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We honor Ed Lorenz (1917-2008)We honor Ed Lorenz (1917-2008)
who started the whole newwho started the whole new

science of predictabilityscience of predictability



Ed Lorenz (1917-2008)



Ed Lorenz (1917-2008)



ca. 1974



“Well, we cannot live forever…”

(Lorenz to a friend, 2008)
2006



Chaos in Numerical Weather Prediction
and how we fight it

• Lorenz (1963) introduced the concept of “chaos” in meteorology. (Yorke,
1975, coined the name chaos)
– Even with a perfect model and perfect initial conditions we cannot forecast

beyond two weeks: butterfly effect
– In 1963 this was only of academic interest: forecasts were useless beyond a day

or two anyway!
– Now we exploit “chaos” with ensemble forecasts and routinely produce skillful

forecasts beyond a week
– The El Niño coupled ocean-atmosphere instabilities are allowing one-year

forecasts of climate anomalies
• “Breeding” is a simple method to explore and fight chaos

– Undergraduate interns found that with breeding they could easily predict Lorenz
regime changes and their duration

• Chaos-Weather research led to the UMD Local Ensemble Transform
Kalman Filter (LETKF, Hunt et al., 2007)



Central theorem of chaos (Lorenz, 1960s):Central theorem of chaos (Lorenz, 1960s):
a) Unstable systems have finite predictability (chaos)
b) Stable systems are infinitely predictable

TRUTH TRUTH

FORECAST

FORECAST

a) Unstable dynamical system b) Stable dynamical system



8-day forecast and verification

Almost all the centers of low and high pressure are very well
predicted after 8 days!

Need good models, good observations, good data assimilation
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8-day forecast and verification

Almost all the centers of low and high pressure are very well
predicted after 8 days!

Over Southern California forecast has a cut-off low, not a trough
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8-day forecast and verification

Southern California: winds are from the wrong direction!



Fires in California (2003)

Santa Ana
winds:
locally
wrong
prediction
(8 days in
advance!)



Deterministic Chaos (what!?)Deterministic Chaos (what!?)

In 1951 Charney indicated that forecast
skill would break down, but he attributed
it to model errors and errors in the initial
conditions…

In the 1960’s the forecasts were skillful for
only one day or so.

Statistical prediction was equal or better
than dynamical predictions,

Like it has been until now for ENSO
predictions!



Lorenz wanted to show that statistical prediction could
not match prediction with a nonlinear model for the
Tokyo (1960) NWP conference

So, he tried to find a model that was not periodic
(otherwise stats would win!)

He programmed in machine language on a 4K memory,
60 ops/sec Royal McBee computer

He developed a low-order model (12 d.o.f) and
changed the parameters and eventually found a
nonperiodic solution

Printed results with 3 significant digits (plenty!)
Tried to reproduce results, went for a coffee and

OOPS!



Lorenz introduced an infinitesimal perturbation in the
initial conditions, and the two solutions diverged



Lorenz (1963) discovered that even with a
perfect model and almost  perfect initial
conditions the forecast loses all skill in a finite
time interval: “A butterfly in Brazil can change
the forecast in Texas after one or two weeks”.

In the 1960’s this was only of academic
interest: forecasts were useless in two days

Now, we are getting closer to the 2 week limit
of predictability, and we have to extract the
maximum information



Central theorem of chaos (Lorenz, 1960s):Central theorem of chaos (Lorenz, 1960s):
a) Unstable systems have finite predictability (chaos)
b) Stable systems are infinitely predictable

TRUTH TRUTH

FORECAST

FORECAST

a) Unstable dynamical system b) Stable dynamical system



A simple chaotic model:
Lorenz (1963) 3-variable model

Has two regimes and the transition between them is
chaotic
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Example: Lorenz (1963) model, y(t)

Time steps

warm

cold



Definition of Deterministic Chaos
(Lorenz, March 2006, 89 yrs)

WHEN THE PRESENT DETERMINES

THE FUTURE

BUT

THE APPROXIMATE PRESENT DOES NOT

APPROXIMATELY DETERMINE THE FUTURE



We introduce an infinitesimal perturbation
in the initial conditions and soon the

forecast loses all skill



A “ball” of perturbed initial conditions is followed with time. Errors
in the initial conditions that are unstable (with “errors of the day”)

grow much faster than if they are stable

Predictability depends on the initial conditions (Palmer, 2002):

stable unstableless stable



Fig. 6.2: Schematic of the evolution of a small spherical volume in
phase space in a bounded dissipative system.

a) Initial volume: a small
hypersphere

b) Linear phase: a hyper
ellipsoid

c) Nonlinear phase: folding
needs to take place in order for
the solution to stay within the
bounds

d) Asymptotic evolution to a
strange attractor of zero
volume and fractal structure.
All predictability is lost



When there is an instability, all perturbations converge towards
the fastest growing perturbation (leading Lyapunov Vector). The

LLV is computed applying the linear tangent model on each
perturbation of the nonlinear trajectory

 
Fig. 6.7: Schematic of how all perturbations will converge 
towards the leading Local Lyapunov Vector 
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A “ball” of perturbed initial conditions is followed with time. Errors
in the initial conditions that are unstable (with “errors of the day”)

grow much faster than if they are stable

Predictability depends on the initial conditions (Palmer, 2002):

stable unstableless stable



“Breeding”: Grow naturally unstable
perturbations, similar to Lyapunov vectors

but using the nonlinear model twice
• Breeding is simply running the nonlinear model a second time,

starting from perturbed initial conditions, rescaling the
perturbation periodically

time

Initial random
perturbation

Bred Vectors ~LLVs

Control forecast (without perturbation)

Forecast values



• We gave a team of 4 RISE intern undergraduates a
problem: Play with the famous Lorenz (1963) model,
and explore its predictability using “breeding” (Toth
and Kalnay 1993), a very simple method to study the
growth of errors.

• We told them: “Imagine that you are forecasters that
live in the Lorenz ‘attractor’. Everybody living in the
attractor knows that there are two weather regimes,
the ‘Warm’ and ‘Cold’ regimes. But what the public
needs to know is when will the change of regimes
take place, and how long are they going to last!!”.

• “Can you find a forecasting rule to alert the public that
there is an imminent change of regime?”

An 8 week RISE project for undergraduate women (2002)An 8 week RISE project for undergraduate women (2002)



Breeding: simply running the nonlinear model a
second time, from perturbed initial conditions.
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x xLocal breeding growth rate:

time

Initial random
perturbation

Bred Vectors ~LLVs

Unperturbed control forecast

Forecast values

Only two tuning parameters: rescaling
amplitude and rescaling interval



4 summer interns computed the Lorenz Bred Vector
growth rate: red means large BV growth,

blue means perturbations decay

Time steps

warm

cold



In the 3-variable Lorenz (1963) model we used
breeding

to estimate the local growth of perturbations:

With just a single breeding cycle, we can estimate the stability
of the whole attractor (Evans et al, 2004)

Bred Vector Growth:
red, high growth;
yellow, medium;
green, low growth;
blue, decay



This looked promising, so we asked the interns to
“paint” x(t) with the bred vector growth, and the result

almost made me faint:



This looked promising, so we asked the interns to
“paint” x(t) with the bred vector growth, and the result

almost made me faint:

Growth rate of
bred vectors:

A * indicates
fast growth
(>1.8 in 8 steps)



Forecasting rules for the Lorenz model:

“warm”

“cold”

Growth rate of
bred vectors:

A * indicates
fast growth
(>1.8 in 8 steps)

X

Regime change:The presence of red stars (fast BV growth) indicates that the next
orbit will be the last one in the present regime.

Regime duration: One or two red stars, next regime will be short. Several red stars:
the next regime will be long lasting.

These rules surprised Lorenz himself!



These are very robust rules, with skill scores > 95%



Summary for this partSummary for this part
and rest of the talkand rest of the talk

• Breeding is a simple generalization of Lyapunov vectors, for finite time,
finite amplitude: simply run the model twice, take the difference and
rescale…

• Breeding in the Lorenz (1963) model gives accurate forecasting rules for
the “chaotic” change of regime and duration of the next regime that
surprised Lorenz!

Rest of the talks 1 and 3:
• The same ideas can be applied to fight chaos in the full forecast models

that have dimension 10-100 million rather than just 3!
• In the atmosphere, in the ocean, and in coupled systems
• We can also use breeding to understand the physical mechanisms of the

instabilities that create chaos



An ensemble forecast starts from initial perturbations to the analysis…
In a good ensemble “truth” looks like a member of the ensemble
The initial perturbations should reflect the analysis “errors of the day”

CONTROL

TRUTH

AVERAGE

POSITIVE
PERTURBATION

NEGATIVE
PERTURBATION

Good ensemble
C

P-

Truth

P+

A

Bad ensemble

A major tool to A major tool to ““fight chaosfight chaos”” is is
ensemble forecastingensemble forecasting



In ensemble forecasting we need to represent the
uncertainty: spread or “spaghetti plots”



Breeding: running the nonlinear model again from
perturbed initial conditions: introduced by Toth and

Kalnay (1993) to create initial ensemble perturbations
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Example of a very predictable 6-day forecast, with “errors of the day”

The bred vectors are the growing 
atmospheric perturbations: “errors of the day”

L



The errors of the day are The errors of the day are instabilities of theinstabilities of the
background flow.background flow. At the same verification time, At the same verification time,
the forecast uncertainties have the forecast uncertainties have the same shapethe same shape

4-day forecast 
verifying on 
the same day



The errors of the day are The errors of the day are instabilities of theinstabilities of the
background flow.background flow. At the same verification time, At the same verification time,
the forecast uncertainties have the forecast uncertainties have the same shapethe same shape

4 days and 6 days ensemble forecasts verifying on 15 Nov 1995



2.5 day forecast verifying
on 95/10/21.

Note that the bred vectors 
(difference between the 
forecasts) lie on a 1-D space

Strong instabilities of the background tend to haveStrong instabilities of the background tend to have
simple shapes (perturbations lie in a low-dimensionalsimple shapes (perturbations lie in a low-dimensional

subspace of bred vectors)subspace of bred vectors)

This simplicity (local low-dimensionality, Patil et al.
2000) inspired the Local Ensemble Transform Kalman

Filter (Ott et al. 2004, Hunt et al., 2007)



5-day forecast “spaghetti” plot

•The ensemble is able to
separate the areas that are
predictable from the ones that
are chaotic.
• Even the chaotic ones have
local low-dimensionality
• This is what makes possible
to do Ensemble Kalman Filter
with 50 ensemble members
(not a million!) with good
results



15-day forecast “spaghetti” plot: Chaos!

After 15 days, Lorenz’
chaos has won!
No predictability left in
the 15-day forecast
(except in East Asia)



Summary for this partSummary for this part
• Lorenz discovered the finite limit of

predictability
• Predictability depends on the stability of the

atmosphere: the errors of the day (or local
Lyapunov vectors) that make model errors
grow

• Ensemble forecasts allow us to estimate the
predictability in space and in time



Elements of EnsembleElements of Ensemble
ForecastingForecasting

• It used to be that a single control forecast was
integrated from the analysis (initial conditions)

• In ensemble forecasting several forecasts are run
from slightly perturbed initial conditions (or with
different models)

• The spread among ensemble members gives
information about the forecast errors

• How to create slightly perturbed initial conditions?
• Basically

– Singular Vectors
– Bred Vectors
– Ensembles of data assimilation (perturbed obs. EnKF)



Summary for Lecture 1Summary for Lecture 1

• Lorenz discovered deterministic chaos
• Instabilities (“errors of the day”) make the

atmosphere unpredictable beyond 2 weeks
• All perturbations evolve towards the most

unstable (local Lyapunov vectors)
• Bred vectors are a finite time, nonlinear

extension of LVs
• With ensemble forecasting, we fight chaos by

estimating the local predictability in space and
in time



An ensemble forecast starts from initial perturbations to the analysis…
In a good ensemble “truth” looks like a member of the ensemble
The initial perturbations should reflect the analysis “errors of the day”
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Components of ensemble forecastsComponents of ensemble forecasts



Data assimilation and ensembleData assimilation and ensemble
forecasting in a coupled ocean-forecasting in a coupled ocean-

atmosphere systematmosphere system
• A coupled ocean-atmosphere system contains growing

instabilities with many different time scales
– The problem is to isolate the slow, coupled instability related to the

ENSO variability.
• Results from breeding in the Zebiak and Cane model (Cai et al.,

2002) demonstrated that
– The dominant bred mode is the slow growing instability associated

with ENSO
– The breeding method has potential impact on ENSO forecast skill,

including postponing the error growth in the “spring barrier”.
• Results from breeding in a coupled Lorenz model show that

using amplitude and rescaling intervals chosen based on time
scales, breeding can be used to separate slow and fast
solutions in a coupled system.



AMPLITUDE
(% of climate
variance)

1%

10%

100%

1hour 1 day 1 week

BAROCLINIC (WEATHER)
MODES

CONVECTIVE MODES

ANALYSIS ERRORS

Nonlinear saturation allows filtering unwanted fast, small
amplitude, growing instabilities like convection (Toth and
Kalnay, 1993)



Atmospheric
perturbation
amplitude

time1 month

Weather “noise”

ENSO

In the case of coupled ocean-atmosphere modes, we cannot 
take advantage of the small amplitude of the “weather noise”! 
We can only use the fact that the coupled ocean modes are slower…
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We coupled a slow and a fast
Lorenz (1963) 3-variable model



“slow ocean” “tropical atmosphere”

Then we added an extratropical atmosphere coupled with the tropics

Now we test the fully coupled “ENSO-like” system,
with similar amplitudes between “slow signal” and “fast noise”



Coupled fast and slow Lorenz 3-variable models
(Peña and Kalnay, 2004)

Tropical ocean

Tropical atmosphere

Extratropical atmosphere

slow

fast

Coupling strength



Breeding in a coupled Lorenz model

Short rescaling interval (5 steps)
and small amplitude: fast modes

Long rescaling interval (50 steps)
and large amplitude: ENSO modes

The linear approaches (LV, SV) cannot capture the slow ENSO signal



From Lorenz coupled models:

• In coupled fast/slow models, we can do breeding to
isolate the slow modes

• We have to choose a slow variable and a long
interval for the rescaling

• This is true for nonlinear approaches (e.g., EnKF) but
not for linear approaches (e.g., SVs, LVs)

• This has been applied to ENSO coupled instabilities:
– Cane-Zebiak model (Cai et al, 2003)
– NASA and NCEP fully coupled GCMs (Yang et al, 2006)
– NASA operational system with real observations (Yang

et al. 2008)



Examples of breeding in a coupled ocean-
atmosphere system with coupled instabilities

• In coupled fast/slow models, we can do breeding
to isolate the slow modes

• We have to choose a slow variable and a long
interval for the rescaling

• This identifies coupled instabilities. 
• Examples

– Madden-Julian Bred Vectors
– NASA operational system with real observations (Yang

et al 2007, MWR)
– Ocean instabilities and their physical mechanisms

(Hoffman et al, 2008, with thanks to Istvan Szunyogh)



Chikamoto et al (2007, GRL): They found the Madden-Julian
instabilities BV by choosing an appropriate rescaling amplitude

(only within the tropics)



Finding the shape of the errors in El Niño
forecasts to improve data assimilation

• Bred vectors:
– Differences between the control forecast and

perturbed runs:
– Should show the shape of growing errors

• Advantages
– Low computational cost (two runs)
– Capture coupled instabilities
– Improve data assimilation



Before 97’ El Niño,
error is located in W.
Pacific and near coast
region

During development,
error shifts to lower
levels of C. Pacific.

At mature stage, error
shifts further east and
it is smallest near the
coast.

After the event, error
is located  mostly in E.
Pacific.

Niño3 index Yang (2005): Vertical cross-section at Equator for 
BV (contours) and 1 month forecast error (color)



Yang: Impact of forecasts of El Niño with 3 pairs of
BVs: November and May restarts (1993-2002)

Nov May

May Nov

Start from
cold season

Start from
warm season

Forecast month

Forecast month

BV ensemble
improves upon
the control
“Spring barrier”
loss of skill

Control

BV ensemble mean



Yang et al., 2006: Bred Vectors (contours) overlay Tropical
Instability waves (SST): making them grow and break!

model yr. JUN2024


