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Outline 

  Review of a few recent advances in LETKF 
  Running in Place 
  Effective assimilation of precipitation 
  Ensemble Forecast Sensitivity to Observations (EFSO)  

  Parameter estimation in LETKF 
  Carbon cycle data assimilation: LETKF-C 
  Estimation of surface heat and moisture fluxes 

  Sensible and latent heat fluxes (SHF, LHF) 
  Estimation of wind stress in addition to SHF and LHF 
  Future Plans 
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4D-Local Ensemble Transform Kalman Filter ���
(Ott et al, 2004, Hunt et al, 2004, 2007)���
	


•  Model independent 
(black box) 
•  Obs. assimilated 
simultaneously at each 
grid point 
•  100% parallel 
•  No adjoint needed 
•  4D LETKF extension 
•  Computes the weights 
for the ensemble 
forecasts explicitly 

(Start with initial 
ensemble) 

LETKF Observation 
operator 

Model 

ensemble  
analyses 

ensemble 
forecasts 

ensemble  
“observations” 

Observations 
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Perform data assimilation in a local volume, choosing 
observations  

 
 

The state estimate is updated at 
the central grid red dot 

 

Localization based on observations 
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Perform data assimilation in a local volume, choosing 
observations  

 
 The state estimate is updated at 

the central grid red dot 

All observations (purple 
diamonds) within the local 
region are assimilated 

Localization based on observations 

The LETKF algorithm can be described in a single slide! 
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Local Ensemble Transform Kalman Filter (LETKF) 

Forecast step:       
Analysis step: construct 
 
 
 
Locally: Choose for each grid point the observations to be used, 
and compute the local analysis error covariance and 
perturbations in ensemble space: 
  
 
Analysis mean in ensemble space: 
and add to      to get the analysis ensemble in ensemble space.  

The new ensemble analyses in model space are the columns of                
                  . Gathering the grid point analyses forms the 

new global analyses. Note that the the output of the LETKF are 
analysis weights         and perturbation analysis matrices of 
weights        . These weights multiply the ensemble forecasts. 
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No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
! Quasi Outer Loop (QOL)
! “Running in place” (RIP) for faster spin-up
! Use of future data in reanalysis
! Ability to use longer windows and nonlinear perturbations

tn tn-1 
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Promising new tools for the LETKF (1) 
 

1.  Running in Place (Kalnay and Yang, QJ 2010, Yang, Kalnay,   
and Hunt, MWR, 2012) 
•  It extracts more information from observations by using them     
more than once (considered a sin by many!). 
•  Useful during spin-up (e.g., hurricanes and tornados). 
•  It uses the “no-cost smoother”, Kalnay et al., Tellus, 2007b. 
•  Typhoon Sinlaku (Yang et al., 2012) 
•  7-years of Ocean Reanalysis (Penny, 2011, Penny et al., 2012) 
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LETKF-RIP with real observations  
(Typhoon Sinlaku, 2008)  

11/23/2011@NTU-‐TIMS	  

SYNOP(+),SOUND(△),	  
DROPSONDE(○),	  

Typhoon	  center	  (X)	   RIP	  uses	  beGer	  the	  “limited	  observaNons”!	  

Flight	  data	  

Typhoon	  Sinlaku	  (2008)	  

3-‐day	  forecast	  

Obs	  
LETKF-‐RIP	  
LETKF	  

Courtesy of Prof. Shu-Chih Yang (NCU, Taiwan) 
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LETKF-RIP B/A 

FREE-RUN 

LETKF-IAU B 

SODA B 
SODA A 

LETKF-IAU A 

RMSD (ºC) (All vertical levels) B: background 
A: analysis 

Global RMS(O-F) of Temperature (oC),  
12-month moving average  

LETKF (with IAU), SODA and LETKF with RIP 

7 years of Ocean Reanalysis  
Temperature  
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LETKF-RIP B/A 

Free-Run 

SODA B 
SODA A 

LETKF-IAU A 

RMSD (psu) (All vertical levels) B: background 
A: analysis 

Global RMS(O-F) of Salinity (psu),  
12-month moving average  

LETKF (with IAU), SODA and LETKF with RIP 

7 years of Ocean Reanalysis 
Salinity 
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Promising new tools for the LETKF (2) 
 

2.  Effective assimilation of Precipitation (Guo-Yuan Lien,     
Eugenia Kalnay and Takemasa Miyoshi, 2013) 
•  Assimilation of precipitation has generally failed to improve      
forecasts beyond a day. 
•  A new approach deals with non-Gaussianity, and assimilation of 
both zero and non-zero precipitation.  
•  Rather than changing moisture to force the model to rain as 
observed, the LETKF changes the potential vorticity. 
•  The model now “remembers” the assimilation, so that that 
medium range forecasts are improved. 
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G!1 (x ) = 2erf !1 (2x !1)

Start with pdf of 
y=rain at every grid 

point. 
 

 “No rain” is like a 
delta function that we 

cannot transform. 
 

We assign all “no 
rain” to the median of 

the no rain CDF. 
 

We found this works 
as well as more 

complicated 
procedures. 

 
It allows to assimilate 
both rain and no rain. 

 

How do we transform precipitation y to a Gaussian 
ytransf? 
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Raobs 

Gaussian, 10 members rain,  
20% error, all variables 

Only Q 

•  Main result: with at least 10 ensemble members raining in 
order to assimilate an obs, updating all variables (including 
vorticity), with Gaussian transform, and rather accurate 
observations (20% errors), the analyses and forecasts are 
much improved!  

•  Updating only Q is much less effective.  
•  The 5-day forecasts maintain the advantage! 
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Promising new tools for the LETKF (3) 
3.  Forecast Sensitivity to Observations and proactive QC” 

 (with Y Ota, T Miyoshi, J Liu, and J Derber)  
•  A simpler, more accurate formulation for the Ensemble Forecast 
Sensitivity to Observations (EFSO, Kalnay et al., 2012, Tellus). 
•  Ota et al., 2013 tested it with the NCEP EnSRF-GFS operational 
system using all operational observations. 
•  Allows to identify “bad observations” after 12 or 24hr, and then 
repeat the data assimilation without them: “proactive QC”. 
 



“Proactive QC”:  
Bad observations can be  identified by EFSO 
and withdrawn from the data assimilation 

After identifying MODIS polar winds producing bad 
24 hr regional forecasts, the withdrawal of these 

winds reduced the forecast errors by 39%, as 
projected by EFSO. 
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Promising new tools for the LETKF (4) 
4. Estimation of surface fluxes as evolving parameters 

 (Kang et al., 2011, Kang et al., 2012) 
•  Important for the carbon cycle  
•  surface fluxes of heat, moisture, and momentum  
•  eventually for coupled data assimilation 

This is the rest of the talk (Ji-Sun Kang 
with E. Kalnay, J. Liu and Inez Fung) 



Parameter estimation in EnKF 

  State vector augmentation 

  Append CF (surface CO2 fluxes) 
  Update CF as part of the data assimilation process 
  Multivariate analysis with a localization of the variables 

(Kang et al., 2011) 

⎥
⎦

⎤
⎢
⎣

⎡
=
CF
X

Xb
: model state vector 
  (U, V, T, q, Ps, C) 

: surface CO2 flux 

Observations 
U, V, T, q, Ps, C 

Forecast 
U, V, T, q, Ps, C 

LETKF (analysis) 
U, V, T, q, Ps, C, CF 

Schematic plots of background error 
covariance matrix Pb  
without “variable localization” (left) 
and with it (right) 



LETKF-C with SPEEDY-C 

  Model: SPEEDY-C (Molteni, 2003; Kang, 2009) 
  Spectral AGCM model with T30L7 
  Prognostic variables: U, V, T, q, Ps, C 

  C (atmospheric CO2): an inert tracer  
  Persistence forecast of Carbon Fluxes (CF), no observations 

  Simulated observations 
  Rawinsonde observations of U, V, T, q, Ps 
  Ground-based observations of atmospheric CO2  

  18 hourly and 107 weekly data on the globe 
  Remote sensing data of column mixing CO2  

  AIRS whose averaging kernel peaks at mid-troposphere  
  GOSAT whose averaging kernel is nearly uniform throughout the 

column 

  Initial condition: random (no a-priori information) 
  20 ensembles 



LETKF-C 

  Carbon cycle data assimilation within LETKF (Kang et al., 
JGR, 2011, 2012) 
  Simultaneous analysis of meteorological and carbon variables 
  “Localization of Variables” reduces sampling errors 
  Advanced inflation methods  
  Vertical localization of column mixing CO2 observations 
  Short (6-hour) assimilation window 

  Many of CO2 inversion groups adopt much longer window lengths 
(weeks ~ months)  

  Started in the 1980’s when there were only tens or hundreds of ground-
based observations on the globe 

  CO2 is an inert gas that stays long in the atmosphere so that the 
atmospheric CO2 has quite long memory of CF.  

 We have satellite observations of CO2 (e.g. AIRS, GOSAT, OCO-2) 
 The long memory can be useful only if we can keep track of CO2 

flow 



▼  True CF ▼ ▼  Analysis of CF ▼ 

Results 

00Z01APR  
After three months of DA 

00Z01AUG  
After seven months of DA 

00Z01JAN  
After one year of DA 

We succeeded in estimating time-evolving CF at model-grid scale 



Assimilation window in LETKF-C 

  CO2 data assimilation system 
  A short assimilation window reduces the attenuation of observed 

CO2 information because the analysis system can use the strong 
correlation between C and CF before the transport of atmospheric 
CO2 blurs out the essential information of surface CO2 forcing 

  We may not be able to reflect the optimal correlation between C and 
CF within a long assimilation window, which can introduce sampling 
errors into the EnKF analysis 



Long vs. short window in LETKF-C 

  OSSEs with SPEEDY-C 
  Realistic observation distributions for meteorological variables and 

CO2 
  Rawinsonde observation for (U, V, T, q, Ps)  
  Ground-based observations, AIRS and GOSAT CO2 mixing ratio for C 

  Experiment1: Analysis from LETKF-C  
  Simultaneous analysis with a 6-hour assimilation window 

  Experiment2: Analysis from a long (3-week) assimilation 
window  
  With this long assimilation window, ensemble perturbations of 

meteorological variables become non-linear so that we do not 
include wind uncertainty for CO2 data assimilation (Carbon-
Univariate DA) 





A B 



Impact of CO2 transport 

Strong source Significant sink 

A 
B  

26 

  Strong easterly from the source 
region to the sink region brings CO2 
increase information over the sink 
area 

 There are incorrect positive CF from 
OCT to DEC (the end of DA) 

A B 



Summary of LETKF-C carbon fluxes 

  Assimilation window 
  EnKF has better performance with a short window 
  CO2 observations may be able to provide some information 

to distant CF, but it becomes blurred. 
  On-going project 

  Implement LETKF-C on the NCAR CAM model 
  OSSE with realistic observations 
  Very slow (26 days) 
  Preliminary results are encouraging 



LETKF-C with NCAR CAM3.5 

  Model: CAM 3.5  
  Finite Volume dynamical core 
  2.5°×1.9° of horizontal resolution with 26 layers in the vertical 
  C (atmospheric CO2) is an inert tracer  
  Persistence forecast of CF 

  Simulated observations with real observation coverage 
  Conventional data for U, V, T, q, Ps 
  Ground-based observations of atmospheric CO2  

  ~10 hourly and ~100 weekly records on the globe 
  Remote sensing data of column mixing CO2  

  AIRS whose averaging kernel peaks at mid-troposphere 

  Initial conditions: random (no a-priori information) 
  64 ensembles 



LETKF-CAM3.5 CF analysis

True CF @ initial time (00Z01JAN) Initial CF

True CF @ 00Z27JAN) CF analysis @ 00Z27JAN

10-8kgCO2/m2/s



LETKF-CAM3.5 CF analysis

  Time series of surface CO2 fluxes and atmospheric 
CO2 concentrations over Europe (observation-rich 
area)



Surface Heat and Moisture Fluxes 

  Can we estimate surface moisture/heat fluxes by 
assimilating atmospheric moisture/temperature 
observations? We can use the same methodology! 

  OSSEs 
  Nature: SPEEDY (perfect model) 
  Forecast model: SPEEDY with persistence forecast of 

Sensible/Latent heat fluxes (SHF/LHF) 
  Observations: conventional observations of (U, V, T, q, Ps) 

and AIRS retrievals of (T, q) 
  Analysis: U, V, T, q, Ps + SHF & LHF  

  Fully multivariate data assimilation 
  Adaptive multiplicative inflation + additive inflation 
  Initial conditions: random (no a-priori information) 



Results: SHF (perfect wind stress model) 

True SHF @ end of JAN SHF analysis @ end of JAN 

True SHF @ end of JUN SHF analysis @ end of JUN 



True SHF @ end of JAN SHF analysis @ end of JAN 

True SHF @ end of JUN SHF analysis @ end of JUN 

Results: LHF (perfect wind stress model) 



Time series of SHF (perfect WSTR model) 



Time series of LHF (perfect WSTR model) 



Summary of SHF & LHF DA (perfect WSTR model) 

  AIRS retrieval data of T and q provide very accurate and 
abundant information for constraining surface heat and 
moisture fluxes 
  Observation error: 1K for T and 1.0g/kg for q 
  Global coverage at every 12 hours 

 After a short spin-up period (~a week), estimation of SHF 
and LHF converges very well  

  Results shown here are given under the assumption of 
perfect wind stress model.  We should test this system in 
presence of model errors in the future. 



Can we also estimate wind stress? 

  OSSEs 
  Nature: SPEEDY 
  Forecast model: SPEEDY with persistence forecast of 

Sensible/Latent heat fluxes (SHF/LHF) and wind stress 
(USTR, VSTR) [ALL_FLUXES] 

  Observations: conventional observations of (U, V, T, q, Ps), 
AIRS retrievals of (T, q), and ASCAT ocean surface wind 
observations  

  Observation error of ASCAT: 3.5m/s (not as good as AIRS 
data) 

  ASCAT covers the global ocean every 12 hours, but little overlapped 
with AIRS data distribution 

  Analysis: U, V, T, q, Ps + SHF, LHF, USTR, VSTR  
  Fully multivariate data assimilation 
  Initial conditions: random (no a-priori information) 



Result: USTR from [ALL_FLUXES] 

 Initial condition includes no 
a-priori information of USTR 

 After one month of DA, USTR estimation is close to the true USTR  



Results: SHF from [ALL_FLUXES] 

  Although the estimated wind stress does look okay, the imperfection of the 
wind stress contaminates the estimation of SHF and LHF significantly 

 True SHF 

 SHF analysis with perfect WSTR  

▼  SHF analysis with WSTR DA ▼ 



Results: LHF from [ALL_FLUXES] 

  Although the estimated wind stress does look okay, the imperfection of the 
wind stress contaminates the estimation of SHF and LHF significantly 

 Analysis diverged… 

 True LHF 

 LHF analysis with perfect WSTR  

▼  LHF analysis with WSTR DA ▼ 



1) Filtering analysis increments? 

  Due to the limited observational contents, we may 
not be able to expect analysis increment with a full 
resolution 
  Filtering out high wavenumbers from the analysis 

increments for 2d parameters (SHF, LHF, USTR, VSTR) using 
the Shapiro filter (Kalnay, 2003) 
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Time series of RMS errors 

  Filtering analysis increment reduces 
analysis error remarkably and 
produces quite stable results 

  However, there are still errors 
growing in time especially for the 
parameters (SHF, LHF, USTR, 
VSTR) 

Analysis w/o filtering Analysis w/ filtering Analysis with perfect WSTR 



Time series of spatial correlation 

  Filtering analysis 
increments prevents 
(or delays) the 
estimated parameters 
from losing spatial 
correlation in time. 

Analysis w/o filtering Analysis w/ filtering Analysis with perfect WSTR 



2) increasing ensemble size 

  We introduce too many unknowns into the analysis 
system, and thus increasing ensemble size may help. 

  Control experiments: 40 ensembles 
  Experiments with 80 ensembles have been examined 



Results 
U 

T 

USTR 

SHF 

USTR 

SHF 

  Spatial correlation (left) and RMSE (right) 
  Blue: 80 ensembles 
  Red: 40 ensembles 
  Green: perfect WSTR with 40 ensembles 

 Doubling ensemble 
size reduces error 
and increase spatial 
correlation of the 
estimates, but it 
seems not enough to 
produce stable 
estimation of 
parameters 
throughout the 
analysis period 



USTR 

  Estimated USTR looks 
reasonable  

Observation-poor area 



SHF 

  SHF tends to be 
underestimated, 
especially over the 
ocean 

  Estimation over the land 
(area 4 and 6) has 
relatively good 
performance 
  Better observations 

over land 

Observation-poor area 



LHF 

  LHF is overestimated, 
especially over the ocean 

 “improper 
partitioning” (e.g.Vinukoll
u et al. 2012) 

  Estimation over the land 
(area 5 and 7) has 
relatively good 
performance 
  Area 6 is also over the 

land, but there are few 
rawinsonde 
observations 

 Results depends on the 
observational contents 
since our methods does 
not use any a-priori 
information 

Observation-poor area 



Global maps of USTR 
[N/m2] 

  00Z01JUN after a 5-month DA 
  Over land, estimation of USTR 

agrees well with the true USTR in 
both experiments w/ 80 and 40 
ensembles 



Summary for Windstress, SHF, LHF DA 

  We attempt to estimate wind stress (WSTR) within LETKF (without 
computing it from a physical parameterization of the perfect model) in 
addition to SHF/LHF estimation 
  Addition of ASCAT data gives fairly good estimation of WSTR 
  The analysis system still needs further improvement to avoid a 

negative feedback among WSTR, SHF, LHF, and other prognostic 
variables due to the imperfect WSTR. 

  Filtering analysis increment & increasing ensemble size help. 



Ji-Sun Kang’s Future Plans 

  I’m moving and starting a new career in Korea, January 
2013 

  KIAPS (Korea Institute of Atmospheric Prediction Systems) 
  A new institution, launched April 2011 as one of the major  

projects pushed by the Korea Meteorological Administration 
(KMA)  

  To develop the next generation operational numerical 
weather prediction model by developing the core 
technologies.  



Future Plans 

  Work at KIAPS 
  Data assimilation team will be in a research mode for a 

while, before physics and dynamics teams will develop an 
early version of the model 

  MOU with UMD will allow me to keep collaborating with you 
all.  

I’ll work here! 

Eugenia will keep 
giving me advice! 



THANK YOU VERY MUCH! 



Summary 

  We have shown the feasibility of simultaneous analysis of 
meteorological and carbon variables within LETKF framework through 
the simulation experiments. 

  The system LETKF-C has been tested in a intermediate-complexity 
model SPEEDY-C with excellent results. 
   Multivariate data assimilation with “localization of the 

variables”  (Kang et al. 2011) 
  Advanced data assimilation methods for CO2 flux estimation have 

been explored (Kang et al. 2012) 
  The implementation of the LETKF-C to NCAR CAM 3.5 model is now in 

progress 
  Analysis step shows very good performance in OSSE with real 

observation coverage 
  Analysis cycle with a forecast step will be operated soon 

  The same methodology has been applied to estimating surface fluxes 
of heat, moisture and momentum, and the results are promising! 


