitivity as the adjoint method proposed by Langland and Baker 

(2004), but without using the adjoint model. We compare the results from the 

ensemble sensitivity method we proposed with the adjoint method by Langland and 

Baker (2004) in the Lorenz-40 variable model. 

1.3 Humidity data assimilation 

Due to the exponential variability of atmospheric moisture in latitude and 

height, the poor quality of humidity observations and the model errors related with 

moisture parameterizations, the assimilation of humidity observations is a difficult 

problem. With the improvement of observation quality and parameterization process, 

currently, most operational centers (NCEP, ECMWF) assimilate humidity 

observations within their assimilation systems. The assimilation approaches in these 

operational centers are variational approaches using a constant background error 

covariance (e.g., Kalnay, 2003). However, unlike the other dynamical variables, the 

humidity field changes with time and locations abruptly, which makes the constant 

error variance assumption less valid. Due to the small scale features of the humidity 

field, it is difficult to obtain the statistical covariance between humidity field and the 

other dynamical variables. Therefore, operational centers assimilate humidity 

observations uni-variately.   
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The humidity field can be represented in several different ways (e.g., dew 

point depression, specific humidity or relative humidity). This leads to several 

choices of assimilation variables, such as specific humidity, the logarithm of specific 

humidity, and the relative humidity. The different choices of variable type results in 

the different observation error distribution. In most of these choices, the observation 

error distribution is far from Gaussian. Since the Gaussian observation error 

distribution is assumed in data assimilation schemes, the choice of assimilated 

variable type is a central issue in humidity data assimilation. Dee and da Silva (2003) 

proposed to use pseudo-relative humidity (pseudo-RH) as the observed variable, 

which is to normalize the observed specific humidity by the saturated specific 

humidity from the background field. Holm (2002), based on a then unpublished idea 

of Dee and da Silva (2003), proposed a method to re-formulate the humidity variable. 

The chosen humidity control variable is a normalized relative humidity normalizing 

the relative humidity by a polynomial approximation of the background error. In both 

studies, the proposed variables, either pseudo-RH or normalized relative humidity has 

a more Gaussian observation error distribution than other choices of humidity 

variables. 

 

 Unlike variational assimilation methods, in the LETKF (or any other EnKF), 

the background error covariance (Equation (1.3)) is updated each analysis cycle based 

on the background ensemble forecasts. In addition, the background error covariance 

automatically couples the error statistics of all the dynamical variables together. 

Therefore, with an EnKF as a data assimilation scheme to assimilate humidity 
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observations, it can more accurately capture the time changing error characteristics 

and can easily couple the humidity field with other dynamical variables.  

 

In Chapter 6, we perform OSSEs using the LETKF to assimilate humidity 

observations both uni-variately and multivariately in a global primitive equation 

model. We will compare pseudo-RH with the other choices of humidity observation 

types when the specific humidity observations have non-Gaussian observation error. 

In addition, we assimilate AIRS humidity retrievals within the NCEP GFS T64L28 

system with specific humidity and pseudo-RH as assimilated humidity variable type 

in a coupled (multivariate) mode. As far as we know, this is the first time that 

moisture observations have been assimilated multivariately.  
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Chapter 2 : Adaptive observation strategies based 
on the Local Ensemble Transform Kalman Filter 
using the Lorenz-40 variable model 

 

2.1 Introduction 
 

Strategies to select the location of observations where they can be mostly 

useful in improving the forecast results are called as “targeted” or “adaptive” 

observation strategies (Snyder, 1996). The effectiveness of some adaptive strategies 

has been tested in some field experiments, such as Fronts and Atlantic Storm-Track 

Experiment (FASTEX), the North Pacific Experiment (NORPEX), Winter Storm 

Reconaissance Program and Atlantic TOST/TReC (Snyder, 1996; Joly et al., 1997; 

Emanuel and Langland, 1998; Bergot, 1999; Langland et al., 1999a; Langland et al., 

1999b; Pu and Kalnay, 1999; Szunyogh et al., 1999; Majumdar et al., 2002; Toth et 

al., 2002; Langland, 2005). There are two basic types of adaptive observation 

strategies. One class is the adjoint based techniques, such as singular vector method 

(Palmer et al., 1998; Morss and Emanuel, 2001; Langland, 2005). The other is 

ensemble-based techniques such as the ensemble spread method (Lorenz and 

Emanuel, 1998; Hamill and Snyder, 2002), the Ensemble Transform Kalman Filtering 

(ET KF) (Bishop et al., 2001; Majumdar et al., 2002; Hamill and Snyder, 2002), and 

the quasi-inverse technique (Pu and Kalnay, 1999). The main difference between 

these two types of methods is the requirement of the adjoint model. The singular 

vector method uses the adjoint model to propagate the forecast uncertainty in the 

verification time back to the targeting time. The location with the largest error growth 

rate is chosen as the adaptive observation location. Ensemble based adaptive 
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observation methods do not use adjoint model, but use ensemble forecast information 

to identify the locations with largest uncertainty at the targeting time. 

 

With the development of ensemble data assimilation methods in recent years 

(Evensen, 1994; Anderson, 2001; Bishop et al., 2001; Whitaker and Hamill, 2002; Ott 

et al., 2004; Hunt et al., 2007), ensemble based adaptive observation strategies have 

been proposed (Hamill and Snyder, 2002; Majumdar et al., 2002). In this chapter, we 

will focus on the ensemble based adaptive observation strategies derived from the 

LETKF data assimilation scheme. We will discuss the formulation, characteristics 

and the relationship of the background ensemble spread method, local analysis 

ensemble spread method and a combined method we proposed (Section 3.3). To test 

the accuracy of these methods, we use Lorenz-40 variable model, and follow the 

same experimental design as the previous studies that have used the same model to 

test adaptive observation strategies (Lorenz and Emanuel, 1998; Berliner et al., 1999; 

Hansen and Smith, 2000; Trevisan and Uboldi, 2004). We will further compare our 

results with the best result published so far (Hansen and Smith, 2000) with the same 

model and same experimental design, but different adaptive observation strategy.   

 

This chapter is organized as follows: Section 2.2 describes the experimental 

design; Section 2.3 gives the formulation of several adaptive strategies; Section 2.4 

illustrates the relationship between background ensemble spread method and local 

analysis ensemble spread method discussed in Section 2.3; Section 2.5 presents the 

results from these different adaptive observation strategies; Section 2.6 is a summary.  
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2.2 Experimental Design 

 
The Lorenz 40-variable model is governed by the following equation: 

 
Fxxxxx

dt
d

jjjjj +−−= −−+ 121 )( (2.1)

The variables ( , j=1…J) represent a “meteorological” variable on a “latitude circle” 

with periodic boundary conditions. As in previous studies, J is chosen to be equal to 

40. The time step is 0.05, which corresponds to a 6-hour integration interval. F is the 

external forcing, which is equal to 8 for the nature run, and equal to 7.6 when do the 

forecast, thus introducing some model error. 

jx

 

Observations are obtained from the nature run (long-term “true evolution”) 

plus Gaussian distribution errors with standard deviation equal to 0.2. Following 

previous studies (Lorenz and Emanuel, 1998), we observe the variables every six-

hour at every “land” grid point (from 21 to 40), and a single adaptive observation 

from one of the points over “ocean” (grid points 1-20). The analysis is the 

combination of the six-hour forecast and both routine observations over land and the 

adaptive observation over ocean. The optimality of this additional observation is 

evaluated by the analysis error at the observation time and the 10-day forecast error.  

 

We use a 20-member ensemble to estimate the background error covariance, 

which is used in the data assimilation to represent the background error. In order to 

compensate for the sampling error due to the insufficient ensemble members, we use 

a multiplicative inflation method (Anderson and Anderson, 1999) on the background 
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error covariance, i.e., the background error covariance is multiplied by a number 

larger than 1. The estimation method is based on the online estimation method 

proposed by Miyoshi (2005) (see appendix A). It is valid when the observation error 

statistics reflect the true observation uncertainty (Li, 2007), which is the case in our 

experimental setup. Unlike Miyoshi (2005), we estimate the inflation factor patch by 

patch instead of estimating a global inflation factor, since the observation coverage is 

non-uniformly distributed in our experimental design, and the inflation factor depends 

strongly on the observation coverage (Whitaker et al., 2007). The inflation factor is 

larger over the area where there are more observations, such as land and adjacent 

areas，and smaller inside of the ocean area where the observation is only from 

adaptive observation, as shown from time-average inflation factor from background 

ensemble-spread strategy (Figure 2.1). Since we add model error in our forecast model, 

the inflation factor also partially accounts for model error.  

 

Figure 2.1 Time averaged inflation factor dependence on locations obtained from the 
background ensemble spread adaptive observation strategy  
 

 16



 

2.3 Formulation of adaptive observation strategies 

The purpose of exploring adaptive observations is to maximize the analysis or 

the forecast uncertainty reduction with the same amount of observation resources. 

Since in ensemble data assimilation, the background uncertainty (Equation (1.3)) and 

the analysis uncertainty (Equation (1.4)) are calculated along with the data 

assimilation without using the actual observation value, the ensemble data 

assimilation provides the statistics to guide the adaptive observation network design. 

In the following discussion, we will focus on how to minimize the analysis error 

rather than the short-range forecast error with adaptive observation strategies. 

 

The trace of the analysis error covariance has been shown to be an appropriate 

statistical standard to evaluate the accuracy of the analysis (Berliner, et al., 1999). 

The optimal adaptive observation is to make the trace of the analysis error covariance, 

referred to as the analysis ensemble spread, as small as possible. In the EnKF, since 

the analysis error covariance is proportional to the background error covariance, 

minimizing the background uncertainty in the background ensemble spread method 

indirectly minimizes the analysis uncertainty (Section 2.3.1). With a single adaptive 

observation, minimizing the six-hour forecast uncertainty in the background ensemble 

spread method also minimizes analysis uncertainty (Section 2.4). In EnKF, since the 

analysis error covariance is part of the data assimilation, we can directly minimize the 

trace of analysis error covariance. Unlike other EnKF data assimilation schemes, 

LETKF calculates the analysis error covariance  locally. Therefore, we call the 

adaptive method based on the diagonal value of local  “local analysis ensemble 

aP

aP
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spread” method (Section 2.3.2). Although LETKF allows parallel computing of the 

analysis ensemble spread, it would still require large computational time if we try to 

select a large number of adaptive observations. Thus, we combine the economical 

background ensemble spread method and local analysis ensemble spread method in a 

combined background-analysis ensemble spread method (Section 2.3.3), taking 

advantage of both methods. Finally, we discuss one “ideal” adaptive observation 

strategy (Section 2.3.4), in which we use the truth to find the optimal adaptive 

observation locations, and use it as an unattainable benchmark. 

2.3.1 Background ensemble spread method 

In EnKF, the six-hour ensemble forecasts give the estimation of the 

background error covariance. Ensemble spread is the trace of the background error 

covariance, defined by 

 Tb
j

b
ji

b
j

K

i

b
jij KS ))(()1( ,

1
,

1 xxxx −−−= ∑
=

− (2.1)

b
ji,x  is the i  background ensemble member at the grid point , th j K  is the number of 

ensemble members, 
b
jx  is the ensemble mean state at the grid point . j

 

In the background ensemble spread adaptive observation strategy, the adaptive 

observation location is the location with largest background ensemble spread of all 

the potential adaptive observation locations over ocean. By putting the observation at 

the location with largest background ensemble spread, the analysis gives the largest 

weight to the adaptive observation compared to the other potential adaptive 

observations. In addition, it improves the analysis accuracy most by assimilating the 

 18



 

observation at the largest background uncertainty location. With a single adaptive 

observation, the location that minimizes the background ensemble spread also 

minimizes the analysis spread. But if there are several observations, this is not valid 

(more details in Section 2.4). 

2.3.2 Local analysis ensemble spread method 

It is similar to the adaptive observation strategies proposed by Bishop et al. 

(2001) and Hamill and Snyder (2002) in explicitly minimizing the trace of the 

analysis error covariance, i.e., the summation of the analysis ensemble spread over all 

grid points. It differs from these methods in the calculation details and the parallel 

computation characteristics as discussed below. 

  

In the LETKF (Hunt et al., 2007), the analysis error covariance can be 

expanded as: 

 Pa = Xb[(k −1)I − (HXb )T R−1(HXb )]−1XbT (2.2)

which depends on the background ensemble perturbations X (difference between 

ensemble forecasts and ensemble mean state), the observation location reflected in the 

observation operator , and the observation error covariance

b

H R .  is the 

ensemble perturbation matrix at the observation space with the  column equal 

to

bHX

thi

)()( bbi hh xx − , where h is a nonlinear observation operator. The dimension of the 

inverse in the calculation of the analysis error covariance (Equation (2.2)) is the 

number of ensemble members, which are usually less than 100. Note that the 
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calculation of the analysis error covariance does not require the actual observation 

value, so it can be calculated before the observation values are known. 

 

The special characteristic of the method we discuss here is the calculation 

efficiency resulting from parallel implementation, as in the LETKF data assimilation 

scheme itself. Like the localization scheme used in the LETKF assimilation scheme, 

the analysis error covariance can be calculated independently for each grid point 

based on the information within a local patch centered at that grid point. The average 

of the analysis ensemble spread of this analysis error covariance is regarded as the 

analysis ensemble spread of the center grid point. The final global analysis ensemble 

spread is the sum of the analysis ensemble spread at each grid point. The adaptive 

observation is the one that makes the global analysis ensemble spread smallest. Due 

to the independence of the analysis error covariance calculation in each local patch, 

the calculation is highly parallel, and could save a lot of computation time when 

dealing with large systems, such as realistic Observing System Simulation 

Experiments (OSSEs).  

 

When more than one adaptive observation is to be chosen, the adaptive 

observation has to be selected serially, so that the impact from previous observations 

has already been taken into account before selecting the next adaptive observation. 

The process is as follows: the analysis ensemble perturbation (Equation (1.4)) based 

on the routine observations is calculated first, and regarded as the background 

ensemble perturbation in the first adaptive observation selection. Each potential 
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adaptive observation has a different observation operator, so each potential adaptive 

observation will get different analysis ensemble spread (Equation (2.2)). The one that 

makes the global analysis ensemble spread smallest is the first adaptive observation. 

After the first adaptive observation point is selected, the analysis ensemble 

perturbations are updated based on the new adaptive observation, and used as the 

background ensemble perturbations in the next adaptive observation selection. Since 

these processes are all highly parallel, different potential adaptive observations can be 

tested independently at the same time. This process repeats until all the adaptive 

observations are selected. In implementing on Lorenz 40 variable model, since we 

only need to select one adaptive observation, it is not necessary to use serial selection. 

We directly calculate the global analysis ensemble spread based on 20 possible 

adaptive observation locations. The adaptive observation is the observation that 

makes the magnitude of the analysis ensemble spread smallest.  

2.3.3 Combined background-analysis ensemble spread method 

Compared to the background ensemble spread method, the local analysis 

ensemble spread method has the advantage of considering the observation error, 

background covariance between grid points, and the impact from the observations 

that have already been chosen (discussed in more detail in Section 2.4), but it requires 

much more computational time even with parallel computations. The background 

ensemble spread method, on the other hand, considers only the background ensemble 

variance, and it is available at no cost within an ensemble Kalman filter. Therefore, 

we propose a method combining both methods by first choosing a small portion of the 

potential adaptive observation locations based on the background ensemble spread, 
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and then applying the local analysis ensemble spread method only on the grid points 

with the largest background ensemble spread. In this way, we combine the advantage 

of background ensemble spread method and local analysis ensemble spread method. 

We call this method as combined background-analysis ensemble spread method, 

abbreviated it as combined method. We expect that the combined method will show 

significant computational advantage when dealing with the whole atmosphere and at 

the same time, retain the optimality of local analysis ensemble spread method. In the 

implementation on Lorenz 40-variable model, five grid points with largest ensemble 

spread are first picked out from 20 grid points over ocean.  Then, we only compare 

global analysis ensemble spread based on these five potential observation locations. 

The grid point that makes the expected global analysis uncertainty smallest is the 

adaptive observation point. It saves more than half of the computation time compared 

to local analysis ensemble spread method. In a global model, the advantage would be 

proportionally much larger. 

2.3.4 Ideal method  

In this method, we calculate the ensemble uncertainty using the true state, i.e., 

the ensemble spread is the difference between background ensemble and the true state, 

instead of the mean forecast state. The adaptive observation is at the location with 

largest true ensemble spread. In reality, it is impossible to know the true state of the 

atmosphere, so we call this method as ‘ideal method’. The performance of this 

method sets an optimal unattainable benchmark for the other methods. 
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2.4 The relationship between background ensemble spread method and local 

analysis ensemble spread method 

In the background ensemble spread method, we assume that the analysis error 

variance increases with the background error variance. By putting the adaptive 

observation at the location with largest background error variance, we indirectly 

minimize the analysis error variance. In local analysis ensemble spread method, we 

directly minimize the analysis error variance. Both methods try to minimize the 

analysis error variance, and both are related with the background error variance, so 

they must have some relationship. Here, we will use two simple examples to illustrate 

the relationship between background ensemble spread method and local analysis 

ensemble spread method. 

 

Suppose we have three grid points, , and , whose error standard 

deviations are 

1x 2x 3x

1σ , 2σ and 3σ , and the background error 

covariance . We will select one adaptive observation 

from them based on the trace of the analysis error covariance. Suppose the adaptive 

observation is at the first grid point  with error variance of 
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2
1 σσσ ++ is the summation of the ensemble spread at all grid points, which is 

independent of the adaptive observation location. The denominator is the 

ensemble variance and observation error variance at the observation location, which 

depends on the adaptive observation location. Assuming that all the observations have 

the same error variance 

)( 22
1 r+σ

2r , minimizing the analysis error variance is equivalent to 

maximizing the denominator, which means that the analysis error variance will be 

minimized when the observation is at the location with the largest forecast ensemble 

spread. Therefore, for a single adaptive observation, the background ensemble spread 

method is equivalent to the local analysis ensemble spread method, if the observation 

is of the same type as the model variable, collocated with a grid point and the 

observation error standard deviations are same for all the potential adaptive 

observation locations.   
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In the following example, we consider the case when only one adaptive 

observation is to be selected, but the adaptive observation is going to be placed in the 

middle of two grid points. There are a total of three grid points, and two potential 

adaptive observation locations. We can define the observation operator as  

H =
1
2

1
2

0⎛
⎝⎜

⎞
⎠⎟

 . Following the same derivation as equation (2.3), the trace of the 

analysis error covariance is 
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To minimize the trace of analysis error covariance in local analysis ensemble spread 

method, it is again equivalent to maximize the denominator. However, in this case, it 

is not only dependent on the ensemble spread, but also on the background 

covariance 21σσ . Even if the potential adaptive observation is assumed to be at a grid 

point, it can be related with more than one dynamical variable. In that case, the local 

analysis ensemble spread method is not equivalent with the background ensemble 

spread method anymore, since minimizing of the analysis ensemble spread requires 

not only the variance, but the covariance terms. 

 

With more than one adaptive observation locations chosen, the local analysis 

ensemble spread method may give different result from background ensemble spread 

method since the background ensemble perturbations used in the calculation of  

will be updated each time after a new adaptive observation is selected. Furthermore, 

the background ensemble spread method is very likely to pick adjacent grid points as 

aP
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adaptive observations since grid points having large ensemble spread tend to be 

clustered together. On the other hand, the local analysis ensemble spread method will 

less likely to pick two adjacent grid points as adaptive observations since the updated 

uncertainty at the grid points around the adaptive observation will be mostly reduced. 

We will discuss more about how to deal with this problem in the background 

ensemble spread method in Chapter 3.  

 

In summary, the background ensemble spread and the local analysis ensemble 

spread method are related to each other. Under some special conditions (a single 

adaptive observation of the same type as the dynamical variable and constant 

observation error variance), these two methods are equivalent. But in most cases, the 

local analysis ensemble spread method is more advanced, and the choice of  adaptive 

observation location is more optimal than that from background ensemble spread 

method.  

2.5 Results 

2.5.1 Analysis RMS error comparison among different adaptive observation 

strategies 

Figure 2.2 shows that local analysis ensemble spread method, background 

ensemble spread method, and combined method show similar performance over both 

ocean and land. Such result could be explained from the discussion in Section 2.4, 

because the observation error is assumed to be independent of location and there is a 

single adaptive observation. The small analysis RMS error differences among these 

methods may be due to the sampling error of the observations and to tiny differences 
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in the estimated inflation factors. Since the background ensemble spread method 

gives the same result as the more complicated local analysis ensemble spread method 

in our experimental setup, we only discuss the result from the background ensemble 

spread method here. With a single adaptive observation from background ensemble 

spread method, the analysis RMS error is greatly reduced compared to no observation, 

one random observation and one constant observation over ocean (Lorenz and 

Emanuel, 1998). The RMS error from ensemble spread method is only slightly larger 

than the ‘ideal’ method.  

 
Figure 2.2 Five-year-average analysis RMS error for different adaptive observation 
strategies (the straight line is the observation error standard deviation; the solid line 
without marks: ‘ideal’ method, the dashed line: local analysis ensemble spread method, 
the solid line with open circles: background ensemble spread method, the solid line with 
cross: combined method.)  
 

 

The analysis sensitivity (discussed in Chapter 4) with respect to that single 

adaptive observation is about 0.85 (Figure 2.3), which means that 85 % of the 

information of the analysis comes from the observation at the adaptive observation 

location. The analysis sensitivity with respect to the routine observation is only about 

0.2, much smaller than that of the adaptive observation. The main reason is due to the 

difference of observation density between ocean and land.  The sparser observation 
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distribution makes the adaptive observation more important. Whereas over land, the 

background is accurate and provides about 80% of the information. The result 

underlines the importance to have adaptive observations in vast unobserved areas. 

 
 

Figure 2.3 Analysis sensitivity with respect to both the routine observations over land 
and a single adaptive observation over ocean (we use 10th grid point to represent the 
adaptive observation locations). 

 

2.5.2 10-day forecast RMS error 

Figure 2.4 shows that it takes about one day for the forecast RMS error from 

background ensemble spread method to reach a level of 0.5 over ocean. This result is 

much better than the best result (Hansen and Smith, 2000) published with a similar 

experimental setup with this model. In Hansen and Smith (2002) (Figure 2.5), using 

the singular vector method and 1024-member ensemble Kalman filter, the forecast 

RMS error gets to 0.5 after only about 0.2 day, whereas it takes over one day to reach 

this level in the LETKF ensemble spread method. 
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Figure 2.4 Five-year-average forecast errors from ensemble spread method. 

 

 

Figure 2.5 10-day forecast RMS error from Hansen and Smith (2000), singular vector 
adaptive observation strategy is used in this result. 
 

2.6 Summary 

In this chapter, we illustrated several ensemble-based adaptive observation 

strategies using the LETKF data assimilation scheme, namely, the background 

ensemble spread method, local analysis ensemble spread method, and combined 

background-analysis ensemble spread method. We also introduced one ‘ideal’ method 

which is used as the optimal benchmark for the other adaptive observation strategies. 

In the background ensemble spread method, the adaptive observation is at the 
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location with the largest background ensemble spread. It indirectly minimizes the 

analysis error variance. Local analysis ensemble spread method directly minimizes 

the analysis error variance, which can be computed in parallel. The combined method 

combines the advantages of both the background ensemble spread method and local 

analysis ensemble spread method, trying to utilize the free computation 

characteristics of background ensemble spread method and the consideration of the 

covariance, observation error and the determined observation locations in local 

analysis ensemble spread method. Using two simple examples, we have shown that 

the background ensemble spread method gives the same result as local analysis 

ensemble spread method when only one adaptive observation is to be selected from 

the grid point, and all the potential adaptive observations are the same type as the 

model variable and have the same accuracy. Otherwise, the result from these two 

methods is different.  

 
Following the same experimental setup as Lorenz and Emanuel (1998), we 

show that the background ensemble spread method, local analysis ensemble spread 

method and combined method give the same result, only slightly worse than the 

‘ideal’ method, and better  than the best result published so far in the literature. The 

analysis sensitivity with respect to that single adaptive observation over ocean is 

much larger than that of the routine observations, which underlines the importance of 

having adaptive observation over vast unobserved region. 
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Chapter 3  Simplified Doppler Wind Lidar (DWL) adaptive 
observations in a primitive equations model (shorter version 
published in GRL, 2007) 

 

3.1 Introduction 

Within the next few years, the first Doppler Wind Lidar (DWL) will be 

deployed in space by the European Space Agency (ESA, see, 

http://www.congrex.nl/06c05/). In addition, in its recent Decadal Survey Report, the 

National Research Council recommended a US global winds mission in the coming 

decade. Because the operation of DWL is strongly constrained by energy resources 

(Rishojgaard and Atlas, 2004), a frequently stated qualitative goal is to get about 90% 

of the total effectiveness from just 10% coverage with adaptive observations. Here, 

10% coverage means making measurements in only 10% of the total footprints that 

the DWL can possibly scan in a certain interval such as 6 hours. Unlike the 

applications of adaptive dropsonde observing in field experiments (FASTEX, 

NORPEX,  Joly et al., 1997; Bergot, 1999; Langland et al., 1999a; Langland et al., 

1999b; Pu and Kalnay, 1999; Szunyogh et al., 1999; Majumdar et al., 2002; Toth et 

al., 2002; Langland 2005), which attempt to optimize the 2-3 days forecast within a 

specified verification region (e.g, Europe, or North America), the goal in our study is 

to optimize the six-hour global analysis by optimally distributing the limited DWL 

observation resources. As pointed out by Lorenz and Emanuel (1998) and in Section 

2.4, if a single adaptive observation is made at the locations with largest background 

uncertainty, the global analysis error will be most reduced as compared to other 
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locations. The question we address in this chapter is how to represent the background 

dynamical uncertainty and choose adaptive observation locations accordingly. 

 

The Ensemble Kalman Filter (EnKF) (Evensen, 1994; Anderson, 2001; 

Houtekamer and Mitchell, 2001; Bishop et al., 2001; Whitaker and Hamill, 2002; Ott 

et al., 2004; Hunt et al., 2007), a relatively new data assimilation approach, provides 

an estimate of the background dynamical uncertainty. We call the diagonal value of 

an EnKF-computed background error covariance matrix for a given variable the 

ensemble spread for that variable. Locations with large ensemble spread are those in 

which dynamical instabilities of the evolving flow will result in large background 

(forecast) error and therefore where observations can be most useful, as discussed in 

the last chapter. The different observation location selection strategies that we 

compare are (a) one based on the LETKF ensemble spread, (b) a uniform observation 

distribution, (c) one based on the climatological background uncertainty, (d) random 

locations, and (e) an “ideal” strategy based on assumed knowledge of the true forecast 

error. We compare the impacts of adaptive observations selected with these different 

methods by assimilating them with two different data assimilation schemes, 3D-Var 

and Local Ensemble Transform Kalman Filter (LETKF). We test both 10% and 2% 

adaptive observations coverage, allowing for relatively dense and sparse adaptive 

observation scenarios. Comparison of these two scenarios will show the sensitivity of 

data assimilation schemes to the amount of adaptive observations. 
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This chapter is organized as follows: Section 3.2 describes the model, 

observations and data assimilation schemes we will use. Section 3.3 gives the detail 

of the adaptive observation strategies and the distributions of the simulated DWL 

observations. In Section 3.4, we will show the results from both 10% and 2% 

adaptive observation strategies assimilated by 3D-Var and the LETKF data 

assimilation schemes. Section 3.5 is the summary and conclusion.  

3.2 Model, observation and data assimilation schemes 

In this study, we use the Simplified Parameterizations, primitivE Equation 

DYnamics (SPEEDY) model, developed by Molteni (2003) and adapted for data 

assimilation by Miyoshi (2005). It has a simplified but complete set of physical 

processes, seven vertical levels, 96 longitudinal grid points, and 48 latitudinal grid 

points. We follow a “perfect model” Observing System Simulation Experiments 

(OSSEs) setup, in which the simulated “truth” (long model integration) is generated 

with the same atmospheric model as the one used in data assimilation. In such an 

“ideal twin” experimental setup, we avoid the complications of model error, and the 

only source of forecast errors comes from the initial conditions. Observations are 

obtained from the “truth” with added Gaussian random perturbations. The 

observation error standard deviations assumed for wind components (u, v), 

temperature (T), specific humidity (q) and surface pressure (ps) are 1.0m/s, 1.0K, 

0.1g/kg, and 1.0hPa,  respectively. 

  

To test the sensitivity of the impacts of adaptive observations to data 

assimilation methods, we use both 3D-Var (Parrish and Derber, 1998, Miyoshi, 2005) 
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and LETKF (Ott et al., 2004; Hunt et al., 2007). 3D-Var uses a constant background 

error covariance, which is calculated as in Parrish and Derber (1998). LETKF, a 

newly developed scheme belonging to EnKF family, employs the time evolving error 

covariance estimated from the forecast ensemble. It automatically gives the 

estimation of the forecast uncertainty. The application of LETKF on the SPEEDY 

model follows Hunt et al. (2007). 

3.3 Adaptive strategies and the distribution of the simulated DWL observations 

We mimic satellite tracks and DWL observations assuming that the satellite 

scans half hemisphere “orbits” in each six-hour analysis cycle. The basic observations 

(u, v, T, q, ps) assimilated in all our experiments are simulated rawinsonde, shown as 

closed circles in Figure 3.1 (six-hour “orbits” are shown separated by vertical dashed 

lines). Figure 3.1 also shows an example of the 10% adaptive observation distribution 

(crosses) from the ensemble spread strategy (defined below) at 1200 UTC. At 0000 

UTC, the satellite scans the same half hemisphere orbit as at 1200 UTC, and the other 

half hemisphere orbit is scanned at 0600 UTC and 1800 UTC. Thus, we assume that 

each grid point can be observed twice a day (this is too optimistic because we neglect 

the impact of clouds). Since the characteristics of the forecast uncertainties are 

different in different regions (e.g., Kalnay, 2003), the adaptive DWL observations are 

distributed into seven sub-regions, the equatorial region, the northern and southern 

tropics, and northern and southern mid- and high-latitudes (separated by horizontal 

dashed lines in Figure 3.1). Each sub-region is allotted a number of adaptive 

observations proportional to its area. The latitude ranges and the number of the 

adaptive observations in each sub-region are listed in Table 3.1. At the selected 
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adaptive DWL locations, both zonal wind and meridional wind are observed at all 

vertical levels. This is also over-optimistic because the lidar wind component that is 

actually observed is its projection on the line-of-sight direction (Stoffelen et al., 2005).  

 

Table 3.1Adaptive observation distribution in seven latitude bands 

 

 
Latitud
e range 

53.81N-
87.26N 

31.55N-
50.10N

9.28N-
27.83N

5.57S-
5.57N 

24.12S-
9.27S 

50.10S-
27.83S 

87.26S-
53.81S 

 
Adaptiv
e obs. # 

22 33 35 52 35 33 22 

 

Figure 3.1 Example of the distribution of adaptive observations (crosses) from the 
ensemble spread sampling strategy at 1200 UTC February 03. The closed circles 
represent rawinsonde observation locations. Shades represent the average ensemble 
spread of zonal and meridional wind at 500hPa at that time. Horizontal dashed lines 
divide the whole globe into seven latitude bands. Vertical dashed lines separate the 
globe into four sub-regions representing two “orbits”. 

 

In all of the five adaptive observation strategies we tested, we impose a 

horizontal separation constraint to minimize possible observation redundancy, namely 

that the adaptive observations have to be at least two grid points apart in both 
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longitude and latitude directions. Hamill and Snyder (2002) account for observation 

redundancy by selecting the observations serially in minimizing the analysis error 

variance. However, directly minimizing the analysis error variance is much more 

expensive than computing ensemble spread and applying the separation constraint, 

especially when selecting adaptive observations from a very large pool of observation 

locations (Chapter 2). Moreover, by selecting adaptive observations at the locations 

with large ensemble spread in ensemble spread strategy, we approximately minimize 

the analysis error variance, as we discussed in Section 2.4. The separation constraint 

is done by first ordering the average six-hour forecast ensemble spread of wind at 

500hPa from largest to smallest in each region. Within each region, the location with 

largest ensemble spread is selected as the first adaptive observation location. Then, 

we delete the locations adjacent to the first adaptive observation location in both 

zonal and meridional direction from the potential adaptive observation queue. The 

second adaptive observation location is where the ensemble spread in the remaining 

queue is largest. This process is repeated until all the adaptive observation locations 

are selected. If all the observations are either selected or deleted before the allotted 

number of adaptive observations are picked out, the remaining adaptive observations 

are the locations with largest ensemble spread that were deleted from the queue. A 

similar separation constraint is applied in all of the other strategies. In the 

climatological spread method, the climatological background ensemble spread is 

obtained from LETKF analyses of rawinsondes observations, and the adaptive 

observations are at the locations with largest climatological ensemble spread. In the 

ideal strategy, the adaptive observations are located where the background error (i.e., 
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the absolute difference between six-hour forecasts of 500hPa wind and the true 

500hPa wind field) is largest. Since this strategy requires knowing the “truth”, it 

cannot be implemented in practice. The adaptive observation locations from ensemble 

spread, random location and the ideal strategy change with time, whereas the 

locations are fixed for uniform distribution and climatological ensemble spread 

strategies. In order to test whether the forecast ensemble spread truly represents 

forecast uncertainty, we use the same adaptive observation locations for both 3D-Var 

and LETKF in the ensemble spread and climatological ensemble spread strategies, 

even though they are both derived from LETKF assimilations.  

3.4 Results 

We examine the effectiveness of these five adaptive observation strategies by 

computing the analysis Root Mean Square (RMS) errors and comparing them to 

extremes of both 0% DWL coverage (i.e., rawinsondes only), and full (100%) DWL 

coverage. The percentage improvement for each strategy is defined as 

  
PI =

RMS − RMS 0%

RMS100% − RMS 0% ×100% , where RMS  is the time mean global average RMS 

error of the adaptive strategy, and  are the time mean global average 

RMS error of full DWL coverage and no DWL coverage, respectively. 

%100RMS %0RMS

3.4.1 10% adaptive observation RMS error comparison different 

adaptive observation strategies 

Figure 3.2 shows the time evolution of the 500hPa global averaged zonal wind 

analysis RMS errors for 3D-Var (left) and LETKF (right) with 0% coverage (dashed 

line) and 100% coverage (solid line), as well as the five adaptive strategies using 10% 
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coverage. The time averaged RMS error for the second month is presented in Table 

3.2. Not surprisingly, the ideal strategy (dot dashed line) has the smallest errors, and 

is close to the 100% coverage. The LETKF-based ensemble spread strategy (solid 

line with open squares) is the best of the adaptive strategies that are feasible in 

practice, and is very close to the ideal strategy even for the 3D-Var analysis. The 

random location (solid line with crosses) is better than the uniform distribution 

strategy (solid line with closed circles). The worst results are obtained from the 

climatological ensemble spread distribution (solid line with triangles) because there 

are no adaptive observations over vast areas (not shown). The adaptive strategies with 

time-changing locations (ensemble spread, random location, ideal strategy) are all 

better than the constant observation distributions (uniform distribution, climatological 

ensemble spread), a conclusion consistent with previous results (Lorenz and Emanuel, 

1998; Hamill and Snyder, 2002).  

 

Table 3.2 500hPa time average (over February) of zonal wind global mean RMS errors 
and percentage improvement (PI) of 10% adaptive observations for both 3D-Var and 
LETKF. 

 

Data 
assimilation 

Experiment Rawinsonde
(0%) 

Climatology
(10%) 

Uniform 
(10%) 

Random 
(10%) 

Spread 
(10%) 

Ideal 
(10%) 

100%

RMS error 
(m/s) 

4.04 2.36 0.92 0.74 0.43 0.36 0.30  
3D-Var 

PI N/A 45% 83% 88% 97% 98% N/A 

RMS error 
(m/s) 

1.18 0.38 0.36 0.33 0.32 0.29 0.23  
LETKF 

PI N/A 84% 84% 89% 91% 94% N/A 
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Figure 3.2 2-month evolution of 500hPa globally averaged zonal wind analysis RMS 
errors for 3D-Var (left panel) and LETKF (right panel) from 10% adaptive 
observations assimilation. From top to bottom their order is dashed line: rawinsonde 
observation (0% DWL) assimilation; solid line with triangles: climatological spread; 
solid line with closed circles: uniform distribution; solid line with crosses: random 
locations; solid line with open squares: ensemble spread adaptive strategy; dot dashed 
line: ideal sampling; solid line without marks: 100% adaptive observation coverage 
over half hemisphere. 
 
 
 

Ensemble spread method and ‘ideal’ adaptive observation strategy are both 

based on the 500hPa statistics. To check the optimality of the adaptive observation 

over the other vertical levels, we further check the wind RMS error time evolution at 

200hPa (Figure 3.3). Compared to 500hPa zonal wind RMS error time evolution, the 

200hPa zonal wind shows a similar RMS error difference between different adaptive 

strategies for both 3D-Var and LETKF. The adaptive observations from ensemble 

spread method are as effective as in 500hPa. Not only in 200hPa, but in all other 

vertical levels, the ensemble spread adaptive observation is the most effective among 

all the operational possible sampling strategies (Figure 3.4). As shown more clearly in 

Figure 3.5, the RMS error percentage improvement from 10% ensemble spread based 

adaptive observation is more than 90% for 3D-Var, and more than 80% for LETKF. 
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The percentage improvement for 3D-Var is higher than that of LETKF because of the 

special characteristics of the data assimilation scheme itself. 3D-Var uses constant 

error covariance, so the analysis at a grid point is not accurate when there is no 

observation because of the poor estimation of the error correlation. On the other hand, 

the LETKF utilizes the time changing error covariance and better updates the analysis 

even where there is no observation. When the new observations are introduced in the 

10% adaptive observation case, the LETKF analysis from the rawinsonde observation 

assimilation is already relatively accurate, so the impact of the new observations is 

not as significant as in 3D-Var.  

 

 
 
Figure 3.3 Same as Figure 3.2 except this is for 200hPa zonal wind RMS error (m/s) 
time evolution. 
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Figure 3.4 Time average (over the last half month analysis cycle) of zonal wind RMS 
error (m/s) over all the vertical levels for both 3D-Var (left panel) and LETKF (right 
panel) (Line notation is same with Figure 3.2) 
 

 
Figure 3.5 RMS error percentage improvement from 10% adaptive observations based 
on ensemble spread strategy (3D-Var: left panel; LETKF: right panel)  
 
 

Through the covariance between winds and the other variables in background 

error covariance, the wind observations improve the analysis of the other variables as 

well, such as geopotential height (Figure 3.6). The different adaptive observation 

strategies have the same ranking as for the wind analysis.  
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The advantage of ensemble spread adaptive observation strategy persists with 

time (Figure 3.7). The ranking among these different sampling strategies also remains 

the same as in Figure 3.2. Since our experiments are based on a perfect model 

experimental setup, the improvement in the initial condition will persist with time. 

When there is model error involved, this may change and require further study. 

 

 
 
Figure 3.6 Same with Fig 4.2, except this is for 500hPa geopotential height (m). 
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Figure 3.7 5-day forecast from different adaptive observation strategies for 3D-Var (top 
panel) and LETKF (bottom panel). (The line notation is same with Figure 3.2) 
 

3.4.2 The comparison among adaptive observation locations from ensemble 

spread method, the background error and the analysis increment   

A striking result is that the RMS error of LETKF (last section) shows a much 

smaller difference among the adaptive strategies than that of 3D-Var, although their 

relative ranking is the same. This is because 3D-Var, with a constant background 

error covariance, is much more sensitive to the choice of observations. With less 

optimal adaptive strategies, such as uniform distribution, the large background errors 

are not effectively reduced due to lack of observations around some locations with 

large background error (right panel in Figure 3.8). On the other hand, with the 

ensemble spread strategy, the adaptive observations are near the locations with large 

background errors (left panel in Figure 3.8). Therefore, the assimilation of these 

adaptive observations is equivalent to providing the information of the time-changing 

large background errors to 3D-Var. As a result, the analysis increments in 3D-Var 

have a shape more similar (but with opposite sign) to the background error (Figure 
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3.8, left panel) than in any other feasible method. By contrast, LETKF, whose 

background error covariance already includes information on the “errors of the day”, 

is more efficient in extracting information from the observations even if their 

locations are not optimal, so that all the strategies give similarly small analysis errors. 

As shown in Figure 3.9, the analysis increment lines up, but have opposite sign with 

the background error even in the uniform observation distribution (right panel), 

though analysis increment and background error have a better agreement in ensemble 

spread sampling strategy (left panel). 

 
 
Figure 3.8 3D-Var zonal wind analysis increments (contour interval 0.3m/s), 
background error (shaded) and adaptive observation distribution (crosses) from the 
ensemble spread sampling strategy (left panel) and from uniform distribution (right 
panel) at 1200 UTC February 03. The closed circles are rawinsonde observation 
locations.  
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Figure 3.9 Same as Figure 3.8, except this is form LETKF data assimilation scheme.  

 

3.4.3 2% adaptive observation RMS error comparison  

It is clear from Figure 3.2 (left panel) and Table 3.2 that 3D-Var attains more 

than 90% of the improvements between 0% and 100% coverage from just 10% 

adaptive observations determined with the ensemble spread strategy. The percentage 

improvement of ensemble spread strategy in LETKF is somewhat smaller than for 

3D-Var, and, as discussed above, all adaptive strategies are similarly successful 

(Table 3.2). This seems to contradict to the conclusions based on the previous 

adaptive observation field experiments that adaptive observations would be more 

effective with more advanced data assimilation schemes, such as 4D-Var or EnKF 

(Langland, 2005). However, we used relatively dense adaptive observation coverage 

in our experiments with 10% observed every 6 hours over half the globe. To make 

our results more compatible with previous field experiments, we now use the same 

adaptive observation strategies but substantially reduce the number of observation 
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locations to only 2% of the full coverage. With this small number of adaptive 

observations, the analysis errors of the adaptive strategies in 3D-Var are much larger, 

and even the most effective strategies, random location and ensemble spread, are only 

able to reduce the errors by less than 30% (left panel in Figure 3.10 and Table 3.3). 

By contrast, the LETKF still obtains 77% improvements from just 2% adaptive 

observations (right panel in Figure 3.10 and Table 3.3). The difference in 

performance among the five adaptive observation strategies is much more evident for 

LETKF, but with the same ranking as before. This result shows that with fewer 

adaptive observations, the data assimilation scheme plays a more important role in 

determining the effectiveness of adaptive observations. More advanced data 

assimilation schemes, such as the LETKF, use more efficiently small amounts of 

observation information, which is consistent with previous field experiments 

(Langland, 2005). The small number of observations is not enough to provide enough 

global information on the “errors of the day” needed for the improvement of 3D-Var, 

while in the LETKF, it is possible to estimate the evolving error structures even with 

few observations. 

 
Table 3.3 500hPa time average (over February) of zonal wind global mean RMS errors 
and percentage improvement (PI) of 2% adaptive observations for both 3D-Var and 
LETKF. 

Data 
assimilation 

 Experiment Rawinsonde
(0%) 

Climatology 
(2%) 

Uniform 
(2%) 

Random 
(2%) 

Spread 
(2%) 

Ideal 
(2%) 

100%

RMS error 
(m/s) 

4.04 3.26 3.53 3.00 3.11 1.68 0.30  
3D-Var 

PI N/A 21% 14% 28% 25% 63% N/A 

RMS error 
(m/s) 

1.18 0.67 0.59 0.51 0.45 0.41 0.23  
LETKF 

PI N/A 54% 62% 71% 77% 81% N/A 
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Figure 3.10 Same with Figure 3.2, except this is from 2% adaptive observation 
distribution.  
 

3.5 Conclusion and discussion 

In this chapter, we showed the potential of a simple ensemble spread strategy 

for adaptive observations in the context of minimizing the energy required by DWL 

laser firings. The same adaptive strategy could be used for any satellite instrument 

designed to “dwell” in regions of high uncertainty rather than providing uniform 

coverage along the orbit as conventionally done. 

 

We compared ensemble spread with several other adaptive observation 

strategies (uniform distribution, random distribution, climatological ensemble spread) 

and found that the six-hour LETKF forecast ensemble spread gives a useful estimate 

of background uncertainty and dynamical instabilities. With 10% adaptive DWL 

observations, the ensemble spread sampling strategy gives the best result in both 3D-

Var and LETKF, attaining more than 90% effectiveness of the full observation 

 47



 

coverage. 3D-Var is more sensitive to adaptive strategies than the LETKF. Since the 

latter already includes information on the “errors of the day”, different adaptive 

strategies have closer performances.  

 

We found that the sensitivity of adaptive observation effectiveness to data 

assimilation schemes is related to the amount of adaptive observations to be 

determined. With a relatively dense number of adaptive wind observations, such as 

10% of the maximum coverage, 3D-Var can be as effective as LETKF, a more 

advanced data assimilation schemes. With only 2% coverage, 3D-Var is not as 

effective as LETKF even when using the LETKF ensemble spread locations.  

 

Although our results are indicative of the potential for adaptive observations 

in remote sensing, we made several simplifying assumptions, using a perfect model 

scenario, a low resolution global model, an extreme simplification of satellite orbits 

and DWL observations, assuming uncorrelated Gaussian observation errors, and 

neglecting the effect of clouds. As a result, the actual percentage improvements from 

assimilating DWL adaptive observations may be overoptimistic. Experiments with 

state-of-the-art OSSE systems should be carried out to verify whether our results are 

valid in a more realistic setup. We believe that the main results, which states that the 

EnKF-based uncertainty estimation gives valuable guidance to allocate limited 

observation resources along the satellite track, and that the effectiveness of data 

assimilation schemes is sensitive to the amount of adaptive observations, would be 

valid even in a realistic experimental setup. 
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Chapter 4 : Analysis sensitivity calculation within 
an ensemble Kalman filter 

 

4.1 Introduction 
 

Modern atmospheric data assimilation systems (e.g., 3D-Var operational 

system in NCEP and 4D-Var operational system in ECMWF) usually include a high-

dimension dynamical model with about 108 degrees of freedom, and assimilate the 

observations from both space and ground-based observation sources. In addition, 

operational centers frequently improve the model and introduce new observations into 

the data assimilation system. In such a complicated and continuously changing 

system, it is necessary to use some measures to monitor the influence of each factor 

on the performance of the system: how much information content does a new 

observation system have? How spatially different is the impact of the same type 

observations on the analysis? And what is the relative influence of the background 

and observation on the analysis?  

 

Since 3D-Var, 4D-Var and Ensemble Kalman Filter (EnKF), the most 

commonly used data assimilation methods in both operational NWP centers and in 

research community, are special cases of least square problems (e.g., Kalnay, 2003), 

the diagnostic methods used for monitoring statistical multiple regression analyses 

can also be used to measure these data assimilation systems. The influence matrix is 

such a diagnostic whose element indicates the data influence on the regression fit of 

the analysis. Cardinali et al. (2004) proposed an approximate method to calculate the 

analysis sensitivity, which is the diagonal value of the influence matrix, within 4D-
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Var data assimilation framework. They showed that the relative importance of 

different type observations based on the summation of  analysis sensitivity was in 

good qualitative agreement with the observation impact from other studies.  

 

In this chapter, based on Cardinali et al. (2004), we derive a method to 

calculate analysis sensitivity and the related diagnostics within the LETKF (Ott et al., 

2004; Hunt et al., 2007), and study the properties and possible applications of these 

diagnostics. This chapter is organized as follows: the derivation is in Section 4.2. In 

Section 4.3, with a geometrical interpretation method adapted from Desroziers et al. 

(2005), we will show that the analysis sensitivity is proportional to the analysis 

accuracy and decreases with observation errors. In section 4.4, we verify the 

calculation method in Lorenz-40 model variable (Lorenz and Emanuel, 1998), and in 

Section 4.5, we use a primitive equation model to examine the effectiveness of the 

trace of analysis sensitivity in assessing the observation impact in the data 

assimilation. 

4.2 Calculation of the influence matrix and analysis sensitivity within the LETKF  
 

The LETKF, as explained in Chapter 1, combines background (n-dimension 

vector) and observations (p-dimension vector) based on the time changing weighting 

matrix . It can be expressed as: K

 bna xKHIKyx )( −+=  (4.1)

The vector  is the analysis. The gain matrix ax )( pn×K considers the respective 

accuracies of background vector  and observation vector bx y  by  and Pb R .  
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Following the derivation in Cardinali et al. (2004), we project the analysis into 

observation space, equation (4.1) becomes 

 ŷ = Hxa = HKy + (Ip − HK)Hxb (4.2) 

The analysis in observation space ( ) is a linear combination of the observation 

vector (

ŷ

y ) and the background vector at observation space ( ). Then, the analysis 

sensitivity with respect to observations is: 

Hxb

 TaTT HHPRHK
y
yS 1ˆ −==
∂
∂

= , (4.3)

and the sensitivity with respect to the background is given by 

 
SIHKI

Hx
y

−=−=
∂
∂

p
TT

p
b

ˆ
(4.4)

where  is the analysis error covariance. The matrix S  is called as the influence 

matrix (Cardinali et al., 2004), because the elements of the matrix reflect how much 

influence of the observations on the analysis. Similarly 

aP

bHx
y

∂
∂ˆ

 reflects how much 

influence the background has on the analysis. The diagonal element of the matrix S  

is the analysis sensitivity, also called as self-sensitivity, which measures the 

sensitivity of the analysis at the observation location with respect to the 

corresponding observation. The sensitivity of the analysis with respect to the 

observation and with respect to the background is complementary (i.e., they add up to 

one) if the observation and the background are of the same type and at the same 

location.  The Kalman gain is the ratio between background error covariance and the 

sum of observation error covariance and the background error covariance at the 

observation location, and the influence matrix is the adjoint of Kalman gain matrix in 

 51



 

observation space, so that the self-sensitivity has no units and its value is between 

zero and one.  

 

In the variational data assimilation schemes, the Kalman gain and analysis 

error covariance are not explicitly calculated. However, in the LETKF, 1−RHP Ta  is 

explicitly calculated as:  

 1111 )(])1()()[( −−−− −+= RHXIHXRHXXRHP TbbTbbTa K  (4.5)

where is the background ensemble perturbation matrix with the ensemble 

perturbation 

bX thi

bbibi xxX −= ,  is the ensemble forecast and bix thi bx is the mean 

background state. Since the influence matrix is a symmetric matrix, it can be written 

as 

 111 )(])1()()[( −−− −+= RHXIHXRHXHXS TbbTbbT K  (4.6)

Comparing equation (4.5) and equation (4.6), it is clear that the influence matrix 

can be calculated in the LETKF by replacing the first element in equation (4.5) 

with . It needs little additional computational time, and in addition, requires no 

approximations, which guarantees the self-sensitivity calculated in the LETKF 

satisfies the value limit (between zero and one). In 4D-Var (Cardinali et al., 2004), by 

contrast, the analysis error covariance is calculated from a truncated eigenvector 

expansion with vectors obtained through the Lanczos algorithm (Cardinali et al., 

2004), which introduces some spurious values larger than one. 

S bX

bHX

 

Equation (4.6) calculates the analysis sensitivity with respect to the 

observations, which can be calculated along with the LETKF. However, in the 

 52



 

LETKF, since each grid point is updated independently based on the observation and 

background information only within a local patch centered at that grid point (Ott et al., 

2004; Hunt et al., 2007), each observation is used more than once during data 

assimilation. The self-sensitivity with respect to the same observation will be 

different in the different local patches. As a result, we propose to average the self-

sensitivity with respect to the same observation in different local patches, and obtain 

the final self-sensitivity for that observation In Section 4.4, with Lorenz-40 variable 

model, we test the validity of this computation procedure in the LETKF by comparing 

it with the self-sensitivity calculated from a global ETKF (where each observation is 

only used once). Since in other versions of EnKF (Evensen, 1994; Anderson, 2001; 

Bishop et al., 2001; Houtekamer and Mitchell, 2001; Whitaker and Hamill, 2002), the 

Kalman gain is also explicitly calculated, it should be possible to calculate the 

influence matrix and the self-sensitivity in these schemes in a similar way.  

 

Based on self-sensitivity, there are two other diagnostics which can show the 

characteristics of the analysis system. One is information content, which is the trace 

of self-sensitivity Tr(S), added for each subset of observations. It can be interpreted 

as a measure of the amount of information extracted from a particular set of 

observations. The other is relative information content. We define it as
tr(Si )
tr(S)

, which 

is the ratio between the type of observation information content and the 

information content of all the observations. 

thi
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Since the larger the analysis sensitivity to the observation, the more important 

that observation is, the deletion of that observation will result in the larger change in 

the analysis value compared to the deletion of the other observations. Based on the 

assumption that the change of the analysis due to the assimilation of observations 

makes the analysis more accurate, which is true when the observation error statistics 

reflect the actual observation error, the deletion of an observation with larger analysis 

sensitivity will result in a worse analysis. Therefore, the analysis sensitivity can 

qualitatively reflect the change of analysis accuracy when part of the observations is 

denied from the assimilation without actually carrying out the data denial experiments. 

Based on the same assumption, we can evaluate the improvement of the analysis 

accuracy due to the addition of some observations without actually carrying out the 

“add-on” experiments.  

 

We will test above arguments in Section 4.5 by comparing the trace of self-

sensitivity Tr of type  observation with the actual analysis error change due to 

the deletion of that type observation, comparing the trace of self-sensitivity of the 

future possible observations with the actual observation impact from the assimilation 

of these observations in the system. When computing self-sensitivity, we assume the 

observation error statistics are accurate, i.e., they reflect the actual observation error 

standard deviation. However, in realistic assimilation cases, there may be some 

observations with larger observation error than assumed in the observation error 

statistics. We will discuss a method to detect such problem as in Langland and Baker 

(Si )
thi
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(2004) and show the actual quantitative observation impact on the forecast in next 

Chapter.  

4.3 Geometric interpretation of the self-sensitivity 

Equations (4.3) and (4.6) show that the analysis sensitivity is related with the 

background uncertainty, analysis uncertainty and observation error. In this section, 

we adapt the geometrical interpretation method of Desroziers et al. (2005) further to 

examine the relationship among the analysis sensitivity, the analysis accuracy and the 

observation accuracy in the space of eigenvectors V of the matrix HK .  Following 

the same notation as Desroziers et al. (2005), we rewrite the equation (4.2) by 

subtracting  on both sides of the equation,  )( txH

 ))()()(())(()(ˆ tb
p

tt xHxHHKIxHyHKxHy −−+−=−  (4.7)

where  is the true state at the observation space. We 

define ,  and  respectively. 

Equation (4.7) can be written as,  

)( txH

)(ˆˆ txHyy −=δ )( txHyy −=δ )()()( tbb xHxHxH −=δ

 )()ˆ b
p xHHK(IyHKy δδδ −+=  (4.8)

After eigenvalue decomposition, VΛHK = TV , where Λ is the diagonal matrix of 

the eigenvalues of HK ,  

 δ ŷ = VΛVTδy + V(I p − Λ)VT H(δxb ) (4.9)

Projecting ŷδ onto the eigenvector space, which is given by , above equation is 

written as, 

yV ˆδT

 b
pδδ xΛIyΛy rrr

δ)(ˆ −+=  (4.10)

 55



 

where ,y
r
ˆδ yrδ and bδxr are the projections of , and ŷδ yδ )( bδxH r onto the eigenvector 

( ) space. V y
r
ˆδ , and yrδ bδxr  are the analysis error, observation error and the 

background error at the eigenvector ( V ) space respectively. When these vectors are 

projected onto a particular eigenvector  with corresponding eigenvalue equal toiV λi , 

the above equation is written as, 

 b
iiii δδ xyy rrr

δλλ )1(ˆ −+=  (4.11)

Therefore, in the space of eigenvector , the analysis sensitivity with respect to the 

observation is 

iV

λi , and with respect to the background is (1- λi ). They are 

complementary, which means that the more sensitivity of the analysis to the 

observations, the less sensitivity to the background.  

 

Schematically, all the elements in equation (4.11) are shown in Figure 4.1. 

Following Desroziers et al. (2005), we define 
r
dbi

o  as the observation increment (the 

difference between observation and the background in the observation space), which 

is the line connecting the observation and the background. The angle between   and 

 is

r
dbi

o

yrδ α .  The observation error ( yrδ ) and the background error ( ) in the 

eigenvector  space are perpendicular, which means that they are not correlated. 

The analysis error ( ) is also perpendicular to the line connecting the observation 

and the background (Desroziers et al., 2005). Therefore, the projection of  onto 

 is, 

bδxr

iV

y
r
ˆδ

y
r
ˆδ

y
r
ˆδ
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iiii δδδδ yyyy rrrr

⋅=⋅ λˆ  (4.12)

 2)90cos(ˆ iiii δδδ yyy rrr
λα =−° (4.13)

and 2/)90cos(ˆ iiii δδδ yyy rrr
αλ −°= . Since ii δδ yy rr

/ˆ)sin( =α , , and 

(1-

)sin 2 (αi =λ

λi ) = . The smaller the angle )cos2 (α α  is, the smaller is the analysis sensitivity 

with respect to the observations, and the larger analysis sensitivity to the background.  
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Figure 4.1 Geometrical representation of the elements in equation (4.11)  (each element 
is explained in the text). The analysis sensitivity with respect to the observations is 
sin2 α  (after Desroziers et al.,  2005). 
 
 

From this geometrical representation, we can conclude that the analysis 

sensitivity per observation, , is related to the observation error, analysis error 

and the background error. With constant observation error, the analysis sensitivity per 

)sin 2 (α
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observation is proportional to the analysis error. With the analysis error unchanged, 

the analysis sensitivity per observation decreases with the size of the observation 

error. These properties are related with the adjustment of Kalman gain in the data 

assimilation system. When the observation error is larger, the analysis system gives 

less weight to the observation by changing the Kalman gain matrix. When the 

analysis is very accurate, the analysis system gives more weight to the background, so 

the self-sensitivity with respect to that observation is smaller. Therefore, the analysis 

sensitivity reflects the characteristics of the analysis system, reflecting the importance 

of the observation and the background. However, these conclusions are only valid 

when the statistics used in the data assimilation approximately reflect the true 

background and observation error.  

4.4 Validation of the self-sensitivity calculation method with Lorenz 40-variable 

model 

4.4.1 Lorenz-40 variable model and experimental setup 

As in Chapter 2, we use the same parameter setup of Lorenz-40 variable 

model (Lorenz and Emanuel, 1998) (Equation (2.1)) to test the calculation procedure 

of self-sensitivity within the LETKF data assimilation scheme.  

 

Since the self-sensitivity based on equation (4.6) is valid by itself, and the 

peculiar characteristic of our proposed procedure is the averaging scheme used in the 

LETKF, we test this procedure by comparing the self-sensitivity calculated in the 

global ETKF without averaging with that of LETKF. We carry out this comparison in 

the case of several uniform observation coverage scenarios, namely 10, 20, 30, and 40 
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observations. The experiments with different observation coverage allow us to 

examine the relationship among the analysis sensitivity per observation, the 

observation coverage, and the analysis accuracy. The local patch size is 39 in LETKF, 

i.e., 19 grid points on each side of the central grid point. With such large local patch 

size, it is equivalent to performing an ETKF on each grid point separately. Therefore, 

the accuracy of LETKF and ETKF should be similar, and so should be the self-

sensitivity. With such large local patch in LETKF, and global ETKF, we use 40 

ensemble members in both LETKF and ETKF to avoid filter divergence. The 

assimilation interval is every six-hour, which is equivalent to 0.05 output time 

interval in the model. We run each experiment for 7560 analysis cycles, and the time 

average is over the last 6560 analysis cycles. 

4.4.2 Results 

Figure 4.2 shows that the averaged self-sensitivity calculated from LETKF 

(closed circles) is almost identical with the self-sensitivity calculated from ETKF 

(plus signs), which indicates that the averaging scheme we used to calculate the self-

sensitivity in LETKF is valid. The self-sensitivity increases with the increasing of the 

analysis RMS error, which is consistent with the geometrical interpretation in the 

Section 4.3. Since the analysis error is anti-correlated with the observation coverage, 

so is the self-sensitivity (Figure 4.2). The analysis sensitivity per observation becomes 

larger when the observation coverage becomes sparser. The analysis sensitivity per 

observation is about 0.28 when all the grid points are observed, which indicates that 

28% of the information of the analysis comes from the observation at each location. 

Since the analysis sensitivity with respect to the background is complementary to the 
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analysis sensitivity with respect to the observation (Section 4.3), 72% information of 

the analysis comes from the background in this observation coverage scenario. When 

only 10 grid points have observations, about 53% information of the analysis comes 

from the observation at the observation locations, which indicates that deletion of one 

observation in dense observation coverage will do less harm to the analysis system 

than deletion of one observation in a sparse coverage case, which is consistent with 

field experiments (e.g., Kelly et al., 2007). 

 

 

Figure 4.2 The scatter plot of the time averaged analysis sensitivity per observation (y-
axis) and the analysis RMS error (x-axis) for the LETKF (open circles) and the ETKF 
(plus signs) with different observation coverage (from bottom to the top, the points 
correspond to 40 observations, 30 observations, 20 observation, and 10 observations). 
 
 

4.5 Results with an idealized simplified primitive equation model 

 
The results in the last section verify the validity of our proposed method to 

calculate self-sensitivity within the LETKF framework, and show that the self-
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sensitivity is proportional to the analysis RMS error when the statistics used in the 

data assimilation is accurate. In section 4.2, we argued that the trace of the self-

sensitivity of a subset of observations can qualitatively indicate the improvement of 

the analysis accuracy due to the assimilation of these observations. In this section, we 

will explore the validity of these arguments by comparing the trace of the self-

sensitivity from a control experiment and the actual observation impact in data denial 

experiments, and comparing the trace of self-sensitivity of potential possible 

observations with the actual observation impact from “add-on” experiments, in which 

new observations are added. 

4.5.1 Experimental setup 

 
We use the Simplified Parameterizations primitivE Equation DYnamics 

(SPEEDY, Molteni, 2003) model that has been used in Chapter 3. As in Chapter 3, 

we follow a “perfect model” Observing System Simulation Experiments (OSSEs) 

setup, in which the simulated truth is generated with the same atmospheric model as 

the one used in data assimilation. Observations are the truth with added Gaussian 

random perturbations. The observation error standard deviations assumed for winds 

and specific humidity is about 30% natural variability of each dynamical variable, 

shown in Figure 4.3. The specific humidity is only observed in the lowest five vertical 

levels, which corresponds to the level below 300hPa. Since temperature variability 

does not change much with vertical levels, we assume the observation error standard 

deviation is 0.8K in all vertical levels. The error standard deviation for surface 

pressure is 1.0hPa.  
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Figure 4.3 The observation error standard deviation for zonal wind (Unit: m/s, left 
panel), meridional wind (Unit: m/s, middle panel) and specific humidity (Unit: g/kg, 
right panel). 
 
 

We carry out both data denial experiments and “add-on” experiments. In the 

data denial experimental setup, the control experiment is called as all-obs experiment, 

in which the observations are full coverage (Figure 4.4). In each observation location, 

all the dynamical variables are observed. In the sensitivity experiments, part of the 

dynamical variables are denied from the locations with red plus signs in Figure 4.4 , 

and only observed in the rawinsonde locations (closed circles in Figure 4.4). For 

instance, in the no-u sensitivity experiment, zonal wind observations are not observed 

in the locations with red plus signs, and only observed in the rawinsonde locations. 

We carry out two other sensitivity experiments, no-T, and no-q, in which temperature 

and specific humidity are not observed in the locations with red plus signs. We will 

compare the trace of self-sensitivity over the locations with red plus signs calculated 

in the all-obs run with the analysis error difference between the data denial 

experiment (e.g., no-u) and all-obs. For example, we compare the trace of zonal wind 

self-sensitivity over the observation locations with red plus signs calculated from all-

obs experiment with the analysis error difference between no-u and all-obs 
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experiment. Ideally, the larger the trace of the self-sensitivity, the larger is the error 

difference between no-u and all-obs experiment. 

 

In the “add-on” experimental setup, the control experiment is called raob-only, 

in which only the observations at the rawinsonde locations (closed circles in Figure 4.4) 

are assimilated. In the sensitivity experiment, we add one type of dynamical variable 

observed in the locations with red plus signs to the control observation network. For 

example, in the add-u experiment, the zonal wind observations are assimilated in both 

rawinsonde locations and the locations with red plus signs, and the other variables are 

only available at rawinsonde observations. The trace of these future possible 

observations calculated along the control run will be compared to the analysis error 

difference between the sensitivity experiment and the control experiment. For 

example, the trace of the zonal wind observation over the locations with red plus 

signs calculated along with the raob-only experiment will be compared with the 

analysis error difference between raob-only and add-u experiment. In the “add-on” 

experiments, since each potential set of observations has a different observation 

operator, the analysis error covariance has to be recalculated before calculating the 

self-sensitivity based on equation (4.6). However, the self-sensitivity can also be 

calculated after finishing raob-only experiment. In this way, the self-sensitivity of 

different possible additional types of observations can be calculated in parallel based 

on the background ensemble forecasts from raob-only experiment, which can save the 

computational time. The self-sensitivity calculated in “add-on” type experiments 

provides an estimate of the usefulness of potential future observations, while the self-
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sensitivity calculated in data-denial type experiments can evaluate the analysis 

sensitivity to the existing observations. 

 

Figure 4.4 Full observation distribution (closed dots: rawinsonde observation network; 
red plus signs:  dense observation network), each observation location is at the grid 
point. 
 
 

4.5.2 Comparison between information content (abbreviated as InC) and 

the actual observation impact from the data denial experiments 

 
In this sub-section, we will compare the information content (trace of self-

sensitivity) calculated along with all-obs experiment and the actual observation 

impact given through the traditional data denial experiments, and examine whether 

the information content can qualitatively show the observation impact without 

carrying out the data denial experiments. 

 

The left panel of Figure 4.5 shows the zonal mean zonal wind analysis RMS 

error difference (contours) between no-u and all-obs experiment and the information 
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content (shaded) of zonal wind over the locations with red plus signs calculated along 

all-obs experiment. The information content is the trace of zonal wind self-sensitivity 

at the locations with red plus signs in each latitude circle, which reflects the 

information extracted from the dense zonal wind observations at that latitude circle. 

The right panel of Figure 4.5 is the temperature analysis RMS error difference 

(contour) between no-T and all-obs and information content (shaded) of temperature 

at the locations with red plus signs calculated from all-obs experiment. Quantitatively, 

the analysis RMS error difference (contour) between all-obs and no-u experiment 

have the largest value over the tropics, and have smallest value over the mid-latitude 

Northern Hemisphere (NH). Qualitatively, the information content distribution agrees 

with the RMS error difference, also showing the largest values over the tropics and 

smallest values in the mid-latitude of the NH. Interestingly, the zonal wind 

observations have relatively small impact over the mid-latitude in the Southern 

Hemisphere (SH), even though the rawinsonde coverage is sparse over that region. 

The reason lies in the fact that the mass field, such as temperature and surface 

pressure, updates the zonal wind analysis in the mid-latitude of the SH through 

geostrophic balance in no-u experiment. The information content basically reflects 

this feature, showing relatively small values over that region.  

 

For the temperature sensitivity experiment (right panel in Figure 4.5), the 

largest RMS error difference between no-T and all-obs experiment are over the high 

latitudes, and the spatial distribution of the information content agrees well with the 

RMS error difference in this region. In the upper level of tropics, however, the 
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information content has a large value center, and the RMS error difference between 

no-T and all-obs experiment is relatively smaller in that region, which is due to the 

strong multivariate update of the temperature field by the other observations in no-T 

experiment. The multivariate influence is shown more clearly in Figure 4.6. 

 

Figure 4.5 RMS error difference (contour) between sensitivity experiment and control 
experiment, and information content (shaded) (Left panel: between no-u and all-obs, 
zonal wind RMS error (Unit : m/s), zonal wind information content; right panel: 
between no-T and all-obs, temperature RMS error difference (Unit: K), temperature 
information content) 

 

Figure 4.6 shows that the specific humidity has the largest information content 

(shaded area) in the tropics, so does the specific humidity RMS error difference 

between no-q and all-obs experiment. The information content is largest over high 

levels, which is due to relatively small assigned observation error in that region 

(Figure 4.3). Though specific humidity has smaller absolute value over high levels 

than that of lower levels, it still has relatively large RMS error difference over high 

levels where information content is largest. It is important to note that the information 

content of specific humidity reflects not only the impact of the deletion of specific 

 66



 

humidity observations on the humidity analysis, but also the impact on the other 

dynamical variables, such as zonal wind, which originates from multivariate 

characteristics in all-obs experiment. The specific humidity observation linearly 

affects winds through the covariance in the data assimilation process, and this effect 

is maximized in the tropical upper troposphere (right panel in Figure 4.6) (see also 

Chapter 6).  

 

Figure 4.6 RMS error difference (contour) between no-q and all-obs experiment, and 
specific humidity information content (shaded) (Left panel: specific humidity RMS 
error difference (Unit: 10-1g/kg); right panel: winds RMS error difference (Unit: m/s)) 
 

 
The qualitative consistency between the information content calculated from 

control experiment and the actual observation impact from data denial experiments 

verifies that we can qualitatively examine the observation impact on the analysis 

without carrying out data denial experiments when the error statistics used in the data 

assimilation system is accurate.  
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4.5.3 The results from “add-on” experiments 

 In the data-denial experiments, we try to examine the impact of the 

assimilated observations on the analysis. In the “add-on” scenario, we want to 

evaluate the impact of future possible observations on the analysis. Traditionally, this 

is done with OSSE’s by actually adding the simulated observations into the data 

assimilation, and examining the error difference between the control experiment and 

the add-on sensitivity experiment. With self-sensitivity, we can qualitatively estimate 

the observation impact without actually knowing the observation value. In this sub-

section, we will verify this argument by comparing the information content with the 

actual observation impact from the “add-on” experiments. 

 

The left panel in Figure 4.7 shows that the information content calculated 

along with the raob-only experiment based on future dense zonal wind observations 

reflects the actual observation impact from the “add-on” experiments. Note, as stated 

before, the self-sensitivity can also be calculated after finishing raob-only experiment. 

This assumes that the background error will not change in the “add-on” experiments, 

so the information content is only an approximation of actual observation impact 

from adding these observations which reduces the background error covariance in the 

presence of additional observations. The larger value center of information content is 

collocated with the larger error difference center. The same is true for the temperature 

(right panel in Figure 4.7). Not surprisingly, the addition of dense observations into 

the rawinsonde observation network improves the analysis mostly in the tropics and 

the SH where there are not much rawinsonde observations. This also verifies that the 

 68



 

information content qualitatively gives the observation impact of the future 

observations, and can be used in observation network designs. When the possible 

observations are specific humidity, the information content has some problem 

reflecting the actual impact in the higher level tropics (Figure 4.8), which may be due 

to the nonlinearity of the humidity field. However, in the lower levels, the 

information content agrees well with the analysis error difference between raob-only 

experiment and add-q experiment.  

 

Figure 4.7 RMS error difference (contour) between control experiment and sensitivity 
experiment, and information content (shaded) (Left panel: between raob-only and raob-
u zonal wind RMS error (Unit : m/s), zonal wind self-sensitivity; right panel: between 
raob-only and raob-T, temperature RMS error difference (Unit: K), temperature 
information content) 
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Figure 4.8 RMS error difference (contour, unit: g/kg) between control experiment and 
sensitivity experiment, and information content (shaded) (between raob-only and raob-q 
specific humidity RMS error (Unit : kg/kg), specific humidity information content) 
 

4.5.4 Relative information content of different type observations in 

different regions  

Comparison between the information content and RMS error difference in the 

data denial and “add-on” experiments clearly shows that information content gives 

qualitative measure of the impact of the same type observations on the analysis 

accuracy without doing data denial or “add-on” experiments. Then, can we estimate 

as well the relationship between the relative observation impact and information 

content comparison of different types of observations? For this, we compare the 

relative information content of different type observations  in all-obs experiment in 

three latitude bands, which are the mid-latitudes in both Southern and Northern 

Hemisphere, and the tropics. Different type of observations here are not from 

different instruments, but different dynamical variables. The relative information 

content only reflects the information content below the fifth model level since 

specific humidity observations are only up to that level. Because surface pressure 
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observations are used to update the dynamical variables in each vertical level in our 

LETKF implementation, the information content of surface pressure is also the self-

sensitivity summed over the lowest five vertical levels. Figure 4.9 shows that specific 

humidity has the highest relative information content among all the dynamical 

variables in both the tropics and the SH mid-latitude. All dynamical variables have 

comparable information content in the NH mid-latitudes, but if we observe both 

horizontal wind components, the total wind information is larger than that of mass 

variables. Whether the relative information content among these different dynamical 

variables can be interpreted as the relative importance of these variables during data 

assimilation requires further investigation. However, we can at least use the 

information content comparison to compare the effectiveness of the instruments that 

measure the same type of observations.  
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Figure 4.9 Information content of five dynamical variables (1: zonal wind; 2: meridional 
wind; 3: temperature; 4: specific humidity; 5: surface pressure) over three regions 
(upper left panel: mid-latitude of the SH; upper right panel: the Tropics; bottom panel: 
mid-latitude of the NH) 

 

4.6 Conclusions and discussion  

 
The influence matrix reflects the regression fit of the analysis to the 

observation data, and self-sensitivity gives a measure of the sensitivity of analysis to 

observations. These measures show the analysis sensitivity to the observations, and 

can further show the relative impact of the same type observations on the 

performance of the analysis system when the statistics used in the data assimilation 

reflects the true uncertainty of each factor.  

 

 Following Cardinali et al. (2004), we propose a method to calculate the 

influence matrix and the self-sensitivity within the LETKF data assimilation scheme. 

Since the Kalman gain is part of the LETKF scheme, and the influence matrix is the 

transformation of the Kalman gain to the observation space, it does not require much 

additional computation time. In the LETKF, each observation is used more than once 

in different local patches, therefore, we propose to calculate the self-sensitivity in 

each local patch independently based on the independent influence matrix in each 

local patch, and the final value is the average of the self-sensitivity over the times that 

particular observation is being repeatedly assimilated in different local patches. 

Unlike the self-sensitivity calculation in 4D-Var (Cardinali et al., 2004), the influence 

matrix and self-sensitivity calculated along with the LETKF is computed exactly so 

the self-sensitivity satisfies the theoretical value limits (between 0 and 1).    
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By comparing the self-sensitivity of a global ETKF and the LETKF on 

Lorenz-40 variable model, we verified the averaging scheme of the self-sensitivity 

calculation in the LETKF. In addition, the analysis sensitivity per observation 

increases when the observation coverage is reduced. In agreement with a geometrical 

interpretation, we showed experimentally that the self-sensitivity is proportional to 

the analysis error, and is anti-correlated with the observation error.  

 

With a primitive equation model, we carried out two comparisons. One is to 

compare the information content from the all-obs control experiment and the 

quantitative observation impact calculated from the data denial experiments. The 

results show that the information content qualitatively reflects the spatial observation 

impact. The other is to compare the information content calculated in the raob-only 

control experiment based on the possible future observation locations with the actual 

observation impact from the “add-on” experiments. The results show that the 

information content can also qualitatively reflect the observation impact in the “add-

on” experiments. It implies that the spatial information content can be utilized in the 

observation design experiment, and can also be used to compare the information 

content of the instruments that measure the same type of observations. The agreement 

between self-sensitivity estimates and the actual impacts due to denial or adding on of 

observations is quite reasonable, especially considering that the self-sensitivity does 

not take into account the feedback changes in the background error when the 

observations are added on denied.  
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Chapter 5 Observation impact study without using 
adjoint in an ensemble Kalman filter 

 

5.1 Introduction 
 

In recent years, operational NWP centers are assimilating more satellite 

observations, such as kilo-channel Advanced InfraRed Satellite (AIRS), in addition to 

in situ observations. Statistically, the assimilation of new observations improves the 

accuracy of short-range forecasts (e.g. Joiner et al., 2004).  However, the value added 

to the system by different observations depends on the instrument type, observation 

type, and observation locations, as well as the presence of other observations. The 

knowledge of the impact that different observations have on the analyses and 

forecasts is important to better use the observations which have large impact on the 

forecasts, and avoid using observations which have no impact or even negative 

impact on the forecasts. 

 

Traditionally, the observation impact has been estimated by carrying out 

experiments in which part of observations used in the control experiment were not 

included in the data-denial experiments (e.g., Zapotocny et al., 2000). However, this 

requires much computational time since a new analysis/forecast experiment has to be 

carried out for any subset of observations that needs to be evaluated. Langland and 

Baker (2004, LB hereafter) proposed an adjoint-based procedure to assess 

observation impact on short-range forecasts without carrying out data-denial 

experiments. This adjoint-based procedure can evaluate the impact of any or all 

observations used in the data assimilation and forecast system on a selected measure 
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of short-range forecast error. In addition, it can be used as a diagnostic tool to monitor 

the quality of observations, showing which observations make the analysis or the 

forecast worse, and can also give an estimate of the relative importance of 

observations from different sources. However, this procedure requires using the 

adjoint of the forecast model, which is complicated to develop for a comprehensive 

numerical weather forecast model, and not always available. In this chapter, we 

propose an ensemble-based sensitivity method to assess the observation impact as in 

LB but without using the adjoint model, and compare the observation impact 

calculated from ensemble sensitivity method with the results from the adjoint method, 

and further compare the impacts from both methods with the actual observation 

impact. This chapter is organized as follows: Section 5.2 is the derivation of the 

ensemble sensitivity method and an alternative formula derivation is in Appendix. 

The experimental design is discussed in Section 5.3 and the results are in Section 5.4. 

Section 5.5 contains the conclusions. 

5.2 Derivation of the ensemble sensitivity method to calculate the observation 

impact without the adjoint of the NWP model 

5.2.1 The sensitivity of forecast error to the observations  

We follow the study by LB and calculate the sensitivity of a forecast error at 

time t to the observations assimilated at time t=00hr (Figure 5.1). LB defined a cost 

function at time t as the difference between the energy norm of the forecast error from 

initial condition at t=00hr (at a time when observations were assimilated) and from 

initial conditions at t=-6hr that did not benefit from the use of the observations . 

o
0y

o
0y
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Without loss of generality, and since we will test our calculation procedure in Lorenz-

40 variable model, instead of an energy forecast error norm difference, we define the 

square of the error difference between the forecasts started at 00hr and -6hr and 

verified at time t as: 
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tx  is the verification analysis at time t1. 

We follow Bishop’s (2007) notation, with the first sub-index indicating the 

verification time, and the second sub-index, separated by a vertical bar, indicating the 

time of the initial conditions of a forecast or forecast error, so that f
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In the following derivation, we aim to express the forecast difference ( f
t

f
t 6|0| −− xx ) 

valid at time t, as a function of the observation increments bo
6|000 −−= yyv at 00hr 

(Figure 5.1), so that the sensitivity of the cost function to the observations
0v∂

∂J  will be 

                                                 
1 The verification time should be short enough that perturbations grow linearly. Following LB, we 
define t=24hr. 
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a function of the observations at time 00hr.  )( 6|06|0
bb h −− = xy  is the prediction of the 

observations at t=00hr, with )(⋅h  the nonlinear observation operator. 

Obs.

6|−tε  

-6hr 00hr      t   ana

Figure 5.1 Schematic plot of the time relationship of the observation impact
forecast error at time t. (After Langland and Baker, 2004, Fig 1.) 
 
 

Following Hunt et al. (2007), the analysis ensemble membe
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indicates that a vector or matrix is represented in the subspace of ensemble forecasts, 

and δ represents the difference between an ensemble member value and the ensemble 

mean.  

 

Based on equation (5.3), the forecast ∑
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is written as: 
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Note that although in the following derivation we make a linearization, the actual 

computation does not require the tangent linear or adjoint model. We linearize 

equation         (5.4) around the background mean state b
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The last term in equation (5.7) vanishes since the perturbation weights summed over 

either the K columns or the K  rows are equal to one:  

(Appendix B.1), and the average of the forecast ensemble perturbations is equal to 

zero,  so that 
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The cost function of equation (5.1) is then written as:  
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If the model is nonlinear, is a linear approximation of the cost function of equation 

(5.1). Since the error is not correlated with the observations assimilated at t=00hr, 

the sensitivity of the forecast error to the observations can be written as: 

J

6|−tε
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Note that the sensitivity of the cost function J to the observations (Equation (5.11)) 

can be calculated “on the fly” based on the matrix of weights calculated in the data 

assimilation at 00hr, the observation increment at 00hr, and the ensemble forecasts 

valid at time t initialized at -6hr, and it does not require the adjoint model. This 

ensemble sensitivity method is different from Ancell and Hakim (2007), who also 

proposed a method to calculate the forecast sensitivity to the observations without 

using adjoint model. In their approach, the sensitivity is a function of the inverse of 

the analysis error covariance, and they calculate it one observation at a time. In the 

Appendix (B.3), we give another derivation of the sensitivity of the cost function to 

the observations without linearization, which gives similar results as those calculated 

from equation (5.11). 

J

5.2.2 Observation impact on the forecast 

As discussed in LB, the observation sensitivity can be used to examine the 

actual observation impact on the forecast. The forecast error difference between 

and is solely due to the assimilation of the observations at 00hr. As a result 

(Appendix B.2), using the observation sensitivity gradients

0|tε 6|−tε

0v∂
∂J , the observation 

impact on the forecast can be written as: 
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With a nonlinear model, equation (5.12) is an approximation of equation (5.1) due to 

the use of tangent linear and adjoint model in the derivation of equation (5.12) 

(Appendix B.2). Though the derivation of equation (5.12) is based on tangent linear 

and adjoint model, the actual calculation in the ensemble sensitivity method does not 

require either of them.  

The equation (5.12) expresses the forecast error difference as a function of 

observations. When the assimilated observations improve the forecast at time t, the 

forecast error difference is negative, and so is the value calculated from equation 

(5.12). When the assimilated observations deteriorate the forecast, the value 

calculated from equation (5.12) will be positive. Furthermore, the cost function can 

be expressed as the sum of , the observational impact caused by the subset of the 

observations , if the observation errors of observation 

subsets are not correlated: 
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where )( 6|000
bloll hv −−= xy . Based on equation (5.13), we can calculate the 

observation impact from any subset of observations without conducting data denial 

experiments, and can also compare the importance of observations from different 

sources. 

 

 In Chapter 4, we discussed the calculation of the self-sensitivity within the 

LETKF data assimilation, which reflects how sensitive of the analysis value is to the 

change of observations. The self-sensitivity can only qualitatively reflect the 
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observation impact on the analysis assuming that the observation errors correctly 

reflect the statistics of the assimilated observations, but cannot show the actual 

quality of the observations. The observation impact discussed in this chapter provides 

a quantitative estimation of the actual observation impact on the short-range forecasts. 

It can also be calculated along with the LETKF data assimilation scheme once the 

short-range ensemble forecasts initialized at -6hr are computed. The calculation 

procedure is same as the calculation method of self-sensitivity discussed in Chapter 4.  

 

In the following sections, we will examine whether the adjoint method and the 

ensemble sensitivity method we proposed can actually detect bad observations whose 

errors do not satisfy the Gaussian assumption , and compare the 

measured observation impact, the observation impact calculated from the adjoint 

method (LB), and from the ensemble sensitivity method we derived here. The 

comparison is carried out in the Lorenz-40 variable model.  

),0( RNo →ε

5.3 Experimental design 

As in Chapter 2, we use Lorenz-40 variable model with the forcing F equal to 

8 for the nature run, and 7.6 for the forecasts, allowing for some model error in the 

system.  

 

Following LB, we estimate the impact of the observations (assimilated at 00hr) 

on the forecast valid at t=24hr, an interval almost enough that perturbations remain 

approximately linear, so that in equation (5.1), the cost function is defined as the 

difference of the forecast errors between a 24-hour forecast (initialized at 00hr) and a 
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30-hour forecast (initialized at -6hr). The difference between these two forecasts is 

due only to the assimilation of the observations at 00hr in the initial condition of 24-

hour forecast. The observations are observed at every grid point. We present 

experiments with a “normal” case, a “larger random error” and a “biased observation” 

cases. In the normal case, the assumed observation error standard deviation 0.2 doses 

represent the actual error statistics for every observation obtained from the nature run 

plus a Gaussian random perturbation. In the “larger random error” case, the 

observation at a single grid point (the 11th grid point) has four times larger random 

error standard deviation than the other observations. However, in the data 

assimilation process, we still use the error standard deviation 0.2 to represent the error 

statistics for every observation, including the 11th grid point. Such an experiment 

simulates real cases when some observations may have larger random errors than 

assumed in the data assimilation system. In addition, real observations may also have 

biases, something especially common when we assimilate satellite observations (e.g., 

Derber and Wu, 1998). Therefore, in the “biased” case experiment, we include a bias 

equal to 0.5 in the observation at the 11th grid point, but still assume the observation 

is non-biased during data assimilation. 

 

We run each experiment for 7500 analysis cycles with the LETKF data 

assimilation schemes. The time average statistics shown in the next section is the 

average over the last 7000 analysis cycles. Through out these experiments, we check 

whether our ensemble sensitivity method is comparable with the adjoint method of 
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LB in assessing the observation impact on the forecast error, and compare the ability 

of both methods to detect poor quality observations.  

5.4 Results  

5.4.1  Normal case 

Figure 5.2 shows the observation impact calculated from the adjoint method 

(red line with crosses), the ensemble method (green line with closed circles) and the 

actual forecast error difference (black line with open circles) between the analysis 

cycle 5700 and 5780 for the “normal” case. It shows that the observation impact 

calculated from ensemble sensitivity method is similar to the result from adjoint 

sensitivity method, and both methods succeed in capturing the actual forecast 

improvement due to the assimilation of the observations at 00hr. Both explain more 

than 90% of the day-to-day variations in forecast improvement.  

 

Figure 5.2 Snapshots (between analysis cycles 5700 and 5780) of forecast error 
difference and the observation impact from the normal case (black line: the actual 
forecast error difference between 24-hour forecast and the 30-hour forecast; red line: 
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the observation impact calculated from adjoint method; green line: the observation 
impact calculated from the ensemble method; black solid line: zero line, i.e., no impact) 
 

5.4.2 Larger random error case 

When the observation at the 11th observation location has four times larger 

random error standard deviation than the other observations, both the ensemble 

sensitivity method and the adjoint method show that assimilation of this observation 

increases the forecast error (Figure 5.3). The signal from ensemble sensitivity method 

at the 11th grid point is larger than that of the adjoint method, but elsewhere, both 

methods have similar values. It is interesting to note that the observations of the 

adjacent observation locations improve the forecast most, because they partially 

correct the impact of the faulty observation at the 11th grid point. Snapshots of the 

spatially summed impact show that the observation impact calculated from both 

methods reflects the actual forecast error difference (Figure 5.4) even when one of the 

observations has erroneous error statistics. Because of the poor quality of the 

observation at the 11th observation location, the domain averaged observation impact 

has some large spikes (Figure 5.4).  
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Figure 5.3 Time average (over the last 7000 analysis cycles) of the observation impact 
from the larger random error case (four times larger random error at the 11th grid 
point). Green line with closed circles is from ensemble method, and the red line with 
crosses is from adjoint method, and the black solid line is zero line. 
 

 

Figure 5.4 Snapshots (between analysis cycle 5700 and 5780) of forecast error difference 
and the observation impact from the larger random error case (the notation is same as 
in Figure 5.2) 
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5.4.3 Biased case 

When the 11th observation location has a bias, the ensemble sensitivity 

method indicates (Figure 5.5), like the adjoint method, that the assimilation of this 

observation increases the forecast error. Again, the negative observation impact at 

11th grid point makes the positive observation impact (reduction of forecast error) of 

assimilating the adjacent observation locations larger. 

 

 These examples show that the ensemble sensitivity method gives observation 

impact similar with that from adjoint method, and both methods reflect more than 

90% of the actual forecast error reduction due to assimilation of the observations at 

00hr. Like the adjoint method, the ensemble method can detect observation which has 

poor quality either with larger random error or bias, and the signal detected by the 

ensemble sensitivity method is stronger. 

 

Figure 5.5 The biased case with the bias equal to 0.5 at 11th grid point. The line notation 
is same with Figure 5.3. 
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5.5 Summary and conclusions 

The observations are the central information introduced into the forecast 

system during data assimilation. However, the quality and impact of the observations 

is always different due to the magnitude of observation error, observation locations 

and the model dynamics. Accurately monitoring the quality and impact of the 

observations assimilated in the system can help to delete the observations that 

routinely deteriorate the forecast, and can better use the observations that have larger 

impact on the forecast than the other observations. In the past, monitoring has been 

based on observational increments, but we have found that observation sensitivity 

approach is more effective in detecting poor observations. 

 

In this chapter, following Langland and Baker (2004), we proposed an 

ensemble sensitivity method to measure the observation impact on the error 

difference between the forecasts initialized from 00hr and -6hr. Unlike the adjoint 

method by Langland and Baker (2004), the ensemble sensitivity method we propose 

does not need the adjoint model. We compared the ensemble sensitivity method we 

proposed to the adjoint model using Lorenz-40 variable model. The results show that 

the ensemble sensitivity method gets similar results as the adjoint method, and both 

explain more than 90% forecast error differences on a day-to-day basis in our 

experimental setup. Both methods can detect the “bad” observations that are of poor 

quality, with either larger random errors or with bias, and the ensemble sensitivity 

method shows stronger signal in such scenarios. Like the adjoint method by LB, this 
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method can be applied in the observation quality control as well as to compare the 

importance of different type observations. It could be routinely calculated within the 

data assimilation, thus providing a powerful tool to understand cases of forecast 

failure and to tune the observation error statistics.  
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Chapter 6   Humidity data assimilation with the Local 
Ensemble Transform Kalman filter 

6.1 Introduction 

As stated in Chapter 1, humidity data assimilation is a difficult problem due to 

its highly changing error characteristics, both spatially and temporally, and is 

especially difficult in variational assimilation methods which assume constant 

background error covariance. Some variational approaches overcome the constant 

error assumption by re-formulating the assimilated humidity variables based on the 

background forecast, such as in Dee and da Silva (2003) and Holm et al. (2002). The 

re-formulated variable not only introduces the time changing error into the data 

assimilation system, but also has more Gaussian error distribution than other choices 

of the humidity variables. Nevertheless, the variational approaches used in 

operational centers still assimilate humidity variable uni-variately.  

 

EnKF provides a unique assimilation method for multivariate humidity 

observations, since it estimates the background error covariance in each analysis 

cycle, and automatically couples all the dynamical variables together. However, as in 

variational assimilation approaches, it assumes a Gaussian error distribution, so that 

the choice of humidity variable type is still very important. In this chapter, based on 

the OSSE experimental setup, we first will compare several choices for the 

assimilated humidity variable type when the specific humidity has non-Gaussian 

observation error. The tested humidity variables are logarithm of specific humidity, 

specific humidity, relative humidity and the pseudo-RH proposed by Dee and da 

Silva (2003). Since we create the humidity observation by adding Gaussian random 
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error to the logarithm of specific humidity, the logarithm of specific humidity is the 

only humidity variable with perfect error statistics.    

 

Compared to the development of data assimilation of the other dynamical 

variables, one of the obstacles for humidity data assimilation is the poor quality of 

humidity observations. With the kilo-channel AIRS satellite launched in 2002, more 

and more high quality humidity observations are available. However, so far, most 

results only show neutral or negative impacts from assimilation of AIRS humidity 

information (e.g. Joiner et al., 2004) from radiation in channels with water vapor 

bands. Since AIRS is a high spectral instrument, humidity retrievals have very high 

quality (Susskind et al., 2003). At the end of this chapter, we will also show some 

preliminary results from assimilating AIRS humidity retrievals (Chris Barnet, 

personal communication) in multivariate mode in the NCEP Global Forecast System 

(GFS). 

 

This chapter is organized as follows: from Section 6.2 to Section 6.5, we will 

compare several choices of the assimilated humidity variable types assimilated both 

uni-variately and multivariately, i.e., coupled with the other dynamical variables, with 

the LETKF data assimilation scheme in a global primitive equation model. Section 

6.6 shows preliminary results from assimilating AIRS humidity retrievals, and finally 

in Section 6.7, we draw conclusions. 
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6.2  Model and simulated  observations 

We use the same primitive equation model as the one we used in Chapter 3, 

which is the SPEEDY model (Molteni, 2003) (discussed in detail in Section 3.2). In 

this study, we follow a “perfect model” Observing System Simulation Experiments 

(OSSEs) setup, in which the simulated truth is generated with the same atmospheric 

model as the one used in data assimilation. The winds, temperature and surface 

pressure observations are the truth with added Gaussian random perturbations. The 

observation error standard deviations assumed for winds are about 30% of the natural 

variability, shown in the left two panels of Figure 4.3 (Chapter 4). Temperature 

observation error standard deviation is assumed to be 0.8K at each vertical level. The 

error standard deviation for surface pressure is 1hPa. We will discuss the observation 

error characteristics of several choices of humidity variables individually.  

 

Specific humidity is the most commonly used humidity variable. However, in 

reality, it has non-Gaussian observation error, and an approximately logarithmic 

vertical distribution. Therefore, we create simulated specific humidity observations 

by first adding the Gaussian random perturbations to the logarithm of the true specific 

humidity, and then, transforming the logarithm of specific humidity to specific 

humidity. The Gaussian random error standard deviation for logarithm specific 

humidity is shown in Figure 6.1. Since SPEEDY is a spectral model, it can create 

negative specific humidity values (e.g., Kalnay, 2003). In that case, the true specific 

humidity is set to a very small positive value before calculating the logarithm specific 

humidity. The observation error standard deviation for specific humidity observations 
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is shown in the top panel in Figure 6.2, and has a magnitude similar to that assumed in 

the operational data assimilations. The error varies significantly with vertical levels. 

However, the error distribution of specific humidity observations is not Gaussian 

anymore. As shown in the bottom panel of Figure 6.2, the actual observation error 

distribution (crosses) is far from its Gaussian fit (open circles) of the observation 

error for the third model level, and this is also true for all the other levels.  

 

 

Figure 6.1 The observation error standard deviation for the logarithm specific humidity 
(unit: 0.1) 
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Figure 6.2 Top panel: The observation error standard deviation as function of the 
vertical levels for specific humidity (Unit: 10-4kg/kg); Bottom panel: The actual 
observation error distribution (10-3kg/kg, solid line with crosses) and the Gaussian fit of 
the observation error distribution (10-3kg/kg , open circles) for the third sigma level. 
 
 

Relative humidity (RH) is another choice of humidity variable. We create 

relative humidity observations by dividing the observed specific humidity by the 

saturated humidity calculated from temperature and surface pressure observations. 
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The observation error is calculated against the true relative humidity, which is shown 

in the top left panel of Figure 6.3. It does not vary as much as the specific humidity 

observations (Figure 6.2) with vertical levels. Compared to the specific humidity 

observations, the RH observation error distribution (crosses) has a much better 

Gaussian fit (open circles) (left bottom panel in Figure 6.3), indicating that the relative 

humidity observation error distribution is more Gaussian. However, since RH 

observations are a function of the observed temperature and surface pressure, they 

have the disadvantage of large error correlations with these variables. This is also true 

for the real atmospheric relative humidity and this correlation with temperature and 

pressure makes assimilation of RH much harder.  

 

Pseudo relative humidity (pseudo-RH) was proposed by Dee and da Silva 

(2003) with the purpose of maintaining the more Gaussian observation error 

characteristics of relative humidity observations, and at the same time, avoiding the 

disadvantage of a high correlation between the relative humidity and temperature 

observations. The pseudo-RH is defined as the ratio between the observed specific 

humidity and the background saturated specific humidity. By dividing the specific 

humidity observations by the saturated specific humidity from background, it has an 

error distribution similar to the relative humidity observations, as shown in the right 

panel of Figure 6.3. At the same time, since the saturated humidity comes from the 

background, the pseudo-RH error is not correlated with the temperature and surface 

pressure observation errors. As far as we know, our experiments are the first using 

pseudo-RH within an EnKF formulation. 
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Figure 6.3 The observation error standard deviation for relative humidity (top left panel) 
and pseudo-RH (top right panel). The actual observation error distribution (crosses) 
and the Gaussian fit observation error distribution (open circles) for relative humidity 
(bottom left panel) and pseudo-RH (bottom right panel) at the third sigma level. 
 

6.3 Experimental design 

In our formulation, we assume that for the winds, temperature and surface 

pressure observations, there is one observation every three grid points in both latitude 

and longitude, so total observation coverage is about 11%, as shown in Figure 6.4 (top 

panel). We set the humidity observations at the center of two adjacent grid points, as 

shown in Figure 6.4 (bottom panel). In addition, to make the impact from the 

assimilation of humidity observations more significant, the humidity observation 
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coverage is denser than the other dynamical variables, with 25% coverage. As in 

Chapter 4, the humidity observations are only up to the fifth model level (∼300hPa). 

 

 

Figure 6.4 Top panel: the observation coverage for winds, temperature and surface 
pressure; Bottom panel: the observation coverage of humidity observations.  
 

We have two types of experiments. In the first type, the humidity is updated 

by itself uni-variately, which means that the humidity does not interact with the other 

dynamical variables during the data assimilation, while the other dynamical variables 

(i.e., winds, temperature and surface pressure) are coupled together multi-variately. 

The humidity only interacts with the other dynamical variables during the forecast 

process. We call this type of experiments as uni-q experiment, which is the way that 
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the operational centers do the humidity assimilation. The other is the fully-coupled 

experiments, in which the humidity is fully coupled to the other dynamical variables 

through the coupled background error covariance in the data assimilation. We call it 

coupled (multivariate) experiment. In this type of experiment, the humidity variable 

is used to update the other dynamical variables, and the humidity analysis is updated 

by the other dynamical variables as well. In each type of experiment, we carry out 

four experiments with different choices of humidity variables, which are the 

logarithm of specific humidity ( ), specific humidity (q), relative humidity (RH), 

and pseudo relative humidity (pseudo-RH). We note that the observations are derived 

from  Gaussian errors, so that  has a distinct advantage over the other 

variables. The control experiment is the one that does not have the humidity 

observations assimilated at all. We will compare both uni-q and coupled experiments 

with the control run results, and compare the performance of different choices of 

humidity variable types within both uni-q experiment and coupled experiment. 

)ln(q

)ln(q )ln(q

 

6.4 Formulation of the assimilation of different choices of humidity variables 

within LETKF data assimilation scheme 

As shown in Chapter 1, in the LETKF, the analysis mean state and the 

ensemble perturbations are calculated from equation (1.1) and equation (1.2),  

 )](h[~ bobb xyKXxx −+=a

(6.1)

 [ ]( )2111 )1()()1( −− −+−= IHXRHXXX KK bTbba  (6.2)
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[ 111 )())1()()( ]~ −−− −+= RHXIHXRHXK TbbTb K  is the Kalman gain in the ensemble 

perturbation space, with K  equal to the number of the ensemble members. (See 

details in Chapter 1). The different choices of humidity variables affect the 

formulation of the observation increment )( bo h xy − , the ensemble perturbations in 

the observation space , and equation for the analysis mean state. In the following 

subsections, we give the detailed formulation for each choice of humidity variable. 

bHX

 

6.4.1 Assimilation of specific humidity ( )  q

The assimilation of specific humidity is the easiest one among all these 

choices of humidity variables since specific humidity is directly available from model 

output. The assimilation of specific humidity is straightforward: 

  )]([~ bobb qqKXqq ha −+= (6.3)

aq  and bq  are the analysis and background mean state for the specific humidity field. 

The observational increment is )( bo h qq − , where the observation operator )(⋅h  is 

just linear interpolation since the model dynamical variable is also specific humidity. 

During the calculation of the observational increment, we set )( bh q equal to a very 

small positive value when it is negative since specific humidity observations are the 

exponential of the  observations, and they are positive definite. The same 

formulation is used in both uni-q experiment and coupled experiment. is a matrix 

of the specific humidity ensemble perturbations with each column equal to the 

difference between ensemble forecast and the mean state. 

)ln(q

bX

)()( bbb hh qqHX −=  is 
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the background specific humidity perturbation in the observation space. The analysis 

perturbations are directly calculated from equation (6.2) 

 

6.4.2 Assimilation of logarithm specific humidity ( )  )ln(q

Unlike the assimilation of specific humidity, the observation operator )(⋅h is 

not linear in the assimilation of , but instead has a logarithmic relationship with 

the background. The observational increment is equal to

)ln(q

)ln()ln( blo qHq − , where 

 is the linear interpolation operator. In the calculation of observational increment, 

we first horizontally interpolate the background humidity to the observation locations 

with the linear observation operator , then do the logarithm transformation. The 

ensemble perturbation at the observation locations 

lH

lH

)ln()ln( blblb qHqHHX −= is 

calculated in a similar way. When the value of  bq  or is negative, it is set to equal 

to a very small positive value before the logarithm calculation. The updated analysis 

variable is specific humidity, so the ensemble perturbations  are still the specific 

humidity ensemble perturbations. Therefore, the analysis mean state is equal to  

bq

bX

 ]ln()[ln(~bb bloa qHqKXqq −+=  (6.4)

The analysis perturbations are directly calculated from equation (6.2).  

 

The reason that we use specific humidity as analysis variable instead of  

is that the choice of  as analysis variable will make the specific humidity 

analysis positive definite, a disadvantage that it will introduce bias into the system 

since the forecast field of specific humidity has negative values in the SPEEDY 

)ln(q

)ln(q
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model. In addition, when the analysis variable is , the analysis value will be 

close to zero when either the background or the observation increment is close to zero, 

which could produce serious problem in the high latitude or upper vertical levels (Dee 

and da Silva, 2003). Unlike the other choices of humidity observations in our 

experimental setup, the logarithm of humidity has perfect Gaussian error distribution. 

Therefore, it is a standard for the other choices of humidity observational variables to 

attain.  

)ln(q

 

6.4.3 Assimilation of relative humidity (rh)  

As in the assimilation of the observations, the updated analysis variable 

is still the specific humidity. Different from assimilation, the observation 

operator is linear. The observation increment is the difference between the observed 

relative humidity and the relative humidity from background. The observation 

increment is equal to

)ln(q

)ln(q

)( blo hrHrh − . The ensemble perturbation at the observation 

locations is )()( blblb hrHrhHHX −= . The analysis mean state is equal to  

 )]([~bb bloa hrHrhKXqq −+=  (6.5)

 The analysis perturbations are also directly calculated from equation (6.2) 

 

6.4.4 Assimilation of pseudo-Relative Humidity (pseudo-RH)  

As stated earlier, pseudo-RH is the ratio between the observed specific 

humidity and the saturated specific humidity from background. So far, it has only 

been applied to variational approaches (Dee and da Silva, 2003; Holm et al., 2002). In 

the ensemble Kalman filter, since we have an ensemble of possible saturated specific 
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humidity from background forecast, we normalize the specific humidity observations 

by the mean saturated specific humidity sbq at the observation locations, then 

 oo qEy 1−= ,  ))(( sblhdiag qE =  (6.6)

where  is the linear interpolation operator. The corresponding background 

pseudo-RH is equal to 

)(⋅lh

 
)1()(

1

1∑
=

−=
K

i

b
i

lbl

K
hh qDx , )( sbdiag qD =   

(6.7)

The specific humidity ensemble perturbations at the observation locations are 

normalized by the mean saturated specific humidity, expressed as follows:  

 )]([ 1 bb
i

lb
i h qqDHX −= −  (6.8)

The background ensemble perturbations are still the perturbations of specific 

humidity. In applying the observation operator, we first normalize the specific 

humidity perturbations by the background mean saturated specific humidity. The 

reason lies in the fact that spatial variability of relative humidity is less than specific 

humidity, so the spatial interpolation of pseudo-RH is more accurate than that of 

specific humidity.  Following the derivation of Dee and da Silva (2003), it is easy to 

get the analysis mean state as:  

 )]([~bb bloa h xyKDXqq −+= (6.9)

The analysis perturbations are also directly calculated from equation (6.2) 

6.5 Results 

We first present the results from uni-q experiments with different humidity 

variables and then the results from coupled experiments. 
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6.5.1 Assimilation results from uni-q experiments 

Figure 6.6 shows 700hPa global average specific humidity Root Mean Square 

(RMS) error comparison between control run and the different choices of humidity 

variables. Though the specific humidity analysis RMS error from control run (black 

line) is much smaller than the specific humidity observation error (Figure 6.3) in this 

OSSE experimental setup, the improvement from assimilating humidity observations 

is still significant with an appropriate choice of humidity variable type. Not 

surprisingly, the choice of  gives the best result (red line in Figure 6.6), since it 

has perfect Gaussian observation error distribution. However, in reality,  does 

not necessarily have a perfect Gaussian error distribution. In our current experimental 

setup, it is an ideal (optimal) result that the other choices of humidity variable types 

are aiming for. Among the other choices of humidity variable types, the best result is 

from pseudo-RH assimilation (the blue line in Figure 6.6). As shown in Figure 6.3, the 

error distribution of pseudo-RH is more Gaussian than specific humidity observations. 

It has similar error distribution as the relative humidity observations, but unlike 

relative humidity observations, it has no error correlation with the other observation 

variables. Therefore, the performance of pseudo-RH assimilation is better than both 

the relative humidity and the specific humidity observations. With the choices of 

specific humidity (green line) and relative humidity (purple line) variable types, the 

performance is similar to the control run, i.e., there is little improvement on the 

moisture analysis even though the moisture observations were used. 

)ln(q

)ln(q
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Figure 6.5 700hPa specific humidity RMS error comparison between different choices 
of the humidity observational type (black line: control run; green line: specific humidity; 
purple: relative humidity; blue line: pseudo-RH; red line: ln(q))  

  

In uni-q experiments, though the humidity observations do not update the 

other dynamical variables during assimilation, the updated humidity field does have 

an influence on the other dynamical variables during the forecast through the 

parameterization processes. The specific humidity directly affects temperature 

forecast through the condensation and radiation process. It also affects winds through 

surface flux processes and interaction between planetary boundary layer and lower 

Troposphere. The analysis results for temperature (top panel in Figure 6.6) and zonal 

wind (bottom panel in Figure 6.6) have the same ranking as for the specific humidity, 

though the difference between different choices of humidity variable types is small 

except for the  case.  It seems that only when the specific humidity analysis is 

much better than the control run (which happens only for the ideal  variable 

choice in the uni-q experiment), can it have significant impact on the other variables 

during the forecast process.  

)ln(q

)ln(q
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Figure 6.6 700hPa RMS error comparison between different choices of the observed 
humidity variables. Top panel: zonal wind (Unit: m/s); bottom panel: temperature (Unit: 
K). The line notation is same with Figure 6.5 

 

The time average (over the last 20 days of analysis cycle) of the uni-variate 

analysis RMS error as function of vertical levels is shown in top panel of Figure 6.7. 

The zonal wind and temperature are the bottom two panels. The ranking of different 

choices of humidity variables is same as the RMS time series shown in Figure 6.5 and 

Figure 6.6, which is true in all vertical levels.  
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Figure 6.7 Uni-variate assimilation time average RMS error as function of vertical levels 
for specific humidity (Unit: 10-4 kg/kg, top panel), zonal wind (Unit: m/s, left bottom 
panel) and temperature (Unit: K, right bottom panel). 
 
 

Spatially, assimilation of both  and pseudo-RH shows positive 

significant impact on the accuracy of specific humidity analysis over the tropics and 

the mid-latitudes (top two panels in Figure 6.8). The assimilation of relative humidity 

has neutral impact (bottom left panel in Figure 6.8), and the assimilation of specific 

humidity only makes the result slightly better in the mid-latitudes, but makes the 

results worse in the other regions (bottom right panel in Figure 6.8).  This spatial 

pattern is related with both the observation error characteristics of each humidity 

)ln(q
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variable type and also the value distribution of specific humidity field itself. 

Since observations have uniform observation error standard deviation over all 

the latitudes in the same level, and the observation error distribution is Gaussian, it 

has perfect error statistics. Therefore, the positive impact from assimilating is 

largest. The specific humidity has larger error in the tropics than the other latitudes, 

so does the error reduction from assimilating the perfect  observations. The 

observation error of pseudo-RH does not change much spatially in the same level, so 

the single observation error standard deviation for each vertical level is reasonable. 

Therefore, the error reduction spatial pattern from assimilating pseudo-RH is similar 

with the assimilation of observations. On the other hand, the actual observation 

error of specific humidity changes abruptly with latitude, but we still use a single 

value to represent the observation error statistics in each vertical level. Thus, the 

assimilation of specific humidity observations only has positive impact on the mid-

latitudes. Though relative humidity has more uniform observation error distribution, it 

has strong error correlation with temperature and pressure that we do not consider 

during data assimilation, and, as a result, it has a neutral impact. 

)ln(q

)ln(q

)ln(q

)ln(q
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Figure 6.8 Zonal mean specific humidity analysis RMS error difference (Unit: 10-4 kg/kg) 
between different choices of humidity variable type and the control run (top left panel: 
ln(q); top right panel: pseudo-RH; bottom left panel: RH; bottom right panel: q). 
 
 

One of the main purposes of assimilating humidity variables is to improve the 

precipitation forecast. The time averaged six-hour precipitation forecast error 

difference between uni-q experiment and control run for both large-scale precipitation 

and convective precipitation are shown in Figure 6.9 and Figure 6.10 respectively. 

Large-scale precipitation mainly concentrates over the storm track region, while 

convective precipitation mainly happens over the tropics. The results show that the 

assimilation of observations has the largest positive impacts on both large scale 

and convective precipitation 6-hour forecast results. Though the positive impact from 

)ln(q
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assimilation of pseudo-RH is not as much as the assimilation of , it is still 

significant. In most areas, the assimilation of specific humidity and the relative 

humidity makes the 6-hour precipitation forecast worse.  

)ln(q
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Figure 6.9 Time average (last twenty days) of large scale precipitation RMS error 
difference (Unit: mm/day) between different choices of the humidity variable types and 
the control run. (The first panel: ln(q)-control; second panel: pseudo-RH-control; third 
panel: RH-control; fourth panel: q-control). 
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Figure 6.10 Time average (the last twenty days) of convective precipitation RMS error 
difference (Unit: mm/day) between different choices of humidity variable types and the 
control run. The sequence of the figure is same with Figure 6.9. 
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6.5.2 Assimilation results from coupled (multivariate) experiments  

Specific humidity acts like a tracer except in condensation and evaporation 

processes, so we expect that the coupling between winds and specific humidity would 

have impact on both the winds analysis and the specific humidity analysis result. In 

addition, both the temperature and the specific humidity field are mass fields and 

closely related with each other, so that the coupling between them and their errors 

should also have impact on each other.  

 

Figure 6.11 shows the specific humidity analysis RMS error comparison 

between uni-q experiment (light blue) and coupled experiment (magenta) for each 

choice of humidity variable type. For reference, we also include the result from 

control run (black line). It shows that the coupling improves the specific humidity 

analysis accuracy with every choice of humidity variable type except for the choice of 

relative humidity. For the relative humidity, the coupling shortens the spin-up time, 

but after the spin-up time, the performance is similar with uni-q experiment. This is 

due to the strong error correlation between relative humidity observations and the 

temperature observations that as is customary, we neglect during the data assimilation 

process. Unlike the other choices of humidity analysis types, the observational 

operator is nonlinear when the observation is . The nonlinear relationship 

between observations and dynamical variables lengthens the spin-up time, but 

after the spin-up time, the coupled experiment has slightly better performance than 

the uni-q experiment. The coupling between humidity variable and the other 

dynamical variables significantly improves the specific humidity analysis result when 

)ln(q

)ln(q
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the assimilated humidity variable type is either specific humidity (bottom right panel) 

or pseudo-RH (top right panel).   

 

Figure 6.11 700hPa specific humidity RMS error (Unit: 10-4kg/kg) comparison between 
the uni-q experiment (light blue) and the coupled experiment (magenta) for different 
choices of assimilated humidity variable types (top left: ln(q); top right: pseudo-RH; 
bottom left: RH; bottom right: q). The black line is from control run. 
 
 

The coupling has an impact not only on the specific humidity field, but also 

on the other dynamical variables, such as zonal wind (Figure 6.12). Figure 6.12 shows 

that the coupling improves the zonal wind analysis accuracy for each choice of 

humidity variable, but it has largest improvement when the assimilated humidity 

variable type is pseudo-RH. It has only a slight impact with the other choices of 
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humidity analysis variables.  The small impact with the choice of is due to the 

nonlinear relationship between observations and the dynamical variables, while for 

specific humidity and relative humidity, it is related to the observation error 

characteristics that we discussed earlier. 

)ln(q

 

 

Figure 6.12 700hPa zonal wind RMS error (Unit: m/s) comparison between uni-q (light 
blue) and coupled experiment (magenta) for different choices of assimilated humidity 
variable types. The black line is from control run. The sequence is same with Figure 
6.11. 
 
 

Figure 6.13 shows 700hPa analysis accuracy comparison among different 

choices of humidity variable types for both specific humidity field (top panel) and the 
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zonal wind field (bottom panel) in coupled experiments. For both variables, the result 

from (red line) is still the best. However the difference between the assimilation 

of pseudo-RH (blue line) and the assimilation of becomes smaller compared to 

the difference in uni-q experiments (Figure 6.5). In addition, the choice of pseudo-RH 

is the best among all the other choices of humidity variables, i.e., specific humidity 

and relative humidity.  

)ln(q
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Figure 6.14 shows the RMS error comparison over all the vertical levels for 

specific humidity (top panel), zonal wind (bottom left panel) and temperature (bottom 

right panel). It shows that the ranking among different choices of humidity variable 

types over all the vertical levels is same with that of 700hPa (Figure 6.13) for specific 

humidity. However, for temperature and zonal wind, the choice of pseudo-RH is 

slightly better than over the high levels.  )ln(q
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Figure 6.13 700hPa RMS error comparison from coupled experiments of different 
choices of assimilated humidity variable types (purple: RH; green: q; blue: pseudo-RH; 
red: ln(q); black: control run) for specific humidity (Unit: 10-4kg/kg, top panel) and 
zonal wind (Unit: m/s, bottom panel) 
 

 
Figure 6.14 Multivariate analysis time average (last twenty days analysis cycle) RMS 
error as function of vertical levels for specific humidity (Unit: 10-4 kg/kg, top panel), 
zonal wind (Unit: m/s, left bottom panel) and temperature (Unit: K, right bottom panel). 
The line notation is same with Figure 6.13. 
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The coupling between humidity and the other dynamical variables during the 

assimilation process has an impact on the analysis accuracy of specific humidity and 

also on the other dynamical variables, which further affects the precipitation forecast 

accuracy. Since the coupling improves the analysis of the specific humidity and the 

other dynamical variables most with the pseudo-RH observations, the improvement 

of 6-hour precipitation forecast accuracy is also the largest with the choice of pseudo-

RH. After coupling, the accuracy of precipitation forecast with the choice of pseudo-

RH observations (second panel in Figure 6.15 and Figure 6.16) is comparable with 

the precipitation forecast from the choice of (first panel in Figure 6.15 and 

Figure 6.16). With the choice of relative humidity (third panel in Figure 6.15 and 

Figure 6.16), the coupling slightly improves the precipitation forecast in the tropics, 

but makes the forecast worse in high latitudes. As stated earlier, the relative humidity 

error has strong correlation with temperature error, which is more significant in the 

higher latitude than in the tropics. With the choice of specific humidity variable type 

(bottom panel in Figure 6.15 and Figure 6.16), the coupling slightly improves the 

forecast compared to the forecast from the uni-q experiment (bottom panel in Figure 

6.9 and Figure 6.10). 

)ln(q
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Figure 6.15 Time average of large scale precipitation RMS error difference (Unit: 
mm/day) between different choices of humidity variable type in the coupled experiments 
and the control run. (The first panel: ln(q)-control; second panel: pseudo-RH-control; 
third panel: RH-control; fourth panel: q-control). 
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Figure 6.16 Same as Figure 6.15, except this is for the convective precipitation field. 
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6.6  Assimilation of AIRS humidity retrievals into the GFS LETKF data 

assimilation system 

In this section, we show preliminary results from the assimilation of AIRS 

humidity retrievals provided by Chris Barnet (personal communication) with the 

choice of both specific humidity and pseudo-RH variable types. The previous 

simulation results reveal that the analysis accuracy from the coupled experiment 

(multivariate) is better than uni-q experiment. Therefore, we fully coupled the 

humidity variable types with the other dynamical variables. As far as we know, there 

have been few if any experiments with multivariate assimilation of humidity before 

this one.  

6.6.1 Experimental design 

The dynamical model is T64 resolution NCEP GFS system with 28 vertical 

levels. The data assimilation scheme is the 4D-LETKF (Hunt et al., 2004) with 6-hour 

assimilation window centered at the central time (Szunyogh et al., 2007). We have 

both the control run and the humidity run with 31 days analysis cycle. The 

assimilation period is January 2004.  In the control run, the observation types include 

all the operational non-radiance non-humidity observations (Szunyogh et al., 2007) 

and the AIRS temperature retrievals. During data assimilation, the humidity 

dynamical variable is not updated. Since there is no humidity observation, the other 

dynamical variables are not updated by the humidity observations either. In the 

humidity run, we add the AIRS specific humidity retrievals as part of the observations 

between 30°S and 30°N, with the error standard deviation shown in Figure 6.17. We 

 120



 

only assimilate the specific humidity between 30°S and 30°N is because the error 

standard deviation was specially tuned for this area. In addition, we experimentally 

found unreasonable large analysis increments in the high latitudes with the choice of 

specific humidity variable type when we include the specific humidity as part of the 

dynamical variable in agreement with the simulation experiments. We will explore 

the reasons more in detail in the near future. Since we neglect the error correlations 

between different vertical levels when we assimilate specific humidity retrievals with 

the choice of specific humidity variable type, we double the error standard deviations 

in the data assimilation process. The same is true when we assimilate the temperature 

retrievals. The verification is done against the high resolution operational analysis, 

which is the NCEP GFS T254L64 operational analysis system with the assimilation 

of all operational observation data set. We will compare the RMS error between the 

control run and the humidity run with the choice of both specific humidity and 

pseudo-RH.   

 
Figure 6.17 AIRS specific humidity retrievals error standard deviation (Unit: g/kg) as 
function of vertical levels (provided by Eric Maddy and Chris Barnet).  
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6.6.2 Results 

Figure 6.18 shows that the assimilation of specific humidity with the choice of 

specific humidity variable type mainly affects the relative humidity analysis within 

30°S and 30°N where there are observations. It improves the relative humidity result 

in the upper troposphere of the tropics, but makes the result worse in the lower levels 

of the tropics. The impact is neutral in the other regions. The worse result in the 

tropical lower levels may be due to the data quality (Figure 6.17), the non-Gaussian 

observation error characteristics of the specific humidity observations, or the model 

errors related with the parameterization process, and needs further investigation. The 

assimilation of AIRS specific humidity retrievals in the coupled mode has little 

impact on the temperature analysis, slightly improving the analysis in the higher 

tropics and the high latitudes of the Northern Hemisphere (Figure 6.19). With the 

choice of specific humidity variable type, it has a larger positive impact on the zonal 

wind analysis result (left panel of Figure 6.20), improving the zonal wind analysis 

accuracy in the most of tropics, and even improving the analysis in the high latitudes 

of the Northern Hemisphere where we do not assimilate specific humidity retrievals, 

which may be due to the coupling interaction between specific humidity and the other 

dynamical variables during the data assimilation propagated by the dynamics. With 

the choice of pseudo-RH (right panel of Figure 6.20), the wind analysis accuracy is 

further improved, with a positive impact on winds analysis almost everywhere.  
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The assimilation of AIRS specific humidity retrievals is preliminary, but it is 

consistent with the SPEEDY results which show neutral impact with the choice of 

specific humidity variable type, and significant positive impacts on wind analysis 

with the choice pseudo-RH. 

 

Figure 6.18 Relative humidity RMS error difference (Unit: 10%) between the humidity 
run and the control run.  
 

 
Figure 6.19 Zonal mean time average (averaged over the last twenty days analysis cycle) 
RMS error difference between humidity run and the control run for temperature (Unit: 
K, top panel).  
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Figure 6.20  Zonal mean time average (averaged over the last twenty days analysis cycle) 
RMS error difference between humidity run and the control run for zonal wind (Unit: 
m/s, assimilated variable, left panel: specific humidity, right panel: pseudo-RH)  

 

6.7 Conclusions and discussion 

Due to the highly variable, both spatially and temporally, and non-Gaussian 

error characteristics of humidity variables, the assimilation of humidity observations 

is a challenging problem. So far, it has been assimilated uni-variately in operational 

centers.  

 

The LETKF, as any other EnKF, estimates the time-changing background 

error covariance and at the same time, automatically couples all the dynamical 

variables together. Therefore, it is a good choice for the multivariate assimilation of 

humidity variables. The LETKF, as most other assimilation schemes, assumes 

Gaussian observation error distribution, while the humidity has the least Gaussian 

error distribution among all the dynamical variables. Therefore, the choice of 

humidity observational type is very important. In this Chapter, we compared several 

choices of humidity variable types when the specific humidity has non-Gaussian 
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observation error in both uni-q experiments and the coupled experiments with the 

SPEEDY model. 

 

By adding Gaussian random error to the logarithm specific humidity, we 

create simulated specific humidity observations with non-Gaussian observation error 

distribution, as well as other choices of humidity variables, such as relative humidity 

and the pseudo-RH proposed by Dee and da Silva (2003). Since the logarithm 

specific humidity has perfect error statistics, its results are an optimal goal for the 

other choices of humidity variables to attain. Statistically, pseudo-RH and relative 

humidity have more Gaussian observation error distribution than specific humidity 

observations. Compared to the choices of relative humidity or specific humidity, the 

choice of pseudo-RH has a better analysis result for both specific humidity and the 

other dynamical variables in both uni-q experiment and the coupled (multivariate) 

experiment. It has a performance similar with the choice of logarithm of specific 

humidity in the coupled experiment. The poor result from the assimilation of relative 

humidity is due to the high correlation between the relative humidity and the 

temperature observation errors, which we neglect during the data assimilation. For the 

choice of specific humidity observations, the poor performance is due to the highly 

spatially variable error characteristics and the significant non-Gaussian observation 

error characteristics. Overall, this OSSEs experiment shows that pseudo-RH is a 

better choice for the assimilation of humidity observations, and at the same time, the 

automatically coupled assimilation between humidity and the other dynamical 
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variable with the LETKF data assimilation scheme improves the analysis compared to 

the uni-q experiment. 

 

We assimilated real AIRS specific humidity retrievals with NCEP GFS 4D-

LETKF assimilation system with the choice of both specific humidity and pseudo-RH 

variable types in a coupled (multivariate) mode. The preliminary results show that, 

with the choice of specific humidity variable type, the assimilation of AIRS specific 

humidity retrievals has a positive impact on the upper tropics of the relative humidity 

field, neutral impact on the temperature field and positive impact on the zonal wind 

field in most of the tropics and the Northern Hemisphere. With the choice of pseudo-

RH, the analysis accuracy is further improved, and the impact on winds analysis is 

positive almost everywhere. These results are very promising though we still need to 

further explore the reason for the poor performance in the lower level tropics.   

 126



 

Chapter 7  Summary and future plans 
 

Our work covered four application areas of the LETKF data assimilation 

scheme, and in each of these, we obtained encouraging new results.  

7.1 Adaptive observations  

A straightforward application of the LETKF is to do adaptive observations 

since the LETKF outputs the background and local analysis uncertainty along with 

the data assimilation scheme. The background ensemble spread adaptive strategy, 

which minimizes the trace of the background error covariance, is cost-free but not 

optimal for more than one adaptive observation. The local analysis ensemble spread 

method, which can be computed in parallel, minimizes the trace of the analysis 

ensemble spread. It is optimal for multiple adaptive observations, but can be very 

expensive even with parallel computation. The combined-background-analysis 

ensemble spread method selects a few “promising” observations first based on the 

background ensemble spread, and then the local analysis ensemble spread method is 

only applied to the observations selected by the background ensemble spread method. 

It combines the advantages of both methods.  

 

We first compared background ensemble spread method, local analysis 

ensemble spread method, combined-background-analysis ensemble spread method, 

and an ‘ideal’ method based on the truth on the Lorenz-40 variable model. The 

background ensemble spread method, local analysis ensemble spread method and 

combined-background-analysis ensemble spread give the same accuracy when only 

 127



 

one adaptive observation is chosen, and are all better than the best result (Hansen and 

Smith, 2000) published so far with the same experimental setup. Based on two simple 

examples, we show that the background ensemble spread method is equivalent with 

the local analysis ensemble spread method only when only one adaptive observation 

is to be selected and it is the same type with the dynamical variable, and also at a grid 

point. Otherwise, the results from these two methods would be different, and only the 

analysis ensemble spread method would be optimal. 

 

DWL is an active sensor strongly constrained by energy resources, and the 

U.S. instrument is planned to be operated in an adaptive mode. An often stated goal is 

to ‘get 90% improvement from 10% observation coverage’. We adaptively sampled 

simulated Doppler Wind Lidar (DWL) observations in both 3D-Var and the LETKF 

assimilation system in a global primitive equation model. We compared the 

background ensemble spread method with several other sampling strategies, namely, 

uniform distribution, random sampling, climatological ensemble spread, and an 

‘ideal’ method based on the ‘truth’. The LETKF-based ensemble spread method 

avoiding the choice of neighboring observations gives the best result among the 

operational possible adaptive methods we tested. With 10% adaptive observations 

obtained from the LETKF-based ensemble spread, both 3D-Var and LETKF can get 

more than 90% improvement, showing that the LETKF-selected locations correspond 

to the areas of instability where errors grow faster. 3D-Var is as effective as the 

LETKF with 10% coverage, but the LETKF is more effective when only 2% DWL 

footprints are selected. With 10% adaptive observations, it is sufficient to give 
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information about the ‘error of the day’ to 3D-Var, while 2% adaptive observations 

are not sufficient. On the other hand, since the LETKF scheme already knows ‘error 

of the day’, it is not so sensitive to the adaptive observation strategies with 10% 

adaptive observations. The ensemble spread method is superior to the other methods 

within the LETKF when only 2% adaptive observations are observed.  

7.2  Self-sensitivity  

Self-sensitivity is the diagonal value of the influence matrix which is the 

Kalman gain in observation space and can be computed at little additional cost within 

LETKF scheme. Self-sensitivity reflects how sensitive of the analysis to observations, 

so that it is also known as analysis sensitivity. Self-sensitivity is complementary to 

the analysis sensitivity to the background (the sum is equal to one). Following the 

formulation of Cardinali et al. (2004), we proposed to calculate self-sensitivity within 

the LETKF. However, since the LETKF produces a local analysis, and the 

observations are used in several local patches, the self-sensitivity for a given 

observation would be different if it is in different local patches. Therefore, we 

proposed to average the self-sensitivity with respect to the same observation in 

different local patches together. We verified our averaged scheme by comparing the 

self-sensitivity calculated from the LETKF and the global ETKF which does not 

require averaging. The results show that the averaging scheme gives similar results as 

the self-sensitivity calculated from ETKF. Unlike the self-sensitivity calculated in the 

4D-Var system (Cardinali et al., 2004), the self-sensitivity within the LETKF is not 

approximated, and satisfies the theoretical value limits (between 0 and 1). In 

agreement with a geometrical analysis, we showed experimentally that the self-
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sensitivity is proportional to the analysis error, and that is anti-correlated with the 

observation error.  

 

The trace of self-sensitivity of any subset observations is the information 

content of that subset. It can be used to assess the spatial importance of the same type 

observations. With the SPEEDY model, we compared the information content from 

all-obs control experiment and the quantitative observation impact calculated from 

data denial experiments, and showed that the information content qualitatively 

reflects the spatial observation impact calculated from data denial experiments. By 

comparing the information content calculated in rawinsonde-only control experiment 

based on the possible future observation locations with the actual observation impact 

from the “add-on” experiments, we showed that information content also qualitatively 

reflects the observation impact in the “add-on” experiments. This implies that the 

spatial information content can be utilized in observation design experiments (without 

carrying out data impact experiments), and can also be used to compare the 

information content of the instruments that measure the same type of observations.  

7.3 Observation impact 

Langland and Baker (LB, 2004) pioneered an approach to monitor the 

observation impact in a derivation based on the adjoint model. The observation 

impact can help identify the observations that deteriorate the forecast, and better use 

the observations that have large impact on the forecast.  
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Following LB (2004), we proposed an ensemble sensitivity method to 

measure the observation impact on the error difference between the forecasts 

initialized from 00hr and -6hr. Unlike the adjoint method by LB (2004), the ensemble 

sensitivity method we propose does not require the adjoint model. We compared the 

ensemble sensitivity method we proposed to the adjoint model using Lorenz-40 

variable model. The results show that the ensemble sensitivity method gives results 

similar to the adjoint method, and both can explain more than 90% forecast error 

difference in our experimental setup. Both methods can detect “bad” observations that 

are of poor quality, with either larger random errors than specified or with bias, and 

the ensemble sensitivity method shows stronger signal in such scenarios. Like the 

adjoint method by LB, this method can be applied in the observation quality control 

as well as comparing the importance of different type observations. It can be used to 

quantitatively estimate the impact on the forecast of a certain observation type or 

locations. It could be routinely calculated as part of the analysis cycle, thus providing 

a powerful tool to understand cases of forecast failure and a tool to tune the 

observation error statistics.  

7.4 Humidity assimilation  

Because humidity is highly variable, both spatially and temporally, and with 

non-Gaussian error characteristics, the assimilation of humidity observations is a 

challenging problem. So far, it has been assimilated uni-variately in operational NWP 

centers with variational data assimilation schemes. However, unlike the variational 

data assimilation schemes, the LETKF, as any other EnKF, estimates the time-

changing background error covariance and at the same time, automatically couples all 
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the dynamical variables together. Therefore, it is a good choice for the assimilation of 

humidity variables, and automatically coupling humidity variable with the other 

dynamical variables in the data assimilation.  

 

 Since humidity variable is the least Gaussian variable type, the choice of 

assimilated variable is very important. We compared several choices of humidity 

variable type when the specific humidity has non-Gaussian observation error in both 

uni-q experiment and the coupled experiment with the SPEEDY model. In uni-q 

experiment, the humidity variable is updated by itself, which is the way it is done in 

operational NWP centers. In coupled (multivariate) experiment, the humidity variable 

is fully coupled with the other dynamical variables. The humidity variable types 

include specific humidity, logarithm specific humidity, relative humidity and pseudo-

RH proposed by Dee and da Silva (2003). As far as we know, this is the first attempt 

to assimilate pseudo-RH within an EnKF.  

 

By adding the Gaussian random error to the logarithm specific humidity, we 

created simulated specific humidity observations with non-Gaussian observation error 

distribution, as well as other choices of humidity variables, such as relative humidity 

and pseudo-RH. Since the logarithm specific humidity has perfect error statistics, its 

results are an optimal goal for the other choices of humidity variables to attain. 

Statistically, pseudo-RH and relative humidity have more Gaussian observation error 

distribution than specific humidity observations. Compared to the choices of relative 

humidity or specific humidity, the choice of pseudo-RH has a better analysis result 

 132



 

for both specific humidity and the other dynamical variables in both uni-q experiment 

and the coupled (multivariate) experiment. It has a performance similar with the 

choice of logarithm specific humidity in the coupled experiment. The poor result 

from assimilation of relative humidity is due to the high correlation between the 

relative humidity and the temperature observation errors that are neglected during 

data assimilation. For the choice of specific humidity observations, the poor 

performance is due to the highly spatially variable error characteristics and the 

significant non-Gaussian observation error characteristics. Overall, this OSSEs 

experiment shows that pseudo-RH is a better choice for the assimilation of humidity 

observations, and at the same time, the automatically coupled assimilation between 

humidity and the other dynamical variable with the LETKF data assimilation scheme 

improves the analysis compared to the uni-q experiment. 

 

We assimilated real AIRS specific humidity retrievals with NCEP GFS 4D-

LETKF assimilation system with the choice of both specific humidity and pseudo-RH 

variable types in a coupled (multivariate) mode. The preliminary results show that, 

with the choice of specific humidity variable type, the assimilation of AIRS specific 

humidity retrievals has a positive impact on the upper tropics of the relative humidity 

field, neutral impact on the temperature field and positive impact on the zonal wind 

field in most of the tropics and the Northern Hemisphere. With the choice of pseudo-

RH, the analysis accuracy is further improved, and the impact on winds analysis is 

positive almost everywhere. These results are very promising though we still need to 

further explore the reason for the poor performance in the lower level tropics.   
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7.5 Future plans 

Since many studies in my thesis are the first attempts to do research in that 

area with the LETKF scheme, they based on the simulated experimental setup in a 

simple model. We will further explore the applications of these theoretical studies in a 

more realistic system, especially, the application of observation impact, and the 

assimilation of humidity variables. 
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Appendix A Local Online Inflation Estimation Scheme 

Most of these equations are from Miyoshi (2005), and the approach is valid if the 

error of the observation is accurate (Li, 2007). The covariance of the observational 

innovation (difference between forecast and observation) has the statistical 

relationship (Houtekamer et al. 2005): 

d

 RHHPdd += TfT    (A.1), 

Where H and R is the linearized observation operator and the observational error 

covariance respectively. • represents the statistical mean state. Inflating equation 

(A.1) on the background error covariance, it becomes: 

 RHHPdd ++= TfT )1( δ   (A.2)

Summing over the trace of the error covariance, the inflation factor δ is estimated as: 
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To avoid unreasonable values, we restrict δ  within a reasonable range, which is 

between -0.1 and  0.48. 

     To reduce the sampling error, a simple scalar Ensemble Kalman filter is used 

to estimate the final inflation factor. δ estimated from equation (A.3) is used as 

observation  in the Kalman filter estimation. When there is no observation in the 

local patch,  is set to be the same with  . The final inflation factor is: 
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°/fv is the forecast/observational error variance. The analysis error variance is 

obtained by: 

 f
of

f
a v

vv
vv )1(
+

−=    (A.5)

In the forecast step, the inflation factor and the error variance are both updated as: 

 a
i

f
i δδ =+1     (A.6)

 a
i

f
i vv )1(1 ∆+=+     (A.7)

where is the forecast factor to evolve the analysis error covariance. ∆

 

Appendix B 

B.1 Perturbation weights averaged over the ensemble  

The following derivation is based on Hunt et al. (2007). We define a column 

vector of K ones: .  is an eigenvector of T)1,,1,1( L=v v aP~  with eigenvalue 

:1)1( −−K [ ] vvYRYIvP )1()()1()~( 11 −=+−= −− KK bTba  because the sum of the 

columns of is zero. Therefore, bY

 
vvP =

−
−1)~(

1
1 a

K
 (B.1)

In addition, the matrix of analysis weights is given by 2/1
00 ]~)1[( aa K PW −= , so that  

 aaTa K 000
~)1( PWW −=  (B.2)

Multiplying both sides by the vector , we get , so that v  is an 

eigenvector of matrix with eigenvalue equal to 1. Based on the properties of 

v vvWW =aTa
00

aTa
00 WW
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a symmetric matrix,  is also an eigenvector of matrix with the eigenvalue equal 

to 1: 

v a
0W

 vvW =a
0  (B.3)

Since  is a column vector of K ones, , where  is an element of 

the . is a symmetric matrix, therefore, we have the following equation:  
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B.2 Derivation of the observation impact 
 

This derivation is based on Bishop (2007) and Langland and Baker (2004, 

referred as LB hereafter). As in the derivation by LB, we define a cost function which 

is the error difference between the short range forecast initialized from the analysis 

time and a forecast initialized from 6-hour earlier:  
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where , and . As in LB, we verified the forecast at time 

t against the analysis at that time . Then equation (B.5) can be written as: 
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0|tM is the tangent linear model starting at time 00hr. We define  and 

, then: 

trutha
000 xxε −=
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where 0600
~KXK b

|−= is Kalman gain matrix. Based on this equation, the cost function 

can be written as:  
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Since we used linear tangent model to get equation (B.6), this is an approximation of 

equation (B.5) when the model is nonlinear. The sensitivity of the cost function to the 

observation increments is  0v
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Based on equation (B.10) and (B.12), the sensitivity of the cost function to the 

observation increments is then written as:  
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The cost function defined as the error difference between and is only 

due to the assimilation of the observation at time t=00hr. In the following, we will try 

to express the cost function as a function of the observations assimilated at t=00hr. 

We substitute the definitions of and  into the cost function:  
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Expand the first inner product term in equation (B.14), it is easy to get the following 

equation:  
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Due to the using of tangent linear model, equation (B.15) is also an approximation of 

equation (B.5) when the model is nonlinear. Based on the characteristics of the inner 

product, and t
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Substitute equation (B.13) into (B.16), we obtain, 
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The difference between ensemble sensitivity method and the adjoint method 

(Langland and Baker, 2004) is how the observation sensitivity o

J

0v∂
∂ is calculated. In 

the ensemble sensitivity method, o

J

0v∂
∂ is directly calculated based on the ensemble 

forecast and the weighting matrix (Equation (5.11)). In the adjoint method, it is based 

on the Equation (B.13). 
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B.3 Derivation of the sensitivity of the cost function to the observations without 

using linearization 

Unlike the derivation in the text (Section 5.2), this derivation does not use 

linearization. It is based on the assumption that the forecast length t is short enough 

that we estimate the ensemble forecast at time t initialized at t=00hr with the 

ensemble forecasts initialized at t=-6hr using the same weights as at the analysis time. 

Though it does not require linearization, it neglects the correlation between the error 

due to this assumption and the observations assimilated at t=00hr. The sensitivity 

formulation based on this derivation gives essentially identical result as equation 

(5.11), so we report the derivation here. 

thi

 

In this derivation, we first find the dependence of ( )6|00 −− εε  (the error 

difference between analysis and background at the analysis time) on the observational 

increments , following the LETKF formulation of Hunt et al. (2007): 0v
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6|06|0 || −−− = xxX δδ L  is a matrix whose K  columns are background 

ensemble perturbations with the column thi bbibi
6|06|06|0 −−− −= xxxδ , equation (B.18) 

indicates that the analysis increments are the linear combination of the background 
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 are Kalman gain and analysis error covariance 

matrices in the ensemble subspace spanned by the forecasts.  is a matrix whose  
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column is the ensemble perturbations in the observation space equal 

to )()( 6|06|0
bbi hh −− − xx .  is the observation error covariance. We verified the analysis 

and 6-hour forecast valid at t=00hr against the true state . An over-bar represents 

an average over the 

0R

truth
0x

K  ensemble members, a tilde indicates that a vector or matrix is 

represented in the subspace of ensemble forecasts, and δ represents the difference 

between an ensemble member value and the ensemble mean.  

 

We need to compute the impact of analysis change at t=00hr due to 

assimilation of observations on the average forecast at time t. For this, consider the 

analysis at time 00hr, the  analysis ensemble member is given by (Hunt et al., 2007, 

eq. 25):  
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where w0
ai = w0

a + δw0
ai  is a vector with K  dimension, whose element is 

ajiajaji www 000 δ+= , j is from 1 to K .  is the  column of the ai
0wδ thi K  by K  matrix 

2/1
00 ]~)1[( aa K PW −=  with the elements . We also note that the perturbation 
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We need to express , the  analysis ensemble member at t=00hr, as a 

weighted average of the background ensemble member , j is from 1 to 
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0x thi
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6|0 −x K . In 
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order to do this, we expand the terms on the right hand side of equation (B.19) based 

on the definitions of each term,  
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where ajw0  is the  element of the mean weight vector thj a
0w , so that the  analysis 

ensemble member at t=00hr is a linear combination of the background ensemble 

forecast expressed as: 
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We assume that the forecast length t is short enough that the perturbations 

with respect to the ensemble mean grow linearly, so that we estimate the ensemble 

forecast at time t initialized at t=00hr with the ensemble forecasts initialized at t=-6hr 

using the same weights as at the analysis time:  
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where ‘error’ represent the error from this approximation. We take an ensemble 

average of these forecasts initialized at t=00hr:  
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We denote the error made with this approximation as 0|te . 
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We note that, although very small, the error ∑
=

−− −−=
K

j

ajfj
t

f
t

f
tt w

1
06|6|0|0| δxxxe  (Figure 

B.1) cannot be neglected in order to obtain accurate observation sensitivity. It is can 

be calculated once we have the ensemble forecasts initialized from both t=00hr and 

t=-6hr. Though both f
t 0|x and )1,j(0 Kw aj L=δ is function of observations 

assimilated at t=00hr (approved in next paragraph), we neglect this correlation in the 

later derivations. 

 

We will show that the vector a
0wδ  with the element )1,j(0 Kw aj L=δ  can 

be expressed in terms of the increments . Based on Hunt et al. (2007), 0v

∑
=

=
P

p

pjpaj vKw
1

000
~ , where jpK 0

~  is an element of K by P  matrix 0
~K , P is the number of 

observations, so that: 
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We define ∑
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~~~ −=δ , then above equation can be 

written as 

 

00
1

00

00
1

00

~~

)~~(

vKδδ

δ

∑

∑

=

=

==

−=

P

p

pjp

pp
P

p

jpaj

vK

vKKw
 (B.26)

where 0
~Kδ is a K by matrix whose element is P jpK0

~δ .  

 

Based on equation (B.24) and (B.26), 0|006|6|0|
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Similarly,  
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The cost function is then written as:  
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We assume that the error is not related with the observations assimilated at 

t=00hr, then the sensitivity of the forecast error to observations is written as: 

6|−tε

 [ ][ ]0|006|6|6|0
0

~~
t

f
tt

fT
t

TJ evKXεXK
v

++=
∂
∂

−−− δδ  (B.30)

The sensitivity to the observations in equation (B.30) can be directly calculated based 

on the weighting function from data assimilation at 00hr, the observation increment at 

00hr, and the ensemble forecast initialized at -6hr. As mentioned previously, though 

this derivation does not need linearization, it neglects the correlation between 0|te and 

the observations assimilated at t=00hr. The results obtained with this formulation are 

undistinguishable from those reported in Chapter 5.  
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Figure B.1 Top panel: 24-hour forecast initialized at 00hr (red line with crosses) and the 
24-hour forecast calculated from the linear combination of the 30-hour forecast 
initialized at -06hr (black line with open circles) at an arbitrary time; Bottom panel: the 
difference 0|te between the actual forecast and the forecast calculated from the linear 
combination.   
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