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Abstract 

 

The impacts of the assimilated observations on the 24 hour forecasts are estimated with 

the ensemble-based method proposed by Kalnay et al. using the ensemble Kalman filter 

(EnKF). This method estimates the relative impact of observations in data assimilation 

similarly to the adjoint-based method proposed by Langland and Baker but without using 

the adjoint model. It is implemented with the National Centers for Environmental 

Prediction (NCEP) Global Forecasting System (GFS) EnKF which has been used as a 

part of operational global data assimilation system at NCEP since May 2012. The result 

quantifies the overall positive impacts of the assimilated observations and the relative 

importance of the satellite radiance observations compared to other types of observations 

especially for the moisture variables. The method is also used to identify the cause of 

local forecast failure cases in the 24 hr forecasts. Data denial experiments of the 

observations identified as producing a negative impact observation sets reduce the 

forecast errors as estimated, validating the impact estimate.  
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1.    Introduction  

Estimating the observation impacts within the numerical weather prediction (NWP) 

system is an important step to improve the performance of the operational NWP. There 

have been substantial efforts to estimate the impact of the assimilated observations by 

carrying out data-denial experiments or the Observing System Experiments (OSE, e.g. 

Bouttier and Kelly 2001, Zapotocny et al. 2007, 2008). OSEs provide the nonlinear 

impacts on the accuracy of the forecasts with and without a certain set of observations. 

However, carrying out OSEs with various observation datasets is computationally very 

expensive. As an alternative, Langland and Baker (2004) proposed an approach to 

estimate the observation impacts on the forecasts without performing OSEs using the 

adjoint sensitivity analysis. This forecast sensitivity to observations approach can be 

performed with relatively low computational cost and provides the impact of each 

assimilated observations in a linear sense. It has been applied to several operational data 

assimilation systems and has been proven to be effective in estimating the observation 

impacts on the short-range forecasts and the performance of the data assimilation system 

(Zhu and Gelaro 2008, Cardinali 2009). However, it requires the adjoint operators of the 

forecast model and the data assimilation system. Liu and Kalnay (2008) and Li et al. 

(2010) proposed a similar method using the ensemble Kalman filter (EnKF) without the 

adjoint model. The ensemble-based approach is convenient for estimating the observation 

impacts in the ensemble-based data assimilation system since it uses the ensemble 

perturbations instead of the adjoint operators. Kunii et al. (2012) successfully applied the 

ensemble-based approach to estimate the impact of real observations with the Weather 

Research and Forecasting model using the Local Ensemble Transform Kalman Filter 
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(LETKF, Hunt et al. 2007) and estimated the impact of various observations on the 

Typhoon forecast. Kalnay et al. (2012) proposed an improved formulation of the Liu and 

Kalnay (2008) algorithm. It is simpler, more accurate (or makes fewer approximations), 

and can be applied on other EnKF and not just the LETKF. 

In this study, observation impact estimates within the EnKF have been 

investigated. The formulation of Kalnay et al. (2012) was applied to the near operational 

global data assimilation settings using real observations. In this study it was applied to 

the NCEP Global Forecasting System EnKF (GFS/EnKF, Whitaker et al. 2008) with the 

observations assimilated in the NCEP operational global data assimilation system. The 

result provides the relative impacts of each observation type in the operational NWP 

context. We show that it can also be used as an effective tool to investigate the origin of 

local forecast failure cases that sometimes degrade the operational forecasts substantially. 

Section 2 introduces the formulation of the ensemble-based approach used in this study. 

Following section 3 with the experimental settings, section 4 presents the overall results 

and section 5 focuses on the evaluation of the origin of local forecast failures. Finally, 

section 6 provides a summary and discussion. 

2.    Ensemble-based formulation 

We will estimate the forecast error reduction due to the assimilation of each observation. 

The forecasts from the analysis ( f

tx ) and from the first guess ( xt

g ) are verified against the 

analysis or any other values close to the truth ( x t

truth ) at forecast time t. We define the 

forecast errors as, 

 truth
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The overbars represent the ensemble mean and can be disregarded for the deterministic 

analysis and forecast. Following Langland and Baker (2004), forecast error reduction is 

defined as  
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where C is the norm operator, defining the measure of the forecast error. The forecast 

error difference can be described as 
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where x0

a  and x0

g  are the analysis and the first guess at time 0. M and K represent 

tangent linear forecast model and Kalman gain matrix. Here, ( )g

oo H 0xyy −≡δ , where 

oy  and H are the observation vector and nonlinear observation operator, is known as the 

vector of innovations. The forecast time t is assumed to be short, so that we can apply the 

tangent linear model. From (2) and (3), the forecast error reduction from the assimilation 

of observations is expressed as 
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This equation is used for the observation impact estimates based on the adjoint 

sensitivity. On the other hand, Kalman gain in the EnKF is 

 1

00
1

1 −

−
= RHXXK TTaa

K
, (5) 

where K, X0

a , and R are the ensemble size, the matrix of analysis perturbations and the 

observation error covariance, respectively. (4) can also be described as 
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This equation is used for this study to estimate observation impacts. It is simpler and 

computationally more efficient than the original formulation of Liu and Kalnay (2008) 

and Li et al. (2010) and also can be easily applied to deterministic EnKFs other than the 

LETKF (Kalnay et al. 2012). 

As the EnKF requires covariance localization when the number of degrees of 

freedom is much larger than the number of the ensemble members, the ensemble-based 

observation impact estimates also require localization in practical applications. Following 

Kalnay et al. (2012), we achieve this by computing the impact of l th observation on 

forecast at j th grid point as 
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where ρ j
 is the localization function at grid point j for the l th observation. The 

localization function in (7) may be different from the one used in the EnKF analysis 

especially when the impact of the observations on the forecast moves during the forecast 

away from the initial location. 

3.    Experimental settings 

Equation (7) is applied to the NCEP GFS/EnKF analysis and forecast ensembles. The 

horizontal resolution of the GFS in this experiment is T254 (about 55 km) and it has 64 

sigma-p hybrid vertical layers up to 0.3 hPa. The serial Ensemble Square Root Filter 

(EnSRF, Whitaker and Hamill 2002) is applied for the EnKF analysis. EnKF employs 80 
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members and assimilates observations every 6 hours. The use of the ensembles allows 

one to measure the forecast error with both dry and moist total energy norm (Ehrendorfer 

et al. 1999) in the global domain and the verifications are made against its own analysis. 
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Here ′u , ′v , ′T , ′ps
 and ′q  are the forecast errors of zonal wind, meridional wind, 

temperature, surface pressure and specific humidity, respectively. Cp, Rd and L are the 

specific heat at constant pressure, gas constant of dry air and latent heat of condensation 

per unit mass, respectively. Tr and Pr are reference temperature and pressure, respectively 

(we used 280 K and 10
5
 Pa). wq is 1 for moist total energy and 0 for dry total energy. 

Evaluation forecast time is chosen to be 24 hours. 

The fifth order polynomial of Gaspari and Cohn (1999) is used as the covariance 

localization function with a cutoff length (where localization function becomes 0) at 2.0 

scale heights for the vertical and 2000 km for the horizontal (corresponding to about 0.8 

scale heights and 800 km with e-folding scales). 

The localization scale for observation impact estimate is chosen to be the same as 

the EnKF analysis update. Since observation impacts evolve through the forecast, the 

localization function also needs to evolve. We tested both a fixed localization function as 

in the EnKF analysis and a mobile localization function with the center position moving 

with 0.75 times the average of analysis and forecast horizontal wind at each vertical level. 

Multiplicative inflation (Anderson, 2001) proportional to the spread reduction by analysis 

update is applied so that the amount of spread reduction becomes 15 % of the original 
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reduction. Also additive inflation using 0.32 times of randomly selected 24 and 48 hour 

forecast lagged differences is applied. These are the same settings as the EnKF analysis 

part of the NCEP operational global system. The assimilation cycles are performed from 

00 UTC, January 1, 2012 to 18 UTC, February 8, 2012. The first week is discarded as 

operational assimilation system is still in spin-up mode and the last 1 month (from 

January 8 to February 7, 4 cycles per day, 124 cases) is used for the observation impact 

estimates. Forecast errors are verified against their own analysis. All observation types 

used in the NCEP operational global analysis (operational since May 2012, about 3.3 

million observations in each analysis) except for satellite-based precipitation rate 

retrievals from TRMM/TMI are assimilated. Table 1 shows the observation types 

assimilated in this experiment. The same satellite radiance bias correction coefficients as 

the hybrid EnKF / 3DVAR experiment (the operational global data assimilation system 

since May 2012) are applied. 

4.    Results 

a. The effect of a moving localization 

First, the effect of localization on the observation impact estimates is examined. Figure 1 

shows the time series of the total forecast error reduction. The actual forecast error 

reduction is verified against its own analysis. If the impact estimate was perfect, it would 

be identical with the actual error reduction. The error reduction is generally larger at 00 

and 12 UTC than at 06 and 18 UTC because more conventional observations are 

available at 00 and 12 UTC. Observation impact estimates with the moving localization 

capture better the diurnal cycles than that with the fixed localization. Correlations of total 
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impact estimates to the true forecast error reduction are 0.318 with the fixed localization 

and 0.730 with the moving localization. The average impact estimation is larger for the 

moving localization. As suggested by Kalnay et al. (2012), special attention is required 

on the localization on the ensemble-based observation impact estimates. Although our 

approach is very simple and may not be optimal, the moving localization applied in this 

experiment works well in our real data assimilation problem. In the following sections, 

only the results with the moving localization are shown. 

b. Estimated impacts of each observation type 

Figure 2a shows the average 24 hour forecast error reduction estimates with the moist 

total energy contributed from each observation type during the experiment. Negative 

values correspond to the reduction of the forecast error due to the assimilation of the 

observations. All observation types except Ozone retrievals are estimated to reduce the 

forecast error on average in this period. In the EnKF, ozone observations are assimilated 

with a univariate covariance, i.e., only the ozone analysis is changed, with no impact on 

other variables at the analysis time, thus limiting the impact of the ozone observations on 

the forecast. For the overall impacts, AMSUA shows the largest contribution to the 

forecast error reduction. IASI and Aircraft are the second and the third, followed by 

radiosondes and AIRS.  

The observation impact per observation is obtained by dividing the total impact 

by the observation count (Figure 2b). TCVital observations of tropical cyclones have 

extremely large impact per observation but the sample number is small (79 observations 

during the entire period and only in the Southern Hemisphere). Dropsonde observations 

also have very large impacts on average. Most of the dropsondes were deployed over the 
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Northeastern Pacific during the Winter Storm Reconnaissance program (Toth et al. 2002) 

led by National Oceanic and Atmospheric Administration (NOAA). This program aims to 

reduce the short-range forecast error of the strong extratropical cyclones using the 

observation targeting strategy (Bishop et al. 2001, Majumdar et al. 2002). The result 

suggests that this program is effective in reducing the forecast error. Other than these, 

conventional upper-air observations such as PIBAL and Radiosonde have large impacts 

per observation. Satellite scatterometer winds (ASCAT_Wind and WINDSAT_Wind) 

and marine surface observations also have relatively large impacts. Total contributions of 

those observations to the forecast error reduction are not so large, but those observations 

are more effective per observation. 

Figure 3 is a similar plot as figure 2 but measured using the dry total energy. 

Comparing with figure 2, the impacts of the most satellite radiance observations are 

substantially reduced, especially for the MHS. PIBALs’ impact per observation is also 

reduced. Those observations are estimated to have impacts mostly on the forecast of 

moisture variable. This is consistent with the facts that MHS is sensitive to the 

atmospheric moisture, and most pilot balloons are used in the India, Southeast Asia and 

Australia (summer in this period) where the atmospheric moisture is high. On the other 

hand, some observations such as GPSRO and MODIS wind have similar impacts with the 

moist and dry total energy indicating that they did not impact the moisture forecast. Most 

of the assimilated GPSRO observations measure the atmosphere above the upper 

troposphere, so that their impacts are large in the upper layer where the atmosphere is 

dry. MODIS wind covers the Arctic and Antarctic regions where the atmospheric 

moisture is scarce especially during the winter. The fractional impact of the satellite 
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radiances is 65% for the moist total energy and 59% for the dry total energy. This 

suggests that the impact of satellite radiance observations is important especially in the 

forecast metric related to moisture. 

c. Estimated impacts of each observation element 

Figure 4 represents the AIRS satellite radiance impact estimates classified by each 

channel. Most of the channels have positive impact on the forecast. Some channels are 

estimated to have relatively large impacts and others show small impacts and even show 

small negative impacts for several channels. This information may help guide the better 

use of the satellite radiances. Figure 4 also shows the estimates using the dry total energy 

norm. Note that the impact estimates are substantially different from the one with moist 

total energy. The impacts are dependent on the selection of the error metric. Therefore, 

one should be careful to choose an appropriate error norm to estimate the observation 

impacts. Compared to the result with the moist total energy, the large peaks around 

channel 215 to 1627 have been reduced. This suggests that these channels are sensitive to 

moisture forecast. 

Figure 5 shows the impact of a) RAOB and b) aircraft per observation classified 

by the observation level. For the radiosonde observations, observations on the lower and 

middle troposphere have the largest impact on the forecast. On the other hand, aircraft 

observations on the lower troposphere have smaller impacts compared to the radiosonde 

observations. Figure 6 compares the average number of the assimilated radiosonde and 

aircraft observations per analysis time. Horizontal distributions of the radiosonde 

observations are almost the same as at 600 – 800 hPa and at 125 – 250 hPa. For the 

aircraft observations, the distributions are completely different. Observations at 125 – 
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250 hPa are spread widely along the major flight tracks over data-sparse regions. 

However, aircraft observations in the lower troposphere are only distributed around the 

airports and are much denser than the radiosonde observations. This geographical 

distribution of the aircraft observations in the lower troposphere and near airports that 

often have other conventional observations seems to limit their impacts on NWP. 

Observation impact estimates also provide the geographical distribution of the 

impact and relative importance of the observations. Figure 7 shows the average impacts 

of radiosonde per profile from fixed land stations in this experimental period. Overall, 

observations from most of the stations have positive impacts. Relatively large impacts are 

seen in the Tropics and also in Canada, Australia and South America. 

Figure 8 shows the comparison of the radiosonde observations from two 

neighboring stations (Narssassuaq and Egedesminde in Greenland). Compared to the 

observations from Egedesminde, observations from Narssassuaq have large negative 

impact especially for temperature and wind observations on troposphere. Figure 8b and 

8c show the statistics of observation minus the first guess of temperature and wind speed. 

Both statistics show the larger standard deviation for Narssassuaq. It does not 

automatically determine that the observations from this station have poor quality, but 

these observations do seem to have a detrimental impact on the short-range GFS forecast. 

5.    Estimation and attribution of short-range regional forecast 

failures 

The operational NWP forecasts sometimes fail despite their relatively high average 

performance over the short-range forecasts. For the operational NWP centers, it is critical 
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to minimize the occurrence of such bad forecasts, and if possible take corrective 

measures. Observation impact estimates may help finding a possible cause of large short-

range forecast errors in some of the cases. 

In order to explore this potential use, local 24 and 30 hour forecast errors with the 

moist total energy norm were computed over regions of 30
o
 by 30

o
 areas covering the 

whole globe with 10
o
 increments for both latitude and longitude. For this purpose, cases 

of local forecast failure were identified as failures if the following conditions were 

satisfied: 1) The 24 hour forecast error was larger than twice its time average, and 2) The 

24 hour forecast error was larger than 1.2 times of the error of 30 hour forecast from the 

previous analysis. Table 2 shows the list of the identified cases. If the neighboring areas 

on the same initial time also meet the criteria, they are considered to be the same case and 

only the area with the highest error times error increase is shown in the table (the number 

of identified areas is also shown). With these criteria, we identified 7 cases of local short-

range forecast failures in this period. 

Observation impacts are estimated targeting these local forecast failures. The top 

1 or 2 observation types estimated to have large negative impacts are removed from the 

observation datasets. These “denied” observations are selected locally based on their 

impact distribution so that the denial does not create a large difference on other areas. 

Then, the analysis and the 24 hour forecast are reprocessed with the new observation sets. 

Table 2 also shows the denied observations and change of the 24 hour forecast error in 

the data denial experiment. The local forecast errors are in fact reduced in all 7 cases by 

the observation denial. 
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The left panel of figure 9 shows the 24 hour forecast error of 500 hPa geopotential 

height around the arctic region from the original analysis on 18 UTC February 6, 2012. 

There is a large forecast error associated with the trough over the Russian arctic coast. 

Figure 9 (middle panel) also shows the forecast change due to the removal of the MODIS 

polar wind observations in the data-denial experiment.  The forecast error of this trough 

is made larger by the assimilation of the MODIS polar winds observations, validating the 

observation impact estimates. Since there is another local forecast failure at this analysis 

time and MODIS winds are estimated to have detrimental impact in both cases, suggests 

that MODIS wind observations on this analysis time may have had a problem. The right 

panel of figure 9 shows the projection of the innovation of MODIS observations to the 

forecast change derived from 
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where the superscript ‘part’ means the partial set of the observations. Equation (9) uses 

the same approximation used in equation (6). It is much more computationally efficient 

than the data denial experiment provided that one already has ensemble forecast from the 

EnKF analysis. The example shown in figure 9 indicates that equation (9) indeed captures 

quite well the actual forecast change, validating the approximation in the equations (6) 

and (9). Projection on the ensemble perturbations like equation (9) should be very useful 

especially when the size of the partial observation set is small. 

6.    Summary and discussion 

Observation impact estimates within the GFS/EnKF have been investigated using the 

formulation of Kalnay et al. (2012). Assimilating all observations used in the operational 
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global analysis (except for TRMM/TMI precipitation retrievals), the observation impacts 

are estimated for each observation type. Satellite radiance observations are estimated to 

be most important in reducing the short-range forecast error especially for moisture. 

However, other observations such as aircraft observations, radiosonde, marine surface 

observations and scatterometer winds are also very important. The last two observation 

types have large impacts especially when the impacts per observation are measured. 

Classified with the observation types and conditions, some examples of the 

advantages and disadvantages of each observing system are shown. Aircraft observations 

in the lower troposphere have smaller impacts per observation than the radiosondes 

probably because of their geographical distribution. Estimated impacts of AIRS channels 

show large positive impacts on the moisture and dynamical variables for many channels, 

and small negative impacts for a few moisture channels, possibly indicating that the 

radiances are not optimally assimilated. This information may guide the improvement of 

the use of observations in the data assimilation and possibly the design of the observation 

network. Continuous monitoring like Naval Research Laboratory (NRL) and National 

Aeronautics and Space Administration / Global Modeling and Assimilation Office 

(NASA/GMAO) do with the adjoint-based impact estimates may be beneficial in the 

operational NWP system to detect the assimilated observations with poor quality. 

We developed simple criteria to detect cases of “short range regional forecast 

failures”, indicating that the 24 hr forecast be significantly worse than average, and worse 

than the 30 hour forecast started 6 hr earlier. An analysis of cases of local short-range 

forecast failure indicates that these observation impact estimates can be used as a tool to 

identify those observations that may have caused the large forecast errors. The projection 
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of the observational innovation on the forecast change agrees well with the corresponding 

data denial experiment, validating the approximation made on the formulation of the 

observation impact estimates. We note that identifying short-range (12 or 24 hr) forecast 

failures would make possible a more proactive QC approach where poor observations are 

withdrawn and the analysis recomputed in time to improve longer forecasts.  Such early 

identification of flawed observations may guide studies to improve the algorithms with 

which they are generated. 

Although the application of this method is limited to ensemble based data 

assimilation systems, there are many possible applications as several of the operational 

NWP systems are transitioning to hybrid ensemble and variational data assimilation 

system. One possible application is to use this method as an  QC scheme as described 

above. Ensemble perturbations from the hybrid analysis and forecasts may also be used 

as inputs of the observation impact estimates. Further investigation in this promising area 

is warranted. 
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List of Figures 

FIG. 1. Time series of the total forecast error reduction of each estimate (unit: J kg
-1

). 

Black, red, and blue lines show the actual forecast error reduction verified against the 

own analysis, estimated error reduction from the EnKF-based method with fixed 

localization (Fixed), and with moving localization (Advected). Numbers on upper left 

corner show the correlation of each estimate to the actual forecast error reduction. 

 

FIG. 2. Estimated average 24 hour forecast error reduction contributed from each 

observation types (moist total energy, J kg
-1

). a) represents the total error reduction and b) 

represents error reduction per 1 observation. 

 

FIG. 3. Same as Fig. 2 but with the dry total energy norm (J kg
-1

). 

 

FIG. 4. Estimated AIRS satellite radiance observation impacts classified by each channels 

with the dry total energy (red, J kg
-1

), and the moist total energy (blue, J kg
-1

). Estimated 

forecast error reduction by 1 observation is shown. Vertical bars represent the 95 % 

confidence interval of the average values. 

 

FIG. 5. Estimated average observation impacts of a) radiosonde and b) aircraft classified 

by observed level (moist total energy, J kg
-1

). Estimated forecast error reduction by 1 

observation is shown. 
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FIG. 6. Average number of assimilated radiosonde observations a) from 250 to 125 hPa, 

b) from 800 to 600 hPa and aircraft observations c) from 250 to 125 hPa and d) from 800 

to 600 hPa in each 5
o
 by 5

o
 area on 1 analysis. 

 

FIG. 7. Average impact (moist total energy, J kg
-1

) of 1 radiosonde profile from the fixed 

land stations. Only the stations that have more than 20 profiles in the period are shown. 

Numbers 4220 (Egedesminde) and 4270 (Narssassuaq) indicate the location of the 

stations shown in Fig. 8 and 9. 

 

FIG. 8. Comparison of the radiosonde observations from Narssassuaq (red line, 4270) and 

Egedesminde (blue line, 4220) showing a) average impacts (J kg
-1

) of each observation 

element (solid: temperature, dashed: winds, dotted: humidity) on each pressure level by 1 

profile and observation departure statistics (dashed: bias, solid: standard deviation) of b) 

temperature (K) and c) wind speed (m s
-1

). 

 

FIG. 9. 24 hour forecast error of 500 hPa geopotential height (unit: m, 18 UTC February 

6, 2012 initial) from original analysis (left) and forecast change due to the removal of the 

observations (MODIS polar wind in 60N~90N, 30E~90E) in the data denial experiment 

(middle: actual change and right: projection on the ensemble perturbations). Black 

contours show the analysis. Magenta cones show the target area of the observation impact 

estimate. 
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TABLE 1. Observation types assimilated in the experiment. The third column shows the 

average number of observations assimilated on 1 analysis (in thousands). u, v, T, q and Ps 

represents u and v wind components, temperature, specific humidity and surface pressure, 

respectively. 

Type of data Description 
Number 

(thousands) 

Aircraft u, v, and T observations from the aircrafts 173 

Radiosonde Radiosonde observations (u, v, T, q and Ps) 55 

Satellite_Wind 
Atmospheric Motion Vectors (u and v) from 

geostationary satellites 
96 

GPSRO GPS radio occultation 95 

Land-Surface Ps observations from land surface stations 54 

Marine-Surface 
Surface u, v, T, q and Ps observations from the buoys 

and ships 
23 

MODIS_Wind Atmospheric Motion Vectors (u and v) from MODIS 36 

ASCAT_Wind 
u and v observations from ASCAT scatterometer over 

ocean 
17 

PIBAL u and v observations from pilot balloons 1.9 

NEXRAD_Wind u and v observations from the NEXRAD (radar) 14 

Profiler_Wind u and v observations from the wind profilers 12 

Dropsonde 
Flight-level reconnaissance and dropsonde (u, v, T and 

q) 
0.2 

WINDSAT_Wind 
u and v observations from ASCAT scatterometer over 

ocean (super observation) 
0.8 

TCVital 
Pseudo surface pressure observations at tropical 

cyclone storm center 
0.0006 

Ozone Ozone retrievals from satellite radiances 14 

AMSUA 
Satellite microwave sounder radiances (from 5 

satellites) 
586 

IASI Satellite infrared hyper spectral sounder radiances 1143 

Aqua_AIRS Satellite infrared hyper spectral sounder radiances 630 

ATMS 
Satellite microwave sounder radiances (from Suomi-

NPP) 
150 

HIRS Satellite infrared radiances (from 2 satellites) 119 

MHS 
Satellite microwave sounder radiances (from 3 

satellites) 
67 

GOES GOES infrared sounder radiances (GOES13 and 15) 40 

SEVIRI SEVIRI clear sky radiances 6.1 
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TABLE 2. List of local 24 hour forecast failure cases (initial time from 00 UTC January 8, 

2012 to 18 UTC February 7, 2012). Third, fourth and fifth columns show the forecast 

error size normalized with the time averaged error, the rate of the error size compared 

with the error of 30 hour forecast from the previous analysis, and the number of areas that 

meet the criteria. Sixth column shows the denied observation based on the observation 

impact estimates and seventh column shows the change of the 24 hour local forecast error 

for observation denial experiment. The case shown in bold font is an example shown in 

Fig. 8 and 9. 

Initial Area Size Rate N Denied observation Change 

12 UTC 

JAN 10 

90S~60S 

100E~130E 
2.04 1.20 1 

GPSRO (80S~60S, 90E~120E) 

ASCAT (60S~50S, 100E~120E) 
-6.6% 

06 UTC 

JAN 12 

50N~80N 

150E ~ 180 
2.18 1.40 1 

AMSUA (ch4: 45N~75N, 

160E~170W, ch5:40N~55N, 

155E~180, NOAA15 ch6: 

50N~75N, 140E~170W, ch7: 

70N~80N, 130E~170E) 

-11.4% 

00 UTC 

JAN 16 

30N~60N 

30W~0 
2.13 1.31 2 

Radiosonde wind (Valentia, 

Ireland), ASCAT (40N~47N, 

20W~10W, 50N~55N, 35W~30W) 

-1.0% 

12 UTC 

JAN 22 

90S~60S 

130E~160E 
2.34 1.22 2 

AMSUA (ch5: 65S~50S, 90E~110E, 

60S~50S, 120E~127E, ch6: 

60S~45S, 110E~125E) 

-2.2% 

06 UTC 

FEB 2 

50N~80N 

150W~120W 
3.10 1.32 4 

IASI (35N~45N, 155W~150W) 

NEXRAD (55N~60N, 

160W~135W) 

-5.5% 

18 UTC 

FEB 6 

60N~90N 

50E~80E 
2.06 1.71 2 

MODIS_Wind (60N~90N, 

30E~90E) 
-39.0% 

18 UTC 

FEB 6 

90S~60S 

20W~10E 
3.56 1.22 1 MODIS_Wind (80S~50S, 30W~0) -22.5% 
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FIG. 1. Time series of the total forecast error reduction of each estimate (unit: J kg
-1

). 

Black, red, and blue lines show the actual forecast error reduction verified against the 

own analysis, estimated error reduction from the EnKF-based method with fixed 

localization (Fixed), and with moving localization (Advected). Numbers on upper left 

corner show the correlation of each estimate to the actual forecast error reduction. 

 

 



26 

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

Aircraft

Radiosonde

Satellite_Wind

GPSRO

Land−Surface

Marine−Surface

MODIS_Wind

ASCAT_Wind

PIBAL

NEXRAD_Wind

Profiler_Wind

Dropsonde

WINDSAT_Wind

TCVital

Ozone

AMSUA

IASI

Aqua_AIRS

ATMS

HIRS

MHS

GOES

SEVIRI

Moist total energy [J kg−1]

Average total observation impacts on 1 analysisa)

Satellite

Other

 

−6e−06 −5e−06 −4e−06 −3e−06 −2e−06 −1e−06 0 1e−06

Aircraft

Radiosonde

Satellite_Wind

GPSRO

Land−Surface

Marine−Surface

MODIS_Wind

ASCAT_Wind

PIBAL

NEXRAD_Wind

Profiler_Wind

Dropsonde
−2.81e−05

WINDSAT_Wind

TCVital
−2.24e−04

Ozone

AMSUA

IASI

Aqua_AIRS

ATMS

HIRS

MHS

GOES

SEVIRI

Moist total energy [J kg−1]

Average observation impacts per 1 observationb)

Satellite

Other

 

FIG. 2. Estimated average 24 hour forecast error reduction contributed from each 

observation types (moist total energy, J kg
-1

). a) represents the total error reduction and b) 

represents error reduction per 1 observation. 
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FIG. 3. Same as Fig. 2 but with the dry total energy norm (J kg
-1

). 
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FIG. 4. Estimated AIRS satellite radiance observation impacts classified by each channels 

with the dry total energy (red, J kg
-1

), and the moist total energy (blue, J kg
-1

). Estimated 

forecast error reduction by 1 observation is shown. Vertical bars represent the 95 % 

confidence interval of the average values. 
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FIG. 5. Estimated average observation impacts of a) radiosonde and b) aircraft classified 

by observed level (moist total energy, J kg
-1

). Estimated forecast error reduction by 1 

observation is shown. 
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FIG. 6. Average number of assimilated radiosonde observations a) from 250 to 125 hPa, 

b) from 800 to 600 hPa and aircraft observations c) from 250 to 125 hPa and d) from 800 

to 600 hPa in each 5
o
 by 5

o
 area on 1 analysis. 
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FIG. 7. Average impact (moist total energy, J kg
-1

) of 1 radiosonde profile from the fixed 

land stations. Only the stations that have more than 20 profiles in the period are shown. 

Numbers 4220 (Egedesminde) and 4270 (Narssassuaq) indicate the location of the 

stations shown in Fig. 8 and 9. 
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FIG. 8. Comparison of the radiosonde observations from Narssassuaq (red line, 4270) and 

Egedesminde (blue line, 4220) showing a) average impacts (J kg
-1

) of each observation 

element (solid: temperature, dashed: winds, dotted: humidity) on each pressure level by 1 

profile and observation departure statistics (dashed: bias, solid: standard deviation) of b) 

temperature (K) and c) wind speed (m s
-1

).
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FIG. 9. 24 hour forecast error of 500 hPa geopotential height (unit: m, 18 UTC February 

6, 2012 initial) from original analysis (left) and forecast change due to the removal of the 

observations (MODIS polar wind in 60N~90N, 30E~90E) in the data denial experiment 

(middle: actual change and right: projection on the ensemble perturbations). Black 

contours show the analysis. Magenta cones show the target area of the observation impact 

estimate. 


