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1. Introduction 
 
Until 1991, operational NWP centers 
used to integrate a single control 
forecast starting from the analysis, 
which is the best estimate of the state of 
the atmosphere at the initial time. In 
December 1992, both NCEP and 
ECMWF started running ensembles of 
forecasts from slightly perturbed initial 
conditions (Molteni and Palmer, 1993, 
Buizza, 1997, Toth and Kalnay, 1993, 
Tracton and Kalnay, 1993, Toth and 
Kalnay, 1997).  
 
Ensemble forecasting provides human 
forecasters with a range of possible 
solutions, whose average is generally 
more accurate than the single 
deterministic forecast (see, e.g., Fig. 4), 
and whose spread gives information 
about the forecast errors.  It also 
provides a quantitative basis for 
probabilistic forecasting.  
 
Schematic Fig. 1 shows the essential 
components of an ensemble: a control 
forecast started from the analysis, 
forecasts started from two perturbations 
to the analysis (in this case equal and 
opposite), the ensemble average, and 
the “truth”, or forecast verification, which 
becomes available later. The first 
schematic shows an example of a “good 
ensemble” in which “truth” looks like a 
member of the ensemble. In this case, 
the ensemble average is closer to the 
truth, due to nonlinear filtering of errors, 
and the ensemble spread is related to 
the forecast error.  The second 
schematic is an example of a “bad 
ensemble”: due to poor initial 

perturbations and/or model deficiencies, 
the forecasts are not able to track the 
verifying truth, and remain relatively 
close to each other. In this case the 
ensemble is not helpful to the 
forecasters at all, since the lack of 
ensemble spread would give them 
unjustified confidence in the erroneous 
forecast. Nevertheless, for NWP 
development, the “bad” ensemble is still 
very useful: after the verification time 
arrives, it clearly indicates the presence 
of a deficiency in the forecasting 
system . A single “deterministic” forecast, 
by contrast, would not be able to 
distinguish between a deficiency in the 
system and errors in the initial 
conditions as the cause of failure.  
 
Ideally, the initial perturbations should 
sample well the analysis “errors of the 
day” and the spread among the 
ensemble members should be similar to 
that of the forecast errors. The two 
essential problems in the design of an 
ensemble forecasting system are how to 
create effective initial perturbations, and 
how to handle model deficiencies, which 
make the ensemble forecast spread 
smaller than the forecast error.  
 
In this paper we present a brief historic 
review of ensemble forecasting, current 
methods to create perturbations. We 
point out that the promising approach of 
ensemble Kalman Filtering for data 
assimilation can solve, at the same time, 
the problems of obtaining optimal initial 
ensemble perturbations, and possibly 
estimating the impact of model errors. 
We also discuss the problem of coupled 
systems with instabilities that have very 
different time scales. 
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Figure 1: Schematic of the essential components of an ensemble of forecasts: The 
analysis (a cross) which constitutes the initial conditions for the control forecast (in 
green); the initial perturbations (a thick dot) around the analysis, which in this case 
are chosen to be equal and opposite; the perturbed forecasts (in black); the ensemble 
average (in blue); and the verifying analysis or truth (in red). The first schematic is 
that of a “good ensemble” in which the truth is a plausible member of the ensemble. 
The second is an example of a bad ensemble, quite different from the truth, pointing 
to the presence of a problem in the forecasting system such as deficiencies in the 
analysis, in the ensemble perturbations and/or in the model.  
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2. Ensemble forecasting methods 
 
It should be noted that human 
forecasters have always performed 
subjective ensemble forecasting by 
checking forecasts from previous days, 
and comparing forecasts from different 
centers, approaches similar to lagged 
forecasting and multiple systems 
forecasting. The consistency among 
these forecasts at a given verification 
time provided a level of confidence in 
the forecasts, confidence that changed 
from day to day and from region to 
region.  
 
2.1 Early methods 
 
Epstein (1969), introduced the idea of 
Stochastic-Dynamic forecasting (SDF), 
and pointed out that it could be also 
used in the analysis cycle to provide the 
forecast error covariance. Epstein 
designed SDF as a shortcut to estimate 
the true probability distribution of the 
forecast uncertainty, given by the 
Liouville equation (Ehrendorfer, 2002), 
which Epstein approximated running a 
huge (500) number of perturbed (Monte 
Carlo) integrations for the 3-variable 
Lorenz (1963) model. However, since 
SDF involves the integration of forecast 
equations for each element of the 
covariance matrix, this method is still not 
computationally feasible for models with 
large number of degrees of freedom. 
  
Leith (1974) suggested using directly a 
Monte Carlo Forecasting approach 
(MCF), where random perturbations 
sampling the estimated analysis error 
covariance are added to the initial 
conditions. He noted that in an infinitely 
large ensemble, the average forecast 
error variance at long time leads 
converges to the climatological error 
variance, whereas the error variance of 
individual forecasts converges to twice 
the climatological error variance. Leith 
showed that with just a relatively small 

number of integrations (of the order of 8) 
it is possible to approximate this 
important advantage of an infinite 
ensemble. The estimate of the analysis 
error covariance was constant in time, 
so the MCF method did not include the 
effects of “errors of the day”. The MCF 
method is shown schematically in Fig. 
2a. Errico and Baumhefner (1987) 
applied this method to realistic global 
models, using perturbations that 
represented a realistic (but constant) 
estimation of the errors in the initial 
conditions. Hollingsworth (1980) showed 
that random errors in the initial 
conditions took too long to spin-up into 
growing “errors of the day”, making MCF 
an inefficient approach for ensemble 
forecasting. 
 
Hoffman and Kalnay (1983) suggested 
as an alternative to MCF, the Lagged 
Averaged Forecasting (LAF) method, in 
which forecasts from earlier analyses 
were included in the ensemble 
(schematic Fig. 2b). Since the ensemble 
members are forecasts of different 
“ages” they should be averaged with 
weights estimated from their average 
forecast errors. Hoffman and Kalnay 
found that compared to MCF, LAF 
resulted in a better prediction of skill (a 
stronger relationship between ensemble 
spread and error), presumably because 
LAF includes the effect of variable 
“errors of the day”. The main 
disadvantage of LAF, that the “older” 
forecasts are less accurate, was 
corrected by the Scaled LAF (SLAF) 
approach of Ebisuzaki and Kalnay 
(1991), in which the LAF perturbations 
(difference between the forecast and the 
current analysis) are scaled by their 
“age”, so that all the SLAF perturbations 
have errors of similar magnitude. They 
also suggested that the scaled 
perturbations should be both added and 
subtracted from the analysis, thus 
increasing the ensemble size and the 
probability of “encompassing” the true 
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solution within the ensemble. SLAF can 
be easily implemented in both global 
and regional models, including the 

impact of perturbed boundary conditions 
(Hou et al, 2001). 
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Fig. 2: Schematic of the Monte Carlo forecasting and Lagged Average Forecasting methods.  
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2.2 Operational Ensemble Forecasting 
methods 
 
In December 1992 two methods to 
create perturbations became operational 
at NCEP and at ECMWF. They are 
based on bred vectors and singular 
vectors respectively, and like LAF, they 
include “errors of the day”. These and 
other methods that have since become 
operational or are under consideration in 
operational centers are briefly 
discussed. More details are given in 
Kalnay (2003). 
 
a. Singular Vectors (SVs) 
 
Singular vectors are the linear 
perturbations of a control forecast that 
grow fastest within a certain time 
interval (Lorenz, 1965), known as 
“optimization period”, using a specific 
norm to measure their size. SVs are 
strongly sensitive to the length of the 
interval and to the choice of norm 
(Ahlquist, 2000). Ehrendorfer and 
Tribbia (1997) showed that if the initial 
norm used to derive the singular vectors 
is the analysis error covariance norm, 
then the initial singular vectors evolve 
into the eigenvectors of the forecast 
error covariance at the end of the 
optimization period. This indicates that if 
the analysis error covariance is known, 
then singular vectors based on this 
specific norm are the ideal 
perturbations. 
  
ECMWF implemented an ensemble 
system with initial perturbations based 
on singular vectors using a total energy 
norm (Molteni and Palmer, 1993, 
Molteni et al, 1996, Buizza et al, 1997, 
Palmer et al 1998).  
 
b. Bred Vectors (BVs) 
 
Breeding is a nonlinear generalization of 
the method to obtain leading Lyapunov 
vectors, which are the sustained fastest 
growing perturbations (Toth and Kalnay, 

1993, 1997). Bred Vectors (like the 
leading Lyapunov Vectors) are 
independent of the norm and represent 
the shapes of the instabilities growing 
upon the evolving flow. In areas where 
the evolving flow is very unstable (and 
where forecast errors grow fast), the 
BVs tend to align themselves along very 
low dimensional subspaces (the locally 
most unstable perturbations, Patil et al, 
2001). An example of such situation is 
shown in Figs. 3, where the forecast 
uncertainty in a 2.5 day forecast of a 
storm is very large, but the subspace of 
the ensemble uncertainty lies within a 
one-dimensional space. In this extreme 
(but not uncommon) case, a single 
observation at 500hPa would be able to 
identify the best solution!  
 
The bred vectors are the differences 
between the forecasts (the forecast 
perturbations). In unstable areas of fast 
growth, they tend to have shapes that 
are independent of the forecast length 
or the norm, and depend only on the 
verification time. This suggests that 
forecast errors, to the extent that they 
reflect instabilities of the background 
flow, should have shapes similar to bred 
vectors, and this has been confirmed 
with model simulations (Corazza et al, 
2002). 
 
NCEP implemented an ensemble 
system based on breeding in 1992. 
Later, the US Navy, the National Centre 
for Medium Range Weather Forecasting 
in India, and the South African 
Meteorological Weather Service 
implemented similar ensemble 
forecasting systems. The Japanese 
Meteorological Agency ensemble 
forecasting system is also based on 
breeding, but imposing a partial global 
orthogonalization among the bred 
vectors, thus reducing the tendency of 
the bred vectors to converge towards a 
low dimensional space of the most 
unstable directions (Kyouda and 
Kusunoki, 2002). 
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Fig. 3: “Spaghetti plots” showing a 2.5 day ensemble forecast verifying on 95/10/21. 
Each 5640gpm contour at 500 hPa corresponds to one ensemble forecast, and the 
dotted line is the verifying analysis. Note that the uncertainty in the location of the 
center of the predicted storm in SE US is very large, but that the differences among 
forecasts of the storm lie on a 1-dimensional space (red line).  
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c. Multiple data assimilation systems  
 
Houtekamer et al (1996) developed a 
system based on running an ensemble 
of data assimilation systems using 
perturbed observations, implemented in 
the Canadian Weather Service. Hamill 
et al (2000) showed that in a quasi-
geostrophic system, a multiple data 
assimilation system performs better than 
the singular vectors and the breeding 
approaches. With respect to the 
computational cost, the multiple data 
assimilation system and the singular 
vector approach are comparable, 
whereas breeding is essentially cost-
free.  
 
d. Perturbed physical 

parameterizations 
 

The methods discussed above only 
include perturbations in the initial 
conditions, assuming that the error 
growth due to model deficiencies is 
small compared to that due to unstable 
growth of initial errors. In addition, 
several groups have introduced 
changes in the physical parameter-
izations to allow for the inclusion of 
model uncertainty (Houtekamer et al, 
1996, Stensrud et al, 2000). Buizza et al 
(1999) developed a perturbation 
approach that introduces a stochastic 
perturbation of the impact of subgrid 
scale physical parameterizations by 
simply multiplying the time derivative of 
the “physics” by a random number 
normally distributed with mean 1 and 
standard deviation 0.2.  
 
e. Multiple system ensembles 
 
Both the perturbations of the initial 
conditions and of the subgrid scale 
physical parameterizations have been 
shown to be successful towards 

achieving the goals of ensemble 
forecasting. However, since they both 
introduce perturbations in the best 
estimate of the initial conditions and the 
model, which are in the control forecast, 
it can be expected that the individual 
perturbed forecasts should be worse 
than the control. A typical ensemble 
average for a season (Figure 4) shows 
that, indeed, the individual perturbed 
forecasts have less skill than the 
unperturbed control. Nevertheless, the 
ensemble average is an improvement 
over the control, especially after the 
perturbations grow into a nonlinear 
regime that tends to filter out some of 
the errors. 
 
An alternative to the introduction of 
perturbations is the use of multiple 
systems developed independently at 
different centers. In principle, an 
ensemble of forecasts from different 
operational or research centers, each 
aiming to be the best and choosing 
different competitive approaches, should 
sample well the uncertainty in our 
knowledge of both the models and the 
initial conditions. It has long been known 
that the ensemble average of multiple 
center forecasts is significantly better 
than even the best individual forecasting 
system (e.g., Kalnay and Ham, 1989, 
Fritsch et al, 2000, Arribas et al, 2004). 
This has also been shown to be true for 
regional models (Hou et al, 2001). 
Krishnamurti (1999) introduced the 
concept of “superensemble”, using 
linear regression and past forecasts of 
different systems as predictors to 
minimize the ensemble average 
prediction errors. This results in 
remarkable forecast improvements (e.g., 
Fig. 5). This method is also called “poor 
person’s” method to reflect that it does 
not require running a forecasting 
system. 
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Fig. 4: Anomaly correlation of the ensembles during the winter of 
1997/1998 (data courtesy Jae Schemm, of NCEP). 
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Fig. 5: Mean typhoon track and intensity errors for the west Pacific, 1998-2000 
for several global models and a superensemble trained on the first half of the 
same season (Kumar et al, 2003). The forecasts are verified on the second half 
of the season. 
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f. Other methods 

 
This field is changing quickly, and 
improvements and changes to the 
operational systems are under 
development. For example, ECMWF 
has implemented changes in the length 
of the optimization period for the SVs, a 
combination of initial and final or 
evolved SVs (which are more similar to 
BVs), and the introduction of a 
stochastic element in the physical 
parameterizations, all of which 
contributed to improvements in the 
ensemble performance. NCEP is 
considering the implementation of the 
Ensemble Transform Kalman Filter 
(Bishop et al, 2001) to replace breeding 
(see also section 3). A recent 
comparison of the ensemble 
performance of the Canadian, US and 
ECMWF systems (Toth et al., 2004) 
suggests that the ECMWF ensembles 
based on singular vectors behave well 
beyond the optimization period, at which 
time the model advantages of the 
ECMWF system are also paramount. 
The NCEP bred vectors are better at 
shorter ranges, and the multiple 
analyses Canadian method also seems 
to perform well. 
 
 
3. Ensemble Kalman Filtering for 

data assimilation and ensemble 
forecasting. 

 
As indicated before (e.g., Ehrendorfer 
and Tribbia, 1997), “perfect” initial 
perturbations for ensemble forecasting 
should sample well the analysis errors. 
The ideal initial perturbations iδ x  
should have a covariance that 
represents the analysis error 
covarianceA :    
 

1

1
1

K
T

i i
iK

δ δ
=

≈
− ∑ x x A   (1.1).  

 
Until recently, the problem has been that 
we do not know A , which changes 
substantially from day to day and from 
region to region due to instabilities of the 
background flow. These instabilities, 
associated with the “errors of the day”, 
are not taken into account in data 
assimilation systems, except for 4D-Var 
and Kalman Filtering, methods that are 
computationally very expensive. 4D-Var 
has been implemented at ECMWF and 
at MeteoFrance (Rabier et al, 2000, 
Andersson et al, 2004), with some 
simplifications such as reducing the 
resolution of the analysis in order to 
reduce the computational cost (from 
~40km in the forecast model to ~120km 
in the assimilation model). Versions of 
4D-Var are also under development in 
other centers.  
 
The original formulations of Kalman 
Filtering (Kalman, 1960) and Extended 
Kalman Filtering (Ghil and Malanotte-
Rizzoli, 1991, Cohn, 1997) are 
prohibitive in practice because they 
would require the equivalent of N model 
integrations, where N is the number of 
degrees of freedom (d.o.f.) of the model, 
which is of the order of a 10^6 or more. 
Considerable work has been done on 
finding simplifying assumptions to 
reduce the cost of KF (e.g., Fisher, 
1998, Fisher et al, 2003), but so far they 
have been successful only under special 
circumstances. 
 
Ensemble Kalman Filtering (EnKF) was 
introduced by Evensen (1994) as a 
more efficient approach to Kalman 
Filtering. Recent developments suggest 
that in the near future it will be feasible 
to determine simultaneously the 
covariance matrix A and the ideal 
perturbations iδ x . These methods take 
advantage of the fact that the size of 
ensembles needed to represent the 
analysis and forecast error covariances 
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is of order O(100), much smaller than 
the number of degrees of freedom of the 
model. When EnKF is performed locally 
in physical space (Ott et al, 2002), the 
number is smaller than 100.  
 
There are two basic approaches to 
EnKF. In the first one (known as 
“perturbed observations”) an ensemble 
of data assimilations is carried out using 
the same observations to which random 
have been added. The ensemble is 
used to estimate the forecast error 
covariance needed in the Kalman Filter 
(Evensen, 1994, Houtekamer and 
Mitchell, 1998, Hamill and Snyder, 
2000). This approach has already been 
shown to be very competitive with the 
operational 3D-Var, an important 
milestone, given that 3D-Var has the 
benefit of years of improved 
developments (Houtekamer et al, 2004).  
 
The second approach is the class of 
square root filters (Tippett et al, 2002), 
and does not require perturbing the 
observations. Several groups have 
recently independently developed 
square root filters (Bishop et al, 2001, 
Anderson, 2001, Whitaker and Hamill, 
2002, Ott et al, 2002).  The ensemble 
forecasts are used to obtain a 
background error covariance at the time 
of the analysis. The full Kalman Filter 
equations and the new observations are 
then used to obtain the analysis 
increment (difference between the 
analysis and the forecast) and the 
analysis error covariance, all lying within 
the subspace of the forecast ensemble. 
After this is completed, the new initial 
analysis perturbations iδ x are obtained 
by solving the square root problem of 
equation (1.1), and the analysis cycle 
can continue.  
 
Several of the Ensemble Kalman Filters 
further reduce the computational cost by 
assimilating the observations one at a 
time, for the whole physical domain, a 

method known as sequential 
assimilation of observations. This is 
done using a localization of the error 
covariance in the horizontal and in the 
vertical, to avoid spurious long-distance 
correlations due to sampling. 
 
In the Local Ensemble Kalman Filter 
(LEKF) method (Ott et al, 2002, 2004, 
Szunyogh et al, 2004a, b), the 
Ensemble Kalman Filter problem is 
solved locally in physical space. For 
each grid point a local 3D volume of the 
order of 1000km by 1000km and a few 
vertical layers is used to perform the 
analysis. The Kalman Filter equations 
are solved exactly on this subspace 
locally spanned by the global ensemble 
members, using all the observations 
available within the volume. This 
localization in space results in a further 
reduction of the number of necessary 
ensemble members, so that matrix 
operations are done in a very low 
dimensional space. The analysis is 
carried out independently at each grid 
point, with essentially perfectly parallel 
computations. 
 
In order to visualize the main advantage 
of Ensemble Kalman Filtering (EnKF), 
we compare it with the 3D-Var approach 
currently operational in most centers, in 
which the analysis error covariance is 
estimated as an average over many 
cases. The top schematic Fig. 6 shows 
how the 3D-Var analysis maximizes the 
joint probability defined by the 
observations error covariance and the 
background error covariance, but does 
not know about “errors of the day”. The 
bottom schematic  shows how in the 
EnKF, the ensemble perturbations 
defines a low-dimensional subspace 
(10-100), and the KF analysis 
maximizes the joint probability within 
this subspace. Because all the 
computations are performed within this 
subspace, the rank of the matrices 
involved is low, and the Kalman Filter 
equations providing the analysis and 
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analysis error covariance are solved 
directly, not iteratively.  
 
Fig. 7 shows an example of EnKF and 
3D-Var using a quasi-geostrophic data 
assimilation system (Morss et al, 2000, 
Hamill and Snyder, 2000, Corazza et al, 
2002). The colors show the background 
(12 hour forecast) errors and the 
contours are the analysis corrections 
based on a given set of observations. 
The top panel corresponds to 3D-Var, 
using a background error covariance 
constant in time. Since the system does 
not know about the “errors of the day”, 
the corrections brought by the new 
observations tend to be isotropic. The 
bottom panel shows that the Local 
Ensemble Kalman Filter (Ott et al, 2004, 
Szunyogh et al, 2004b) is much more 
efficient in correcting the background 
errors with the same observations. The 
large improvements that the LEKF 
makes on the analysis are also apparent 
in the 3-day forecasts (not shown). 
 
Performing the EnKF locally in space 
substantially reduces the number of 
ensemble members required for the 

analysis, as shown with experiments 
done with the Lorenz (1996) model (Fig. 
8, from Ott et al, 2004). When 
performed globally, the number of 
ensemble members required for the 
EnKF to converge is proportional to the 
size of the model. When done locally, 
the number of ensemble members is 
reduced from 27 to 8, and does not 
increase with the size of the model. In 
addition, the analysis for different grid 
points can be carried out in parallel, 
since they are independent from each 
other. The advantage of a local analysis 
in reducing the size of the required 
ensemble is illustrated in Fig. 9, showing 
a schematic of an ensemble with three 
independent unstable regions. In each 
of the regions wave number 1 and 2 are 
unstable. This situation is reminiscent of 
the global atmosphere, containing 
regions where baroclinic instabilities can 
develop independently. From a local 
point of view, the first two perturbations 
are enough to represent all possible 
combinations of instabilities, whereas 
from a global point of view, the third 
perturbation and many others are 
linearly independent.  
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Background ~106-8 d.o.f. 
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Figure 6: Schematic of the analysis given the background forecast in a very large 
dimensional space, the background error covariance B (which in the case of 3D-Var is 
isotropic and constant in time), the vector of observations, in a very large dimensional 
space, with observations error covariance R. The analysis estimate of the true state of the 
atmosphere maximizes the joint probability distribution. Top: 3DVar. Bottom: EnKF, in 
which the ensemble forecast members define a low-dimensional subspace within which the 
analysis lies. 

R 
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Fig. 7: Simulation of data assimilation in a quasi-geostrophic model, assimilating potential 
vorticity observations at a particular day (June 15). The color represents the 12 hr forecast 
(background) error and the contours the analysis corrections. Top: 3D-Var. Bottom: Local 
Ensemble Kalman Filter. Figures courtesy of Matteo Corazza. 

  BBaacckkggrroouunndd  eerrrroorr  ((ccoolloorr))  aanndd  33DD--  VVaarr  aannaallyyssiiss  iinnccrreemmeenntt  ((ccoonnttoouurrss))  

BBaacckkggrroouunndd  eerrrroorr  ((ccoolloorr))  aanndd  LLEEKKFF  aannaallyyssiiss  iinnccrreemmeennttss  ((ccoonnttoouurrss))  
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Fig. 9: Schematic showing the advantages of performing a local rather than a global 
analysis. The domain in composed of three regions, each of which has instabilities 
with wave numbers 1 and 2, positive (solid) or negative(dashed). From a local point 
of view, the ensemble perturbations B1 and B2 are sufficient to represent all 
possible perturbations, whereas from a global point of view there are many 
independent perturbations. 

Fig. 10: Evolution of the LEKF analysis error in surface pressure in hPa as a 
function of assimilation step (in units of 6 hr). The rms error of the observations 
is shown by the dashed line. Observations are made at 11% of the grid points, 
and the model has T62 (about 200km) resolution. (From Szunyogh et al, this 
volume) 
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Fig. 11: Global rms analysis error for temperatures 
(left, oC) and zonal winds (right, m/sec). The dashed 
line is the rms of observational errors. From left to 
right, the following percentage of the grid points 
have “rawinsonde” data: 100% (red), 11% (blue), 
5% (green), 2% (purple). Since the grid resolution is 
about 200km, the blue is similar to the current 
rawinsonde density in the NH, and the purple to the 
SH and tropics. (From Szunyogh et al, this volume) 

Fig. 12: Example of the trace of the 6hr forecast error 
covariance matrix from the LEKF. It indicates where 
errors are large or small: regions in purple do not need 
new observations because the uncertainties are small. 
This information can be used in adaptive observations. 
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The LEKF has been tested in a “perfect 
model” mode, using the operational 
NCEP Global Forecasting System at 
T62/28levels resolution, with excellent 
results (Szunyogh et al, 2004b, this 
volume). Fig. 10 shows the evolution of 
the analysis of surface pressure, when 
about 11% of the grid points (separated 
by about 200km) have “rawinsonde” 
observations of surface pressure, and 
vertical profiles of temperature and 
winds, with random errors of 1hPa, 1K 
and 1m/s on each wind component. 
Similarly to the rapid reduction of global 
analysis rms error for surface pressure 
in this figure, the analysis errors for 
temperature and winds quickly converge 
to values much smaller than the 
observational errors (not shown). Fig. 11 
shows the vertical rms analysis errors 
for temperature and winds for several 
levels of observational density, from 
11% of the grid points, a density similar 
to that of the rawinsondes in the NH 
extratropics, to 2%, a density similar to 
rawinsondes in the SH. The ability of the 
LEKF to extract information through the 
knowledge of the “errors of the day” is 
very encouraging.  
 
Although experiments with real 
observations have not yet been 
completed, the LEKF shows great 
promise: 1) it is very efficient, due to its 
complete parallelism and need for 
relatively few ensemble members, 
allowing for a direct rather than iterative 
solution. It takes only 15 minutes to 
assimilate 1.5 million observations using 
40 ensemble members on a cluster of 
25 dual processor 2.8 GH PCs; 2) like 
all EnKF methods, LEKF does not 
require the creation and maintenance of 
the forecast model’s linear tangent or 
adjoint models, saving the very large 
effort that these models usually require. 
It also avoids many required 
simplifications, since the full nonlinear 
model is used for every operation. 
Similarly it does not require the 
Jacobian or the adjoint of the 

observation operator H, another 
important advantage (Takemasa 
Miyoshi, 2004, pers. communication). 3) 
It can be easily extended to 4 
dimensions, so that observations are 
assimilated correctly even if their time of 
observation falls in between analysis 
times (Sauer et al, 2004). This 4D LEKF 
is performed at a low additional 
computational cost using the ensemble 
to “transport” observational increments 
from the time of observation to the 
analysis time. This is important since 
experience indicates that the ability to 
assimilate observations at the right time 
is the main advantage of 4D-Var (rather 
than the evolution of the covariance). 
Another advantage of EnKF is the 
precise way it allows to perform 
adaptive observations: Fig. 12 shows an 
example of the trace of the background 
error covariance for a given day of the 
LEKF data assimilation simulation. This 
provides a clear estimate of the forecast 
uncertainty. This field, and the 
corresponding analysis uncertainty can 
be contrasted with the analysis 
increments as a “reality check”. The 
LEKF could eventually be computed 
alongside a satellite instrument, such as 
a wind lidar, and provide an indication of 
where there is a large analysis/forecast 
error and the instrument should dwell 
longer, and where observations are not 
currently needed. 
 
4. Summary and some remaining 
problems 
 
In summary, ideal initial ensemble 
perturbations should span effectively the 
analysis error covariance, as in equation 
(1.1). Until recently, this was an 
apparently impossible task, since the 
analysis error covariance was unknown. 
Methods such as breeding and singular 
vectors were devised as shortcuts to 
(1.1). However, Ensemble Kalman 
Filtering holds the promise of solving 
both the data assimilation and the 
ensemble forecasting problem 
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simultaneously, since both the lhs and 
the rhs of this equation are obtained 
during the EnKF assimilation. 
Furthermore, experience with the NCEP 
global model indicates that it is possible 
to carry out this advanced approach with 
present day supercomputers and 
without sacrificing the resolution of the 
analysis model. Additional advantages 
are that the linear tangent and adjoints 
codes of the forecast model or the 
observation operators are not needed, 
and that atmospheric data can be 
assimilated at the time they were 
observed. 
 
One of the most important remaining 
problems is that of model deficiencies, 
leading to bias in data assimilation (Dee 
and DaSilva, 1999), to systematic 
forecast errors, and to ensemble 
deficiencies such as indicated in Fig. 1b. 
Obviously, the ultimate solution to this 
problem lies in the improvement of the 
models (e.g., Simmons and 
Hollingsworth, 2002), but until that stage 
is reached, empirical approaches may 
be needed. 
 
A successful approach to start 
addressing the problem of errors and 
uncertainties in the model is the use of 
multiple models (Krishnamurti 1999, 
Hou et al, 2001, Fritsch, 2001, Kalnay 
and Ham, 1989). Other approaches 
(DelSole and Hou, 1999, Kaas et al, 
1999) rely on empirical statistical 
methods to modify the model and 
reduce forecast errors. In another 
method, known as “dressing”, random 
perturbations are added to the 
ensemble forecasts in order to 
reproduce the observed error 
covariance with an enhanced ensemble 
forecast spread (Roulston and Smith, 
2003, Wang and Bishop, 2004).  
 
It is possible that the Ensemble Kalman 
Filtering approach will also be able to  
efficiently minimize model errors by 
augmenting the space of model 

variables with a relatively small number 
of parameters associated with model 
errors, and using the observations to 
estimate the optimal value of their time-
varying coefficients (e.g., Anderson, 
2001). 
 
Another important problem in ensemble 
forecasting and data assimilation arises 
with the presence of coupled instabilities 
with a wide range of time scales. For 
example, atmospheric convection, 
baroclinic instabilities, and the ENSO 
instabilities of the coupled ocean-
atmosphere system are characterized 
by time scales of minutes, days and 
months respectively.  
 
This difficult problem of coupled 
systems (Timmerman, 2002) has been 
attacked by allowing fast, small 
amplitude modes to saturate (Toth and 
Kalnay, 1993, Aurell et al, 1996, Boffetta 
et al, 1998). Toth and Kalnay (1993, 
1996) proposed that breeding with 
rescaling amplitudes above the 
saturation level could be used to filter 
fast, small amplitude instabilities such 
as convection, without the need to 
eliminate or simplify their physical 
impact. Conversely, the choice of very 
small amplitudes for the rescaling can 
identify the bred vectors dominated by 
convection. This conjecture was 
validated by Lorenz (1996), and Peña 
and Kalnay (2004).  
 
Unfortunately, In the case of the coupled 
ocean-atmosphere system, the 
“atmospheric weather noise” has larger, 
not smaller amplitudes than the slow 
ENSO signals. Peña and Kalnay (2004) 
have shown that in this case one can 
still take advantage of the longer time 
scale of the slow modes. Breeding with 
rescaling at longer intervals can identify 
the slower coupled mode (unlike linear 
singular vectors or Lyapunov vectors, 
which are linear, and select the fastest 
mode). Cai et al (2002) performed 
breeding with the Cane-Zebiak model 
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and used the bred vectors for simulated 
ensemble forecasting and data 
assimilation experiments, with very 
encouraging results. Yang et al (2004) 
also obtained good results using the 
operational NAS NSIPP coupled GCM, 
and very similar results were obtained 
with an NCEP coupled GCM. These 
“perfect model” breeding experiments 
were done using a rescaling interval of 
one month and the Niño-3 SST 
anomalies as the rescaling norm. 
Results with the operational NSIPP 
coupled data assimilation system 
indicate that the growth rate and shape 
of coupled bred vectors in the Equatorial 
region is strongly related to the ENSO 
forecast error.  
 
These results suggest that in coupled 
systems that contain fast and slow 
instabilities, it may not be possible to 
use the same EnKF approach to do data 
assimilation for both the fast and the 
slow processes. As in breeding, it may 
be necessary to choose different time 
intervals for the analysis of fast and slow 
instabilities. 
 
  
5. Acknowledgements 
 
This work was supported by the W. M. 
Keck Foundation, by the NPOESS 
Integrated Program, and by the NOAA 
Office of Global Programs. I have been 
very fortunate to collaborate and learn 
with the members of the Chaos Group 
at the University of Maryland, Ming Cai 
and Zoltan Toth, and students (Matteo 
Corazza, Shu-Chih Yang, Malaquias 
Pena and Takemasa Miyoshi). 
 
 
6. References 
 
Ahlquist, Jon, 2000: Almost Anything 
can be a Singular Vector. 
www.met.fsu.edu/ftp/ahlquist/singvect.ps 
 

Anderson, J. L., 2001: An ensemble 
adjustment filter for data assimilation. 
Mon. Wea. Rev., 129, 2884-2903. 
 
Andersson, E, C. Cardinali, M. Fisher, 
E. Hólm, L. Isaksen, Y. Trémolet and A. 
Hollingsworth, 2004:  Developments in 
ECMWF’s 4d-Var system. Paper J.1. 
AMS preprints of the 20th Conference 
on Weather Analysis and 
Forecasting/16th Conference on 
Numerical Weather Prediction.  
 
Arribas, A.; Robertson, KB; Mylne, KR, 
2004: Test of a poor man's ensemble 
prediction system for short-range 
probability forecasting. Submitted 
 
Aurell E., Boffetta G., Crisanti A., 
Paladin G. and Vulpinai A., 1996: 
Predictability in systems with many 
degrees of freedom. Phys. Rev. E, 52, 
2337. 
 
Bishop, C. H., B. J. Etherton and S. J. 
Majumdar, 2001: Adaptive sampling 
with the ensemble transform Kalman 
filter. Part I: Theoretical aspects. Mon. 
Wea. Rev., 129, 420-436. 
 
Boffetta G., Crisanti A., Paparella F., 
Provenzale A. and Vulpiani A.,1998: 
Slow and fast dynamics in coupled 
systems: A time series analysis view. 
Physica D 116, 301-312. 
 
Buizza, R., 1997: Potential forecast skill 
of ensemble prediction, and spread and 
skill distributions of the ECMWF 
Ensemble Prediction System. Mon. 
Wea. Rev., 125, 99-119. 
 
Buizza, R., Petroliagis, T., Palmer, T.N., 
Barkmeijer, J.,Hamrud, M., 
Hollingsworth, A., Simmons, A., and 
Wedi, N., 1998: Impact of model 
resolution and ensemble size on the 
performance of an ensemble prediction 
system.Q.J.R. Meteorol. Soc., 124, 
1935-1960. 
 



 21 

Buizza, R., Miller, M., and Palmer, T.N., 
1999: Stochastic simulation of model 
uncertainties. Q.J.R. Meteorol. Soc., 
125, 2887-2908. 
 
Buizza, R., Barkmeijer, J., Palmer, 
T.N.,and Richardson, D.S., 2000: 
Current status and future developments 
of the ECMWF Ensemble Prediction 
System. Meteorol.Appl., 7, 163-175. 
 
Cai, M., E. Kalnay, Z. Toth, 2003: Bred 
Vectors of the Zebiak-Cane Model and 
Their Application to ENSO Predictions. 
J. Climate, 16, 40-56. 
 
Cohn, S. E., 1997: An introduction to 
estimation theory. J. Meteor. Soc. 
Japan, 75 (1B), 257-288. 
 
Cohn, S. E., and R. Todling., 1996: 
Approximate data assimilation schemes 
for stable and unstable dynamics. J. 
Met. Soc. Japan, 74, 63-75. 
 
Corazza, M., E. Kalnay, D. J. Patil, R. 
Morss, I. Szunyogh, B. R. Hunt, E. Ott, 
and M. Cai, 2003: Use of the breeding 
technique to estimate the structure of 
the analysis “errors of the day”. 
Nonlinear Processes in Geophysics, 10, 
233-243. 
 
Dee, Dick P., Arlindo M. da Silva, 1999: 
Maximum-Likelihood Estimation of 
Forecast and Observation Error 
Covariance Parameters. Part I: 
Methodology. Mon. Wea. Rev., 127, 
1822-1834.  
 
DelSole, T., and A. Y. Hou, 1999: 
Empirical Correction of a Dynamical 
Model. Part I: Fundamental Issues. 
Mon. Wea. Rev., 127, 2533-2545.  
 
Ebisuzaki, W., and E Kalnay., 1991: 
Ensemble experiments with a new 
lagged average forecasting scheme. 
WMO, Research activities in 
atmospheric and oceanic modeling. 
Report #15, pp6.31-6.32. [Available 

from WMO, C.P. No 2300, CH1211, 
Geneva, Switzerland]. See also Kalnay 
(2003), p. 234. 
 
Ehrendorfer, M. and J. J. Tribbia., 1997: 
Optimal prediction of forecast error 
covariances through singular vectors. J. 
Atmos. Sci., 54, 286-313. 
 
Ehrendorfer, M., 2003: The Liouville 
Equation in Atmospheric Predictability. 
In: Proceedings ECMWF Seminar on 
Predictability of  Weather and Climate, 9 
– 13 September 2002, pp. 47-81.  
 
Errico, R and D. Baumhefner, 1987: 
Predictability experiments using a high 
resolution limited area model. Mon.. 
Wea. Rev. 115, 488-504. 
 
Epstein, E. S., 1969: Stochastic -
dynamic prediction. Tellus, 21, 739-759. 
 
Evensen, G., 1994: Sequential data 
assimilation with a nonlinear 
quasigeostrophic model using Monte 
carlo methods to forecast error 
statistics. J. Geophys. Res. 99 (C5), 
10143-10162. 
 
Fisher, M, 1998: Development of a 
simplified Kalman Filter. ECMWF Tech 
Memo 260. 16pp. 
 
Fisher, M., L. Isaksen, M. Ehrendorfer, 
A. Beck and E. Andersson, 2003: A 
critical evaluation of the reduced-rank 
Kalman filter (RRKF) approach to flow-
dependent cycling of background error 
covariances. ECMWF Tech. Memo.  
 
Fritsch, J. M., J. Hilliker, J. Ross, R. L. 
Vislocky., 2000: Model Consensus. 
Wea. Forecasting, 15, 571–582. 
 
Ghil, M. and Malanotte-Rizzoli., 1991: 
Data Assimilation in meteorology and 
oceanography. Adv. Geophys., 33, 141-
266 
 



 22 

Hamill, Thomas M., Chris Snyder, 
Rebecca E. Morss., 2000: A 
Comparison of Probabilistic Forecasts 
from Bred, Singular-Vector, and 
Perturbed Observation Ensembles. 
Mon. Wea. Rev., 128, 1835-1851.  
 
Hamill, Thomas M., Chris Snyder., 
2000b: A Hybrid Ensemble Kalman 
Filter-3D Variational Analysis Scheme. 
Mon. Wea. Rev., 128, 2905-2919. 
 
Hoffman, R. N. and E. Kalnay., 1983: 
Lagged Average Forecasting, and 
Alternative to Monte Carlo Forecasting. 
Tellus, 35A, 100-118. 
 
Hollingsworth, A., 1980: An experiment 
in Monte Carlo forecasting. Workshop 
on Stochastic-Dynamic Forecasting. 
ECMWF, Shinfield Park, reading, UK, 
RG2 9AX, 65-85. 
 
Hou, D., E. Kalnay, and K.K. 
Droegemeier., 2001: Objective 
verification of the SAMEX '98 ensemble 
forecasts.  Mon. Wea. Rev., 129, 73-91. 
 
Houtekamer, P.L., L. Lefaivre and J. 
Derome, 1996: A system simulation 
approach to ensemble prediction. Mon. 
Wea. Rev., 124, 1225-1242. 
 
Houtekamer, P. L., and H. L. Mitchell., 
1998: Data assimilation using an 
ensemble Kalman filter technique. Mon. 
Wea. Rev., 126, 796-811. 
 
Houtekamer, Peter L., Herschel L. 
Mitchell, Gérard Pellerin, Mark Buehner, 
Martin Charron, Lubos Spacek, and 
Bjarne Hansen, 2004: Atmospheric data 
assimilation with the ensemble Kalman 
filter: Results with real observations. 
Monthly Weather Review , under review. 
 
Hunt, B.R., E. Kalnay, E.J. Kostelich, E. 
Ott, D.J. Patil, T. Sauer, I. Szunyogh, 
J.A. Yorke, A.V. Zimin, 2003: Four 
Dimensional Ensemble Kalman 
Filtering. Tellus, in print. 

 
Kaas, E., A. Guldberg, W. May and M. 
Decque., 1999: Using tendency errors to 
tune the parameterization of unresolved 
dynamical scale interactions in 
atmospheric general circulation models. 
Tellus, 51A, 612-629. 
 
Kalman, R., 1960: A new approach to 
linear filtering and prediction problems, 
Trans. ASME, Ser. D, J. Basic Eng. 82: 
35-45. 
 
Kalnay, Eugenia and M. Ham., 1989:  
Forecasting forecast skill in the Southern 
Hemisphere.  Preprints of the 3rd 
International Conference on Southern 
Hemisphere Meteorology and 
Oceanography, Buenos Aires , 13-17 
November 1989.  Boston, MA:  Amer. 
Meteor. Soc. 
 
Kalnay, E, 2003: Atmospheric modeling, 
datq assimilation and predictability. 
Cambridge University Press, 341 pp. 
 
Krishnamurti, TN, 1999: Improved 
weather and seasonal climate forecasts 
from multimodel superensemble. 
Science 285, 1548-1550. 
 
Kyouda, M. and S. Kusunoki, 2002:  
Ensemble Prediction System.  Outline of 
the Operational Numerical Weather 
Prediction at the Japan Meteorological 
Agency.  JMA,  59-63.   
 
Leith, C. E., 1974: Theoretical skill of 
Monte Carlo forecasts. Mon. Wea. Rev., 
102, 409-418. 
 
Lorenz, E. N., 1963: Deterministic 
nonperiodic flow. J. Atmos. Sci., 20, 
130-141. 
 
Lorenz, E. N., 1965: A study of the 
predictability of a 28-variable 
atmospheric model. Tellus, 17, 321-333. 
 
Lorenz, E. N., 1996: Predictability- A 
problem partly solved. Proceedings of 



 23 

the ECMMWF Seminar on Predictability. 
September 4-8, 1995, Reading, 
England, Vol 1, 1-18. 
 
Molteni, F. and T. N. Palmer, 1993: 
Predictability and finite-time instability of 
the northern winter circulation. Q. J. 
Meteorol. Soc., 119, 269-298.  
 
Molteni, F., R. Buizza, T. N. Palmer, and 
T. Petroliagis, 1996: The ECMWF 
ensemble prediction system: 
Methodology and validation. Quart. J. 
Roy. Meteor. Soc., 122, 73-119. 
 
Morss, R. E., 1999: Adaptative 
observations: Idealized sampling 
strategies for improving numerical 
weather prediction., Ph. D. thesis, 
Massachusetts Institute of Technology, 
225 pp. 
 
Ott, E., B. R. Hunt, I. Szunyogh, M. 
Corazza, E.Kalnay, D. J. Patil, J. A. 
Yorke, A. V. Zimin, and E. Kostelich, 
2002: Exploiting local low dimensionality 
of the atmospheric dynamics for efficient 
Kalman filtering. 
http://arxiv.org/abs/physics/0203058. 
 
Ott, E., B. R. Hunt, I. Szunyogh, A.V. 
Zimin, E.J. Kostelich, M. Corazza, E. 
Kalnay, D.J. Patil, J.A. Yorke, 2002: A 
local ensemble Kalman filter for 
atmospheric data assimilation. Tellus, in 
press. 
 
Palmer, T. N., R. Gelaro, J. Barkmeijer 
and R. Buizza., 1998: Singular vectors, 
metrics and adaptive observations. J. 
Atmos. Sci, 55, 633-653. 
 
Patil, D. J. S., B. R. Hunt, E. Kalnay, J. 
A. Yorke, and E. Ott., 2001: Local Low 
Dimensionality of Atmospheric 
Dynamics. Phys. Rev. Lett., 86, 5878. 
 
Peña, Malaquias and Eugenia Kalnay, 
2004: Separating fast and slow modes 
in coupled chaotic systems. Nonlinear 
Processes in Physics, in press. 

 
Rabier, F., H. Järvinen, E. Klinker, J.F. 
Mahfouf and A. Simmons, 2000: The 
ECMWF operational implementation of 
four dimensional variational assimilation. 
Part I: experimental results with 
simplified physics. Q. J. R. Meteorol. 
Soc. 126, 1143—1170.  
 
Roulston, M. S. and L. A. Smith, 2003: 
Combining dynamical and statistical 
ensembles. Tellus, 55A, 16-30. 
 
Sauer, T., B. R. Hunt, J. A. Yorke, A. V. 
Zimin, E., Ott, E. J. Kostelich, I., 
Szunyogh, G. Gyarmati, E. Kalnay, D. J. 
Patil, 2004a: 4D Ensemble Kalman 
filtering for assimilation of asynchronous 
observations. Paper J5.4 in AMS 
preprints of the 20th Conference on 
Weather Analysis and Forecasting/16th 
Conference on Numerical Weather 
Prediction. 
 
Simmons, A. J. and A. Hollingsworth, 
2002: Some aspects of the improvement 
in skill of numerical weather prediction. 
Q. J. R. Meteorol. Soc., 128, 647—678.  
 
Stensrud, D. J., J.-W. Bao, and T. T. 
Warner, 2000: Using initial condition and 
model physics perturbations in short-
range ensembles. Mon. Wea. Rev., 128, 
2077–2107. 
 
Szunyogh, Istvan, Eric J. Kostelich, 
Gyorgyi Gyarmati, Brian R. Hunt, 
Edward Ott, Aleksey V. Zimin, Eugenia 
Kalnay, Dhanurjay Patil, and James A. 
Yorke, 2004a: A Local Ensemble 
Kalman Filter for the NCEP GFS Model. 
Paper J2.4 in AMS preprints of the 20th 
Conference on Weather Analysis and 
Forecasting/16th Conference on 
Numerical Weather Prediction. Seattle, 
Washington, 11-15 January 2004 
 
Szunyogh, Istvan, Eric J. Kostelich, 
Gyorgyi Gyarmati, Brian R. Hunt, 
Edward Ott, Eugenia Kalnay, Dhanurjay 
Patil, and James A. Yorke, 2004b: 



 24 

Development of the Local Ensemble 
Kalman Filter at the University of 
Maryland. Extended abstracts of the 
Symposium on the 50th Anniversary of 
Operational Numerical Weather 
Prediction (this volume). 
 
Timmermann, Axel, 2002: The 
predictability of coupled phenomena. 
Proceedings of the seminar on 
predictability of weather and climate, 
held at ECMWF on 9-13 September, 
2002, Reading, England. 
 
Tippett, M. K., J. L. Anderson, C. H. 
Bishop, T. M. Hamill, and J. S. Whitaker, 
2002: Ensemble square root filters. 
Mon. Wea. Rev., 131, 1485-1490. 
 
Toth, Z. and E. Kalnay., 1993: 
Ensemble forecasting at NMC: the 
generation of perturbations.  Bull. Amer. 
Meteor. Soc., 74, 2317-2330. 
 
Toth, Zoltan and Eugenia Kalnay, 1996: 
Climate ensemble forecasts: How to 
create them? Idojaras, 100, 43–52. 
 
Toth, Zoltan and Eugenia Kalnay., 1997: 
Ensemble Forecasting at NCEP: the 
breeding method,. Mon. Wea. Rev., 
125, 3297-3318. 
 
Toth, Z., R Buizza, and P Houtekamer, 
2003: Global Ensemble Forecasting. 
Geophysical Research Abstracts, 5, 
11374. 
  
Tracton, M. S., and E. Kalnay., 1993: 
Ensemble forecasting at NMC: Practical 
aspects. Wea. Forecasting, 8, 379-398. 
 
Wang, X., and C. H. Bishop, 2003: A 
comparison of breeding and ensemble 
transform Kalman filter ensemble 
forecast schemes. J. Atmos. Sci., 
60,1140-1158. 
? 
Wang, Xuguang and Craig H. Bishop, 
2004: Ensemble Augmentation With A 

New Dressing Kernel. AMS, Seattle, 
January 2004. 
 
Whitaker, J. S., and T. H. Hamill, 2002: 
Ensemble Data Assimilation without 
perturbed observations. Mon. Wea. 
Rev., 130, 1913-1924. 
 
Yang, Shu-Chih, Ming Cai, Malaquías 
Peña1, and Eugenia Kalnay, 2004: 
Initialization of Unstable Coupled 
Systems by Breeding Ensembles. Paper 
J13.12 in preprints of the AMS  
Symposium on Forecasting Weather 
and Climate in the Atmosphere and 
Oceans.  
 


