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[1] In this study, the performance of inverse three-
dimensional variational assimilation (I3D-Var) is
investigated in terms of dissipation process for an
advection-diffusion problem. The performance of I3D-Var
becomes poorer with larger diffusion coefficients.
However, even for strong dissipation, the cost function
during early iterations in the I3D-Var decreases still much
faster than it does in the standard four-dimensional
variational assimilation (4D-Var). Based on this
observation a hybrid approach that combines the I3D-Var
and the 4D-Var is suggested to accelerate the performance
of 4D-Var. Application of this hybrid method demonstrates
that the I3D-Var can serve as a preconditioner for carrying
minimization in the full 4D-Var framework. Using the
initial conditions obtained through the I3D-Var, the 4D-Var
showed much faster convergence in minimizing the cost
function. INDEX TERMS: 3337 Meteorology and

Atmospheric Dynamics: Numerical modeling and data

assimilation; 3367 Meteorology and Atmospheric Dynamics:

Theoretical modeling; 3332 Meteorology and Atmospheric

Dynamics: Mesospheric dynamics. Citation: Park, S. K., and

E. Kalnay (2004), Inverse three-dimensional variational data

assimilation for an advection-diffusion problem: Impact of

diffusion and hybrid application, Geophys. Res. Lett., 31,

L04102, doi:10.1029/2003GL018830.

1. Introduction

[2] The four-dimensional variational data assimilation
(4D-Var) is considered as a promising tool for fitting model
solutions to observations (see a review by Talagrand
[1997]). In the 4D-Var, a cost function, which is defined
as the weighted square distance between model solutions
and observations, is minimized via iterative processes.
[3] The 4D-Var requires to run both the adjoint model

and the minimization algorithm at each iteration. There exist
several minimization algorithms for solving large-scale
unconstrained optimization [see Polak, 1997], which
require the gradient information provided by the adjoint
integration. When applied to meteorological 4D-Var prob-
lems, these algorithms mostly require several tens of iter-
ations to reach a local minimum of the cost function.

[4] Some considerable efforts have been made for oper-
ational implementation of the 4D-Var during the last decade
[e.g., Županski, 1993; Courtier et al., 1994]. However, due
to a large computational cost, implementing the complete
4D-Var scheme into the operational system is practically
infeasible without] major simplifications [e.g., Rabier et al.,
2000].
[5] Recently, Kalnay et al. [2000] developed an efficient

variational assimilation scheme called the ‘‘Inverse
3D-Var’’ (I3D-Var) based on the quasi-inverse model inte-
gration. In the I3D-Var, the observational increment at
initial time is obtained by a backward integration of the
tangent linear model (TLM), in which the sign of time step
is changed (i.e., inverse). Here, the sign of dissipative term
is also changed (i.e., quasi-inverse) in order to avoid
computational blow-up. They demonstrated that the
I3D-Var solves the minimization problem close to the
4D-Var at much less computational cost.
[6] Wang et al. [1997] employed the quasi-inverse

approach to obtain the Newton descent direction and
developed a new optimization method called the adjoint
Newton algorithm, which showed faster convergence of
the cost function toward its minimum compared to the
conventional 4D-Var scheme using the limited-memory
BFGS (LBFGS) algorithm [Liu and Nocedal, 1989]. More
recently, Leslie et al. [2000] compared the performance of
the full 4D-Var and the I3D-Var for 40 cases of hurricane
forecast showing that the I3D-Var is faster than the full
4D-Var by a factor of 8 with comparable accuracy in
forecasting hurricane tracks.
[7] In the I3D-Var, solutions are smoothed in both

forward and inverse runs [Kalnay et al., 2000]; thus the
I3D-Var results are considered to be reasonably correct for
processes with small diffusion. However, explicit compar-
ison of the performances by the I3D-Var and the standard
4D-Var in the context of diffusion process has never been
made.
[8] In this study, we first investigate the effect of diffu-

sion magnitude on the performance of I3D-Var, especially
in comparison with the 4D-Var. Then a hybrid approach,
which combines the I3D-Var and the 4D-Var, is applied to
complement shortcomings arising from independent appli-
cation of each method. In this approach, the 4D-Var is
preconditioned by the I3D-Var.
[9] For a detailed discussion on theoretical background

on the I3D-Var, which is omitted here, readers are referred
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to Kalnay et al. [2000]. Section 2 provides a brief descrip-
tion of the nonlinear model and its forward and quasi-
inverse TLMs, and the experimental design as well. Section
3 discusses the performance of I3D-Var in terms of diffu-
sion magnitude and the potential of I3D-Var using the
hybrid approach. Conclusions are given in section 4.

2. Model Description and Experiment Design

[10] We apply the I3D-Var to a simple advection-diffu-
sion problem including a passive scalar transport. This can
be well described by the nonlinear viscous Burgers’
equation [Burgers, 1948]. Despite of its simplicity, the
model based on this equation has been used in many
assimilation studies because it can handle a variety of
important aspects in data assimilation problems, especially
when new assimilation schemes were developed and tested
[e.g., Menard, 1994; Uboldi and Kamachi, 2000; Xu and
Daley, 2000].
[11] An advection velocity (u) is the basic variable in the

Burgers’ equation. In this study, an additional equation is
also considered to represent the advection of a passive
scalar (q). For a detailed description of the governing
equations and derivation of corresponding forward and
inverse TLMs, readers are referred to Kalnay et al.
[2000]. Here, the exact-inverse TLM is formulated by
changing the sign of time step from the forward TLM
(see Kalnay et al. [2000, equation 17] for u). In the quasi-
inverse TLM, the sign of diffusion term is also changed to
avoid numerical instability.
[12] A discrete nonlinear model (NLM) of the viscous

Burgers’ equation is constructed using the leapfrog scheme
for advection and the DuFort-Frankel scheme for diffusion
[see Anderson et al., 1984]. It is described for u as:

Unþ1
j � Un�1

j

2�t
¼� Un

j

Un
jþ1 � Un

j�1

2�x

þ n
Un

jþ1 � Unþ1
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j þ Un
j�1

�xð Þ2
ð1Þ

It should be noted that a numerical scheme which includes
implicit dissipative property, such as the Lax scheme, is not
feasible for the I3D-Var [Kalnay et al., 2000]. The forward
and inverse TLMs and the adjoint model (ADJM) are
developed directly from the discrete NLM. Since the
Burgers’ equation may have a shock jump, time integration
is limited to N = 121. Adjoint solution of this system is
described by Mohammadi and Pironneau [2001].
[13] Model parameters for the control experiment are:

the grid size �x = 1 m; the number of grids NX = 101; the
domain length X = 100 m; the time step �t = 0.1 s; the
number of time levels N = 81 or 121; and the diffusion
coefficient n = 1 � 10�4 m2s�1. The computational domain
is set to [�X/2, X/2]. In large scale atmospheric flows, the
diffusion process is almost negligible. Thus the choice of
the n value here is reasonable for describing weakly
diffusive flows.
[14] The initial conditions are given by

u0 ¼ u x; 0ð Þ ¼ sin
2px
L

� �
; q0 ¼ q x; 0ð Þ ¼ � sin

2px
L

� �
ð2Þ

where L is wavelength of the domain, which is set to the
same as the domain length, X, and the boundaries are fixed
to zero.
[15] The observational fields (uobs, qobs) are obtained

through an NLM simulation with model parameters and
initial conditions as specified above (i.e., simulated obser-
vation). The nonlinear basic fields (u, v) are generated from
an NLM run with an initial condition in which a systematic
error is added to the observational fields (i.e., for a 10%
error, u0 = (1 + 0.1)uobs and similarly for q0).
[16] The cost function (J) for standard 4D-Var is defined

as

J ¼ 1

2
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� �T
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þ
Xn
t¼1

1
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where x0
a and x0

b are the analysis and first guess,
respectively, at the beginning of the interval, xt

b is the first
guess at time t, and H is the operator which converts the
model first guess into first guess observations. B is the
background error covariance and R is the observational
error covariance. Although the cost function in I3D-Var is
defined in terms of increments as by Kalnay et al. [2000,
equation 7], it is computed for nonlinear solutions based on
equation (3) for fair comparison between 4D-Var and I3D-
Var. In the identical twin framework, as in this study, the
background error term is neglected and then observation
becomes a vector of model variables defined on grid points
[Li et al., 2000]. In addition, with this framework, the cost
function values for 4D-Var and I3D-Var are identical in the
condition that observation is available only at the end of the
assimilation interval.
[17] For the standard 4D-Var, the ADJM is run backward

from the final condition @J/@xN, where xN = (uN, qN)
T stands

for the model state at the final time (i.e., at time level N).
For the I3D-Var, the quasi-inverse TLM (Q-ILM) is run
from the final condition (duN, dqN)

T where

duN ¼ uN � uobsð ÞN ; dqN ¼ qN � qobsð ÞN : ð4Þ

The Q-ILM is integrated backward in time by changing the
signs of time step and diffusion term.
[18] The observational data being assimilated are gener-

ated through the model using the initial conditions given in
equation (2). The diffusion coefficients are set to the same
in generating both observations and model solutions. For
the 4D-Var experiments, we have employed the LBFGS
algorithm [Liu and Nocedal, 1989] for minimization. Such
minimization process is not required in the I3D-Var [Kalnay
et al., 2000].

3. Results

[19] The standard 4D-Var can incorporate all observa-
tions available during the assimilation interval whereas the
I3D-Var can take one observation at the end of the assim-
ilation interval. Kalnay et al. [2000] have demonstrated that
the I3D-Var with one observation at the end outperforms the
4D-Var with observations at all time steps in both accuracy
and computing time. They also discussed computational
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issue in incorporating several observations in assimilation
interval while performing I3D-Var. Thus we avoid discus-
sions on these aspects here. Experiments are performed with
one observation at the end for both 4D-Var and I3D-Var,
unless otherwise mentioned.

3.1. Impact of Diffusion

[20] It is known that the Q-ILM solutions describe the
forward TLM well when the magnitude of diffusion is
sufficiently small [Kalnay et al., 2000]. Here we investigate
the actual impact of diffusion on the performance of I3D-
Var for various diffusion magnitudes and compare it with
that of 4D-Var.
[21] In Figure 1, evolution of normalized cost functions

for variational data assimilation using adjoint and quasi-
inverse method is shown for different diffusion coefficients.
For the 4D-Var, the gradient norms of cost function showed
monotonic decrease (not shown). As diffusion increases the
performance of I3D-Var becomes poor – more iterations to
reach the minimum of the same cost function. For the given
range of diffusion, convergence of cost function in the 4D-
Var shows smaller variation than that in the I3D-Var.
[22] It should be noted that such result does not necessarily

mean that the 4D-Var performance has no problem with
diffusion processes. Li and Droegemeier [1993] showed that
the 4D-Var performance is sensitive to the magnitude of
diffusion coefficients. Our result implies that the performance
of 4D-Var is relatively less sensitive than that of I3D-Var to
variations of diffusion magnitude. As shown, the perfor-
mance of I3D-Var becomes poorer with larger diffusion
coefficients; thus the I3D-Var should be applied with caution
in flows with strong diffusion. However, it is notable that the
decrease rate of cost function in the I3D-Var during early
iterations is still much higher than that in the 4D-Var even for
a strong diffusion case. This leaves a possibility of applying
the hybrid method as will be discussed in the next section.

3.2. Hybrid Application: I3D-Var as a Preconditioner
of 4D-Var

[23] In this section, we investigate the possibility of
combining the I3D-Var and the 4D-Var for the purpose of

efficient performance in minimization. Although the I3D-
Var may not replace the full adjoint 4D-Var due to problems
with diffusion, it may serve as a preconditioner when
carrying minimization in the framework of the 4D-Var. That
is, the first few iterations can be made through the I3D-Var,
then the 4D-Var can start from the initial conditions
obtained by the I3D-Var. This is based on the observation
that, even in the large diffusion case, the I3D-Var showed
sharp decrease in the cost function during early iterations
(see Figure 1). To test this idea, a preliminary experiment is
performed.
[24] In Figure 2, the case of preconditioning with one

iteration of the I3D-Var is compared to the full 4D-Var. In
both I3D-Var and 4D-Var, two observations (at N = 61 and
121) within an assimilation period of N = 121 are incorpo-
rated. For doing this, an ensemble I3D-Var strategy is
employed as by Kalnay et al. [2000]. With preconditioning
by the I3D-Var, the 4D-Var showed much better perfor-
mance in minimizing the cost function. The preconditioned
minimization saturates after about 30 iterations while min-
imization without preconditioning does so after about 100
iterations. This may be related to differences in random
errors in observation and systematic errors in initial con-
ditions. It is also notable that the 4D-Var results, both with
and without preconditioning, converge at the same mini-
mum. Figure 3 represents evolution of the gradient norms of
cost function in the 4D-Var for cases with and without
preconditioning, which shows almost monotonic decrease
in both cases. Thus the minimizations are performed
appropriately.
[25] Noting that the I3D-Var may not be feasible for

physical processes that are irreversible, our result shows a
possibility of using the I3D-Var as a preconditioner of the
4D-Var that includes full physics. That is, the I3D-Var (with
no physics or simplified physics) can be applied before the
effect of diffusion and/or microphysical processes become
significant, after which the 4D-Var can take over the

Figure 1. Evolution of normalized cost function in terms
of the number of function calls (ICALL) for different
diffusion coefficients using the I3D-Var (INV: thick lines)
and the adjoint 4D-Var (ADJ: thin lines). The assimilation
length is N = 81 and a systematic error of 50% is introduced
to initial u.

Figure 2. Variations in the cost function from the I3D-Var
and the 4D-Var starting from ‘‘no preconditioning’’
(PRECON 0) and from preconditioning using one iteration
of the I3D-Var (PRECON 1). The assimilation period is N =
121 and the diffusion coefficient is n = 10�3 m2s�1. The
initial error magnitude is 40% in u and each observation
includes random errors with maximum magnitude of 10%.
Observations are provided at N = 61 and 121.
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minimization process from the point where the I3D-Var
stopped.
[26] The use of I3D-Var may deal efficiently with the part

of the spectrum of the Hessian of the cost function related to
the dynamics part of the model. This will allow the
minimization to focus only on the nonlinearities associated
with the physics and result in a large computational saving
(I. M. Navon, personal communication, 1999).
[27] This approach is called the hybrid assimilation

method [see Park and Županski, 2003] in the sense that
two different algorithms are combined in one minimization
problem. Li et al. [2000] also employed the hybrid method
which involves an iterative procedure involving inner iter-
ations with incremental model [see Courtier et al., 1994],
with no physics in the adjoint, and outer iterations with full
physics model in several cycles.
[28] It would be more practical to perform data assimila-

tion experiments in a cycled mode, that is, assimilated
results from previous assimilation cycle are used in current
cycle. We have performed such experiments using three
assimilation cycles within an assimilation period of N =
121, that is, each cycle having 40 time steps. However,
since the model employed here is very simple and the
assimilation and forecast periods are quite short to prevent
a shock jump, the 4D-Var/I3D-Var solutions have con-
verged to the minimum very quickly even at the very first
cycle. Therefore, it is not feasible to do the cycling experi-
ments with current model system.

4. Conclusions

[29] In this study, the inverse 3D-Var (I3D-Var), which
employs the quasi-inverse method, is applied to an advec-
tion-diffusion problem. The performance of I3D-Var is
compared with that of standard 4D-Var, which is based on
the adjoint method, for various magnitudes of dissipation. A
hybrid method is also suggested to use the I3D-Var as a
preconditioner of the standard 4D-Var for cases with strong
diffusion and full physics.
[30] The performance of I3D-Var becomes poor as diffu-

sion increases. For given range of diffusion coefficients, the
convergence rate of cost function in the I3D-Var shows
much larger variation than that in the 4D-Var, which implies

that the I3D-Var performance is very sensitive to the
magnitude of diffusion.
[31] Although the I3D-Var may not replace the full 4D-

Var, it is demonstrated that it can serve as a preconditioner,
using a hybrid approach, for carrying minimization in the
4D-Var framework. Using the initial conditions obtained
through the I3D-Var, the 4D-Var showed much faster
convergence in minimizing the cost function.
[32] Overall, for this simple advection-diffusion problem,

the I3D-Var showed better performance in both conver-
gence rate and accuracy than the standard 4D-Var except for
the case with strong diffusion. For strong diffusion cases,
we may expect better performance in the I3D-Var by
neglecting the diffusion process (i.e., set the diffusion
coefficient to zero) in both forward and inverse runs.
However, this may result in completely different model
solutions especially when diffusion processes are very
important. It can be alleviated by neglecting diffusion only
in the inverse run. Further studies are needed in applying the
I3D-Var to realistic meteorological models which includes
physical processes.
[33] It should be also noted that our experiments were

performed for the use of observations in all available grid
points with disregard to the background term. For more
realistic experiments, we may need to consider situations
where only a subset of observations are available and thus
background term is necessary. We also need to develop
methods to include all available intermediate observations
within the assimilation period in the I3D-Var. These issues
are planned to be investigated in the future study.
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