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ABSTRACT
Ensemble Kalman filtering was developed as a way to assimilate observed data to track the current state in a computational
model. In this paper we show that the ensemble approach makes possible an additional benefit: the timing of observations,
whether they occur at the assimilation time or at some earlier or later time, can be effectively accounted for at low
computational expense. In the case of linear dynamics, the technique is equivalent to instantaneously assimilating data
as they are measured. The results of numerical tests of the technique on a simple model problem are shown.

1. Introduction

Assimilation of observational data is a key component of numer-
ical weather and ocean prediction (Daley, 1991; Kalnay, 2002).
The extended Kalman filter provides a fundamental approach
to assimilation in the non-linear dynamical setting. A full ex-
tended Kalman filter has always been considered computation-
ally unfeasible for numerical weather forecasting due the large
number of model variables. The method of ensemble Kalman
filters (EnKF;1 e.g. Evensen, 1994; Evensen and van Leeuwen,
1996; Houtekamer and Mitchell, 1998; Anderson and Anderson,
1999; Hamill and Snyder, 2000; Anderson, 2001; Bishop et al.,
2001; Houtekamer and Mitchell, 2001; Ott et al., 2002; Whitaker
and Hamill, 2002; Keppenne and Rienecker, 2003; Tippett et al.,
2003) have been developed as a means of attacking this problem.
In the ensemble-based schemes, an ensemble of initial conditions
is evolved by the model and used to estimate the background
covariance matrix, a key part of the extended Kalman filter
computation.

In this paper we introduce a practical way of unifying the
extended Kalman filter and the four-dimensional variational ap-
proach, in what we call a four-dimensional ensemble Kalman
filter (4DEnKF). Instead of treating observations as if they oc-
cur only at assimilation times, we can take exact observation
times into account in a natural way, even if they are different
from the assimilation times. (Although the simplest approach
would be to perform data assimilation at each observation time,
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1Following the naming convention of Evensen (2003), we use EnKF
to refer to all ensemble-based Kalman filter schemes, but we note that
some other papers use EnKF to refer to the smaller group of stochastic
schemes that involve perturbing the observations.

in an operational setting, frequent switching between assimila-
tion and model evolution may be costly and detrimental to the
accuracy of the numerical time integration.) The potential that
such schemes can be constructed, based on the ensemble Kalman
smoother of Evensen and van Leeuwen (2000), was pointed out
by Evensen (2003). In our algorithm we use linear combinations
of the ensemble trajectories to quantify how well a prospective
model state at the assimilation time fits an observation from a
different time. This extension of the EnKF to the 4DEnKF can be
considered analogous to the extension of the three-dimensional
variational technique (3D-Var) to the four-dimensional varia-
tional technique (4D-Var; e.g. Talagrand, 1981; Lorenc, 1986).
The idea is to infer the linearized model dynamics from the en-
semble instead of the tangent-linear map, as done in conventional
4D-Var schemes. Furthermore, in the case of linear dynamics,
our technique is equivalent to instantaneous assimilation of mea-
sured data.

2. Background

We first describe a version of the ensemble square root Kalman
filter approach in the case where the observations are syn-
chronous with the analysis. Consider the continuous dynamical
system defined by variables x = (x 1, . . . , x M ) satisfying

ẋm = Gm(x1, . . . , xM ) for m = 1, . . . , M . (1)

The goal is to track the evolution, under this dynamical system, of
an M-dimensional Gaussian distribution centered at x(t) (called
the most probable state) and with covariance matrix P(t).

To use the EnKF approach k + 1 trajectories of eq. (1) are
followed in parallel from initial conditions x a(1), . . . , x a(k+1) over
a time interval [t a, t b]. Because the system is typically high-
dimensional, we will assume that k + 1 ≤ M . The k + 1 initial
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conditions are chosen so that their sample mean and sample
covariance are x(ta) and P(t a), respectively. After running the
system over the time interval, we denote the trajectory points at
the end of the interval by xb(1), . . . , xb(k+1), and compute a new
sample mean x b and sample covariance Pb from these k + 1
vectors. If we define the vectors

δxb(i) = xb(i) − x b

and the matrix

X b = 1√
k

[
δxb(1)| · · · |δxb(k+1)

]
,

then

x b = 1

k + 1

k+1∑
i=1

xb(i)

Pb = X b(X b)T. (2)

Because the sum of the columns of X b is zero, the maximum
possible rank of Pb is k.

At this point, data assimilation is carried out using observa-
tions assumed to have been taken at time t b. The goal is to use
the observations to replace the dynamics-generated pair x b, Pb

at time t b with a revised pair x a, Pa that is used as x(t ′
a) and

P(t ′
a) on the next time interval [t ′

a, t ′
b], where t ′

a ≡ t b.
Assume (as will hold in the typical case) that the rank of

Pb is k. Then the column space S of Pb is k-dimensional, and
equals the row space, because Pb is a symmetric matrix. The
orthonormal eigenvectors u(1), . . . , u(k) of Pb, which correspond
to non-zero eigenvalues, span this space. Because the variation
of the ensemble members occurs in the directions spanning the
vector space S, we look there for corrections to x b in the data
analysis step. Set Q = [u(1)| · · · |u(k)], the M × k matrix whose
columns form a basis of S. To restrict Pb to the subspace S, define
P̂b = QT Pb Q.

The details of the data analysis step vary among the differ-
ent EnKF schemes. We illustrate our technique for the ensemble
square root Kalman filter (Tippett et al., 2003, and references
therein), although our technique can be applied to any EnKF
scheme. The analysis step uses observations (y1, . . . , y �) mea-
sured at assimilation time t b, which we assume for simplicity
are linearly related to the dynamical state x by y = Hx, where H
is known as the observation operator. Denote by R the error co-
variance matrix of the observations. Define Ĥ = H Q to restrict
the action of H to the subspace S. The formula for the solution
to recursive weighted least-squares with current solution x b and
error covariance matrix P̂b is

P̂a = P̂b(I + Ĥ T R−1 Ĥ P̂b)−1

�x̂ = P̂a Ĥ T R−1(y − H x b)

x a = x b + Q�x̂ . (3)

The corrected most likely solution is x a, with error covariance
matrix Pa = Q P̂a QT.

To finish the step and prepare for a new step on the next
time interval, we must produce a new ensemble of k + 1 initial
conditions xa(1), . . . , x a(k+1) that have the analysis mean x a and
analysis covariance matrix Pa. This can be done in many ways,
one of which is finding a matrix of the form

X a = 1√
k

[
δx a(1)| · · · |δx a(k+1)

]

that satisfies

Pa = X a(X a)T. (4)

Defining the vectors

x a(i) = x a + δx a(i)

yields an ensemble with mean x a and covariance matrix Pa. It
can be shown (e.g. Tippett et al., 2003) that a good (although not
unique) choice is X a = X bY where

Y = {I + (X̂ b)T(P̂b)−1(P̂a − P̂b)(P̂b)−1 X̂ b}1/2, (5)

where X̂ b = QT X b, and the symmetric matrix square root is
chosen to be positive.

3. 4DEnKF method

The description above assumes that the data to be assimilated
were observed at the assimilation time t b. The 4DEnKF method
adapts EnKF to handle observations that have occurred at non-
assimilation times. The key idea is that because the analysis takes
place in the space S spanned by the ensemble perturbations, we
ask which linear combination of the ensemble trajectories best
fits the observations at the appropriate times. In this way we
avoid the need to linearize the original equations of motion, as
is necessary in 4D-Var.

Notice that eqs. (3), (4) and (5) result in analysis vectors
x a(1), . . . , x a(k+1) that lie in the space spanned by the background
ensemble xb(1), . . . , xb(k+1). In order to carry out the analysis, we
need only consider model states of the form

xb =
k+1∑
i=1

wi x
b(i), (6)

and the goal of the analysis is to find the appropriate set of
weights w

a( j)
1 , . . . , w

a( j)
k+1 for each analysis vector x a( j).

Now let y = h(x) be a particular observation made at time
t c �= t b. We associate with the state (6) at time t b a state

xc =
k+1∑
i=1

wi x
c(i), (7)

where x c(i) is the state of the ith ensemble solution at time t c. We
assign the observation h(x c) at time t c to the state x b given by
eq. (6). Equation (7) has been used Bishop et al., 2001; Majumdar
et al., 2002) to predict the forecast effects of changes in the
analysis error. Here we use this approximation to propagate the
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dynamical information within the time window of an analysis
procedure designed for real-time numerical weather prediction.

Let

Eb = [
xb(1)| · · · |xb(k+1)

]

and

Ec = [
x c(1)| · · · |x c(k+1)

]

be the matrices whose columns are the ensemble members at the
times t b and t c, respectively. Then eqs. (6) and (7) say that E bw =
x b and E cw = x c, respectively, where w = [w1, . . . , wk+1]T.
The orthogonal projection to the column span of E b is given
by the matrix E b(ET

b E b)−1 ET
b , meaning that the coefficients w

in eq. (6) can be defined by w = (ET
b E b)−1 ET

b x b. The linear
combination (7) is x c = E cw = E c(ET

b E b)−1 ET
b x b. Therefore

the observation h(x c), expressed as a function of the background
state x b at the time of assimilation, is

h(Ecw) = h
[
Ec

(
E T

b Eb

)−1
ET

b xb

]
. (8)

The latter expression can be used as the observation operator in
any ensemble Kalman filter. For example, a set of observations
denoted by the matrix H and time-stamped at t c can be repre-
sented at time t b by the matrix HEc(E T

b E b)−1 ET
b . Therefore, the

innovation y − H x c learned from the observations is treated in-
stead as y − H Ec(E T

b Eb)−1 ET
b x b in the assimilation step. This

technique is equivalent to the computation of the forcing of the
observational increments at the correct time in 4D-Var; how-
ever, it propagates the increments forward or backward in time
without the need for the tangent-linear model or adjoint.

Multiple observations are handled in the same manner. As-
sume the observation matrix is

H =




h1

...
h�


 ,

where the observation row vectors h1, . . . , h � correspond to
times tc1 , . . . , tcl , respectively. Then the observation matrix H in
eq. (3) is replaced with the matrix



h1 Ec1

...
h� Ecl




(
ET

b Eb

)−1
ET

b . (9)

In addition, it should be noted that tci can be smaller or larger
than t b, allowing for observations to be used at their correct
observational time even if it is after the nominal analysis time.

In the case of linear system dynamics, the 4DEnKF technique
is equivalent to assimilating data at the time they is observed.
As a simple example, assume an observation at time t c < t b

is assimilated at time t c. Let the linear dynamics of the system
on the time interval [t c, t b] be denoted by the invertible M ×
M matrix A. The corrected covariance matrix Pd at time t c is
Pd = Pc(I + H T R−1HPc)−1 and the new mean is x d = x c +

Pd H T R−1(y − H x c). Advancing both through linear dynamics
on the time interval [t c, t b] results in covariance

APd AT = APc(I + H T R−1 H Pc)−1 AT

and

Ax d = Ax c + APd H T R−1(y − H x c). (10)

On the other hand, using 4DEnKF, the covariance matrix ad-
vances without analysis to APc AT and x c to Ax c at analysis
time t b. For vectors x b in the span of the columns of E b, the
matrix E b(ET

b E b)−1 ET
b acts as the identity. Under the linear dy-

namics, AEc = E b, so that the revised observation matrix is
HEc(ET

b E b)−1 ET
b = HA−1. The assimilation formulae then give

the new analysis covariance matrix

Pa = APc AT[I + (A−1)T H T R−1 H A−1 APc AT]−1

= APc(I + H T R−1 H Pc)−1 AT = APd AT

and

x a = Ax c + Pa(A−1)T H T R−1(y − H x c),

which agrees with eq. (10).

4. Experiments with Lorenz model

To illustrate this implementation of four-dimensional assimila-
tion of observations, we use the Lorenz model (Lorenz, 1996)

ẋm = (xm+1 − xm−2)xm−1 − xm + F (11)

for m = 1, . . . , M and with periodic boundary conditions x 1 =
x M+1. When the forcing parameter is set to F = 8 and M = 40,
the attractor of this system has information dimension approxi-
mately 27.1 (Lorenz and Emanuel, 1998). A long integration of
the model creates a long background trajectory x∗, to be con-
sidered as the true trajectory. Noisy observations are produced
at each time interval �t by adding uncorrelated Gaussian noise
with variance 1 to the true state at each location. By compari-
son, the average root mean square deviation from the mean is
approximately 3.61 for the true trajectory. Figure 1 shows a sam-
ple trajectory.

Figure 2 shows that, if we use 4DEnKF, assimilations can
be skipped with little loss of accuracy in tracking the system
state. The system is advanced in steps of size �t = 0.05, but
instead of assimilating the observations at each step, assimilation
is performed only every s steps. For this simulation, 40 ensemble
members were used, although the results are little changed when
as few as 20 ensemble members were used. The resulting root
mean square error (RMSE) is plotted as circles in Fig. 2 as a
function of s. For s ≤ 6, it appears that little accuracy is lost.

The RMSEs of two other methods are shown in Fig. 2 for
comparison. The asterisks plotted in Fig. 2 are the RMSE found
by using EnKF (eqs. 3–5), allowing s steps of length �t to elapse
between assimilations. Only those observations occurring at the
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Fig 1. Typical solution of the Lorenz model (solid line) with noisy
observations (squares) and analysis state from 4DEnKF (circles). Only
the first component x 1 is shown. Observations are generated at each
�t = 0.05 time units. Assimilation is carried out every four �t steps
using eq. (3) with H replaced by eq. (9).
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Fig 2. RMSE of proposed 4DEnKF method (circles) compared to
standard EnKF (asterisks) and EnKF with time interpolation
(triangles). Variance inflation is set at 0.5% per time-step. Symbols
showing RMSE = 1 actually represent values ≥ 1. RMSE is averaged
over several runs of 40 000 steps.

assimilation time were used for assimilation. The triangles refer
to time interpolation of the data since the last assimilation. In
this alternative, linear interpolation of individual observations
as a function of the ensemble background state evolved by the
model is used to create an improved observation y�(t b) at the
assimilation time, by adding H (x b) − H (x c) to the observa-
tion. For the Lorenz example, where the observations are noisy
states, this amounts to replacing the observation at time t c with
y�(tb) ≡ y(tc) + x b − x c for assimilation at time t b, which is
carried out by EnKF. The idea behind this technique is widely
used in operational 3D-Var systems to assimilate asynchronous
observations (e.g. Huang et al., 2002; Benjamin et al., 2004).
Our implementation provides somewhat optimistic results for
this technique, because our background error covariance matrix
is not static (independent of time) and homogeneous (indepen-
dent of location) as it is assumed in a 3D-Var. As Fig. 2 shows,
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Fig 3. Effect of variance inflation on 4DEnKF. The RMSE of the
method is shown for ε = 0.5% (circles), 1% (asterisks) and 1.5%
(triangles) per time-step.

for the last two methods, the accuracy of the assimilated system
state becomes considerably worse compared to 4DEnKF as the
steps per assimilation s increases.

Variance inflation was used in all experiments described
above, meaning that the analysis covariance matrix was arti-
ficially inflated by adding sελI to P̂a for small ε, where s is the
number of time-steps per assimilation and λ is the average of
the eigenvalues of P̂a. In Fig. 2, ε = 0.005 per time-step was
used for all methods. With �t = 0.05, this amounts to addi-
tive variance inflation of 0.1 per unit time. Variance inflation
helps to compensate for underestimation of the uncertainty in
the background state due to non-linearity, limited ensemble size,
and model error. (Conventionally, variance inflation is carried
out by enlarging P̂b, rather than P̂a, in order to reflect errors
that develop during model evolution that are not captured by
the ensemble. We enlarge P̂a purely as a matter of convenience,
because it does not require us to adjust the ensemble both be-
fore and after the data assimilation step. The two approaches
yield very similar results.) Figure 3 shows the effect of variance
inflation on the RMSE of the 4DEnKF method.

Although the examples shown in this paper describe assim-
ilation using global states, we have achieved similar results by
applying this modification to the local ensemble Kalman filter
(LEnKF), as developed in Ott et al. (2002). In the local approach,
based on the hypothesis that assimilation can be carried out on
moderate-size spatial domains and reassembled, the same treat-
ment of the asynchronous local observations can be exploited.

The computational savings possible with the 4DEnKF tech-
nique arise from the ability to improve the use of asynchronous
observations without more frequent assimilations. The extra
computational cost of 4DEnKF is dominated by inverting the
(k + 1) × (k + 1) matrix ET

b E b in eq. (8), which is compar-
atively small if the ensemble size k + 1 is small compared
to the number of state variables M. Moreover, applying this
technique in conjunction with local domains as in LEnKF al-
lows k to be greatly reduced in comparison with M. For very
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high-dimensional systems, we expect the best results to be ob-
tained when a combination of the two ideas is used, in what could
be called 4DLEnKF.
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