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Promising new tools for the LETKF(1) 
 

1.  Running in Place (Kalnay and Yang, QJ 2010, Yang, Kalnay 
and Hunt, MWR, 2012) 
•  It extracts more information from observations by using them 
more than once. 
•  Useful during spin-up (e.g., hurricanes and tornados). 
•  It uses the “no-cost smoother”, Kalnay et al., Tellus, 2007b. 
•  Typhoon Sinlaku (Yang et al., 2012) 
•  7-years of Ocean Reanalysis (Penny, 2011, Penny et al., 2013) 
•  Very good results! 
 



3 

Promising new tools for the LETKF(2) 
 

2.  Effective assimilation of Precipitation (Guo-Yuan Lien, 
Eugenia Kalnay and Takemasa Miyoshi, 2013) 

•  Assimilation of precipitation has generally failed to improve 
forecasts beyond a day. 

•  A new approach deals with non-Gaussianity, and assimilation 
of both zero and non-zero precipitation.  

•  For perfect model experiments, the model now “remembers” 
the assimilation, so that that medium range forecasts are 
improved. 

•  Starting assimilation of real precipitation. 
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Promising new tools for the LETKF(3) 
3.  Forecast Sensitivity to Observations and “proactive QC” 

 (with Y Ota, D Hotta, T Miyoshi, J Liu, and J Derber)  
•  A simpler, more accurate formulation for the Ensemble 

Forecast Sensitivity to Observations (EFSO, Kalnay et al., 
2012, Tellus). 

•  Ota et al., 2012 tested it with the NCEP EnSRF-GFS 
operational system using all operational observations. 

•  Should allow identifying “bad observations” after 6hr, and then 
repeat the data assimilation without them: “proactive QC”. 

4. Ensemble Singular Vectors (Yang and Kalnay) 
•  Promising for additive inflation 
 
5. Coupled ocean-atm data assim., new hybrid (Penny et al) 

•    
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Local Ensemble Transform Kalman Filter ���
(Ott et al, 2004, Hunt et al, 2004, 2007)���

(a square root filter)	


•  Model independent 
(black box) 
•  Obs. assimilated 
simultaneously at each 
grid point 
•  100% parallel 
•  No adjoint needed 
•  4D LETKF extension 
•  Computes the weights 
for the ensemble forecasts 
explicitly 

(Start with random 
initial ensemble) 

LETKF Observation 
operator 

Model 

ensemble  analyses 

ensemble forecasts 

ensemble  
“observations” 

Observations 
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Perform data assimilation in a local volume, choosing observations  

 
 

The state estimate is updated at the 
central grid red dot 

 

Localization based on observations 
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Perform data assimilation in a local volume, choosing observations  

 
 

The state estimate is updated at the 
central grid red dot 

All observations (purple diamonds) 
within the local region are assimilated 

Localization based on observations 

The LETKF algorithm can be described in a single slide! 
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Local Ensemble Transform Kalman Filter (LETKF) 

Forecast step:       
Analysis step: construct 
 
 
 
Locally: Choose for each grid point the observations to be used, and 
compute the local analysis error covariance and perturbations in 
ensemble space: 
  
 
Analysis mean in ensemble space: 
and add to      to get the analysis ensemble in ensemble space.  

The new ensemble analyses in model space are the columns of                
                  . Gathering the grid point analyses forms the new 

global analyses. Note that the the output of the LETKF are analysis 
weights         and perturbation analysis matrices of weights        . These 
weights multiply the ensemble forecasts. 

   
x n,k

b = M n x n−1, k
a( )

X b = x1
b − xb | ... | x K

b − xb⎡⎣ ⎤⎦;

y i
b = H (x i

b ); Yn
b = y1

b − yb | ... | y K
b − yb⎡⎣ ⎤⎦

Pa = K −1( )I +YbTR−1Yb⎡⎣ ⎤⎦
−1
;Wa = [(K −1) Pa ]1/2

X n
a = X n

bWa + xb

wa = PaYbTR−1(yo − yb )
Wa

Globally: 

  w
a Wa
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No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
 Quasi Outer Loop (QOL)
 “Running in place” (RIP) for faster spin-up
 Use of future data in reanalysis
 Ability to use longer windows and nonlinear perturbations

tn tn-1 
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No-cost LETKF smoother first 
tested on a QG model: it works… 

“Smoother” 
reanalysis  

LETKF Analysis 
xn
a = xn

f +Xn
fwn

aLETKF analysis  
at time n 

Smoother analysis  
at time n-1 xn−1

a = xn−1
f +Xn−1

f wn
a

Very simple smoother: apply the final weights at the 
beginning of the window. It allows assimilation of 
future data, and assimilating data more than once.  
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Nonlinearities, “QOL” and “Running in Place” 

Quasi Outer Loop: It centers the ensemble on a more 
accurate nonlinear solution. 

“Running in Place” smoothes both the analysis and the 
analysis error covariance and iterates a few times… 

 

Lorenz -3 variable model RMS analysis error 
 

   4D-Var   LETKF  LETKF  LETKF 
               +QOL             +RIP 

Window=8 steps  0.31      0.30  0.27    0.27 
Window=25 steps  0.53      0.68  0.47    0.35  
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Running in Place: Spin-up with a QG model 

Spin-up depends on the  initial perturbations, but RIP works well even with 
uniform random perturbations. RIP becomes even faster than 4D-Var (blue).  

 

RIP accelerates 
the EnKF spin-up 
(e.g., hurricanes, 
severe storms) 

LETKF with uniform 
random initial 
perturbations 

RIP 

4D-Var with 3D-Var 
Initial perturbations 
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Why RIP works: Results with a Linear model 

xn = M (xn−1) = xn−1 +α

σ n
2 =G(σ n−1

2 ) = Cσ n−1
2

•  RIP adapts to using an observation N-times by dividing the 
spread by N: RIP converges to the regular optimal KF solution. 

•  The spin-up is faster and the analysis update is “softer” (in 
small steps) rather than in large steps. 
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LETKF-RIP with real observations 
(Typhoon Sinlaku, 2008)  

11/23/2011@NTU-‐TIMS	  

SYNOP(+),SOUND(△),	  
DROPSONDE(○),	  
Typhoon	  center	  (X)	   RIP	  uses	  be=er	  the	  “limited	  observaHons”!	  

Flight	  data	  

Typhoon	  Sinlaku	  (2008)	  

3-‐day	  forecast	  

Obs	  
LETKF-‐RIP	  
LETKF	  

Courtesy of Prof. Shu-Chih Yang (NCU, Taiwan) 
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Steve Penny’s thesis 

An application of LETKF-RIP to ocean data assimilation 

Data Assimilation of the Global Ocean  
using 4D-LETKF, SODA(OI) and MOM2 

Advisors: E Kalnay, J Carton, K Ide, T Miyoshi, G Chepurin 

Penny (now at UMD/NCEP) implemented the LETKF 
with RIP and compared it with SODA (OI) 
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LETKF-RIP B/A 

FREE-RUN 

LETKF-IAU B 

SODA B 
SODA A 

LETKF-IAU A 

RMSD (ºC) (All vertical levels) B: background 
A: analysis 

Global RMS(O-F) of Temperature (oC), 
SODA, LETKF, RIP 

7 years of Ocean Reanalysis  
Temperature  

LETKF-RIP 

LETKF 

SODA 
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RMSD (psu) (All vertical levels) B: background 
A: analysis 

7 years of Ocean Reanalysis 
Salinity 

Global RMS(O-F) of Salinity (psu), 
SODA, LETKF, RIP 

SODA 

LETKF 
LETKF-RIP 
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Summary for LETKF-RIP (or QOL)  

•  Kalman Filter is optimal for a linear, perfect model. 
•  During spin-up, or when the ensemble perturbations grow 

nonlinearly, EnKF is not optimal, since it does not extract 
enough information from the observations. 

•  The LETKF “no-cost” smoother (or, equivalently, the 4D-
EnSRF) allows LETKF-RIP to use the observations more than 
once, and thus extract much more information. 

•  This shortens the spin-up and produces more accurate 
forecasts with the same observations. 

•  For linear models RIP converges to the same optimal KF 
solution but with spread reduced by ~ 

•  For long windows and nonlinear perturbations, RIP advances 
in smaller steps and approaches the true attractor more 
“softly”.  

N
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(2) Effective Assimilation of Precipitation 
(Guo-Yuan Lien, E. Kalnay and T Miyoshi) 

•  Assimilation of precipitation has been done by changing the moisture Q in 
order to make the model “rain as observed”. 

•  Successful during the assimilation: e.g. the North American Regional 
Reanalysis had perfect precipitation! 

•  However the model forgets about the changes soon after the assimilation 
stops!  

•  The model will remember potential vorticity (PV). 
•  EnKF should modify PV efficiently, since the analysis weights will be 

larger for an ensemble member that is raining more correctly, because it 
has a better PV. 

•  However, 5 years ago, we had tried assimilating precipitation observations 
in a LETKF-SPEEDY model simulation but the results were POOR! 

•  Big problem: precipitation is not Gaussian. 
•  We tried a Gaussian transformation of precipitation and it worked!  
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G−1 (x ) = 2erf −1 (2x −1)

Transform precipitation y into a Gaussian ytransf 

Start with pdf of 
y=rain at every grid 
point. 
 
 “No rain” is like a 
delta function that we 
cannot transform. 
 
We assign all “no 
rain” to the median 
of the no rain CDF. 
 
We found this works 
as well as more 
complicated 
procedures. 
 
It allows to assimilate 
both rain and no rain. 
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Raobs 

Gaussian, 10 members rain,  
20% error, all variables 

Only Q 

•  Main result: with at least 10 ensemble members raining in order 
to assimilate an obs, updating all variables (including vorticity), 
with Gaussian transform, and rather accurate observations 
(20% errors), the analyses and forecasts are much improved!  

•  Updating only Q is much less effective.  
•  The 5-day forecasts maintain the advantage. 
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Raobs 

Q-only 

All variables 

SH 

NH 

TR 
One year of 

5-day 
forecasts 

The model remembers the impact of pp assimilation 
in the SH, NH and tropics! 



23 

Assimilated only rain 

Assimilated both rain and no rain 

If we assimilate only rain the results are worse 
We need to assimilate both rain and no rain! 
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50% errors, No Gaussian Transform 

50% errors, with Gaussian Transform 

20% errors, with GT 

The impact of the Gaussian Transform is important  
with larger observation errors (50% rather than 20%). 
The impact of GT50% is almost as good as GT20%. 
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TMPA 

GFS T62 

Real observations, 
model errors 
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TMPA (TRMM+) statistics vs GFS T62 



Summary for assimilation of precipitation 

•  The model remembers potential vorticity (dynamics), does not 
remember moisture changes, or even temperature. 

•  EnKF has a better chance to assimilate potential vorticity by 
giving higher weights to ensemble members with right precip. 

•  EnKF also does not require model linearization, a problem for 
variational systems. 

•  We found that EnKF with a Gaussian transformation of 
precipitation assimilates rain info and remembers it during the 
forecast in a perfect model. 

•  We are attempting to assimilate TMPA precip in the GFS, but 
can only afford T62! 

•  Will try to assimilate only synoptic scale rain. 
•  Following Philippe Lopez we will also try assimilating observed 

precip over North America. 27 



Ensemble Forecast Sensitivity 
to Observations (EFSO) and 
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Ensemble Forecast Sensitivity to Observations 
“Adjoint sensitivity without adjoint” (Liu and K, 2008, Li et al., 2010) 

Here we show a simpler, more accurate formulation  
(Kalnay, Ota, Miyoshi, Liu: Tellus, 2012) 

The only difference between           and                is the assimilation of observations at 
00hr: 

 

 

  Observation impact on the reduction of forecast error:   

(Adapted from Langland 
and Baker, 2004) 

e t |0 = x t |0
f − x t

a

e t |0 e t |−6

Δe2 = (et|0
T et|0 − et|−6

T et|−6 ) = (et|0
T − et|−6

T )(et|0 + et|−6 )

analysis   t 

e t |−6
e t |0

-6hr 00hr 

OBS. 

(x0
a − x0|−6

b ) = K(y − H (x0 |−6
b ))



Ensemble Forecast Sensitivity to Observations 
Δe2 = (e t |0

T e t| 0 − e t |−6
T e t |−6 ) = (et | 0

T − e t |−6
T )(et | 0 + e t |−6 )

= (xt |0
f − x t |−6

f )T (e t| 0 + et |−6 )

= M(x0
a − x0|−6

b )⎡⎣ ⎤⎦
T

(e t |0 + e t |−6 ), so that

Δe2 = MK(y − H (x0 |−6
b ))⎡⎣ ⎤⎦

T
(e t |0 + e t |−6 )

Langland and Baker (2004), Gelaro and Zhu, solve this 
 with the adjoint: 

Δe2 = (y − H (x0 |−6
b ))⎡⎣ ⎤⎦

T
K TMT (et | 0 + e t |−6 )

This requires the adjoint of the model       and of the data 
assimilation system      (Langland and Baker, 2004) KT

MT



Ensemble Forecast Sensitivity to Observations 

With EnKF we can use the original equation without “adjointing”: 

Δe2 = MK(y − H (x0 |−6
b )⎡⎣ ⎤⎦

T
(e t |0 + et |−6 )

= (y − H (x0|−6
b )⎡⎣ ⎤⎦

T
R−1Y0

aX t |0
fT (et | 0 + e t |−6 ) / (K −1)

K = PaHTR−1 = XaXaTHTR−1 / (K −1) so that 

MK =MX a(X aTH T )R−1 / (K −1) = Xt | 0
f Y aTR−1 / (K −1)

This uses the available nonlinear forecast ensemble products. 

Thus, 

Recall that 



Tested ability to detect a poor quality ob impact on the 
forecast in the Lorenz 40 variable model 

 The adjoint and the ensemble 
sensitivity give similar observation 
impact on the 24 hr forecast.  

 The ensemble sensitivity is 
nonlinear and is able to detect bad 
obs for longer forecasts 

 This was done ignoring EnKF 
localization 

Observation impact from LB(+) and from ensemble sensitivity (   ) 
1 day 10 days 

The localization center point for observation impact estimate is now 
moved with the horizontal wind: an approximation 



Ota et al. 2013: Applied EFSO to NCEP GFS/
EnSRF using all operational observations.  

 
Preliminary criteria used to identify  

regional 24hr “forecast failures” 
• Divide the globe into 30ox30o regions 
• Find all cases where the 24hr regional forecast error is at 
least 20% larger than the 36hr forecast error verifying at the 
same time, and 

• where the 24hr forecast has errors at least twice the time 
average. 

• Identify the top observation type that has a negative impact 
on the forecast. 

• Found 7 cases of 24hr forecast failures. In every case, the 
forecast improved without the “bad observations”. 



24-hr forecast error correction (Ota et al. 2013) 
- identified 7 cases of large 30ox30o regional errors, 

- rerun the forecasts denying bad obs. 
- the forecast errors were substantially reduced 

 

MODIS 



“Proactive” QC: Bad observations can be identified 
by EFSO and withdrawn from the data assimilation 

!

After identifying MODIS polar winds producing bad 24hr 
forecasts, the withdrawal of these winds reduced the regional 
forecast errors by 39%, as projected by EFSO. 



Daisuke Hotta: Did 18 days of EFSO but using 
the LETKF Hybrid (not the EnSRF), and 6 hr 

forecasts, not 24 hr forecasts. 
 

Evaluation time: 6 hours 
Verified against 
 LETKF analysis 

Evaluation time: 6 hours 
Verified against 

hybrid GSI analysis 

Time averaged 
EFSO’s are 
rather 
insensitive to the 
verifying 
analysis! 



Average total observation impact: 
Comparison with Ota et al. (2013), 31 days, using 

the EnSRF verification after 24hrs, not 6 hrs. 

Evaluation time: 6 hours 
Verified against 
 LETKF analysis 

Evaluation time: 6 hours 
Verified against 

hybrid GSI analysis 

Evaluation time: 24 hours 
Verified against  
EnSRF analysis 

from Ota et.al (2013) 



In the future, we will define regions of uniform 
areas using spherical harmonics (e.g., n=6, m=3)  

!
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EFSO and Proactive QC: Summary 
   

•  Ensemble Forecast Sensitivity to Observations (EFSO, Kalnay 
et al., 2012, Tellus) is a simpler and more accurate formulation 
than Liu and Kalnay (2008, QJRMS). 

•  Ota et al., 2013, Tellus tested EFSO with the NCEP EnSRF-
GFS operational system using all operational observations. 

•  EFSO was used to identify “bad observations” with large 
negative regional impacts after 24hr. 

•  Hotta has shown that we can use EFSO with 6hr forecasts 
from a hybrid, and that it is not too sensitive to the choice 
of verification. 

•  “Proactive QC”: repeat the 6hr data assimilation without 
the identified bad obs, and  

•  Save the “bad obs” with metadata from EFSO and provide 
them to the algorithm developers. 



Applications of ensemble singular 
vectors in the LETKF framework 

Shu-Chih Yang and Eugenia Kalnay 
with thanks to 
T. Enomoto 



Ensemble Singular Vectors 

δxt−Δt
I =Xt−Δt

I p   
δxt

F =Xt
Fp

Find the linear combination of initial perturbations that will grow 
fastest given a optimization time period	

By defining the initial and final perturbation norms (CI and CF), we can 
solve p (Enomoto et al. 2006).

T

Xt−Δt
I CI Xt−Δt

I!

"
#

$

%
&
−1 T

Xt
F CF Xt

F!

"
#

$

%
&p =λ p

Initial ES:
Final ES:

We can find K sets of IEI and FES with λ i,pi   i =1,,K( )

Define the vector of initial (I) and final (F) perturbations:
Xt−Δt

I = δx1,t−Δt,,δxi,t−Δt,,δxK ,t−Δt#$ %&;     Xt
F = δx1,t

F ,,δxi,t
F ,,δxK ,t

F#$ %&



Ensemble sensitivity (ES) 
 in a Quasi-geostrophic model 

Ensemble Sensitivity with an 12-hr interval"

The fast growing perturbation (contours) is very closely  related to 
the background errors (color). The IES (an initial Singular Vector) 
is NOT related to the initial errors."

Xt−Δt
I = Xt−Δt

a                          ; Xt
F = Xt

b(LETKF Ana. Ens) (LETKF Back. Ens ) 



ADDIES is particularly effective in correcting fast growing 
errors!!"

Total analysis error 

Large analysis error 

Used IES as additive inflation 



Growing errors 

•  In CNTL, the incompletely removed growing errors 
amplify at later forecast time."

•  ADDIES successfully removes growing errors!"

CNTL 
ADDRDN 
ADDIES 



Correcting fast growing errors with 
LETKF-RIP  

IESs are used as the additive inflations for refreshing the 
smoothed analysis during RIP iterations."

IES is more effective than the random perturbations 
and further accelerates the LETKF’s spin-up!"



Correcting fast growing errors with 
LETKF-RIP   

Large errors can be quickly removed in 
the RIP+ ESIadd analysis!	

Analysis error during LETKF’s spin-up 



Background error (color) vs.  
analysis increment (contour) 

Mult. Inflation (t=55)" Mult.+IESadd Inflation (t=55)" Mult.+RDNadd Inflation (t=55)"

Mult. Inflation (t=56)" Mult.+IESadd Inflation (t=56)" Mult.+RDNadd Inflation (t=56)"



Simultaneous data assimilation of CO2 and 
meteorological variables within LETKF 

coupled with NCAR CAM model  

*Ji-Sun Kang, *Eugenia Kalnay, +Junjie 
Liu, #Inez Fung, and *Takemasa Miyoshi 

*University of Maryland, College Park,MD 
+NASA/JPL, Pasadena, CA 

# University of California, Berkeley, CA 



▼  True CF ▼ ▼  Analysis of CF ▼ 

Results 
00Z01APR  
After three months of DA 

00Z01AUG  
After seven months of DA 

00Z01JAN  
After one year of DA 

We succeed in estimating time-evolving CF at model-grid scale 



Summary 
•  We have shown the feasibility of simultaneous analysis of 

meteorological and carbon variables within LETKF framework 
through the simulation experiments. 

•  The system LETKF-C has been tested in a intermediate-
complexity model SPEEDY-C with excellent results. 
–   Multivariate data assimilation with “localization of the 

variables”  (Kang et al. 2011) 
–  Advanced data assimilation methods for CO2 flux estimation have 

been explored (Kang et al. 2012) 
•  The implementation of the LETKF-C to NCAR CAM 3.5 model is 

now in progress 
–  Analysis step shows very good performance in OSSE with real 

observation coverage 
–  Analysis cycle with a forecast step will be operated soon 

•  The same methodology has been applied to estimating surface 
fluxes of heat, moisture and momentum, and the results are 
promising! 



Initial and final analysis corrections 
(colors), with one BV (contours) 

4D-Var-12hr 

Initial increments 

Initial increments 

Final increments 

Final increments 

4D-Var-12hr 

LETKF LETKF 



Data assimilation for the 
coupled ocean-atmosphere 

Eugenia Kalnay, Tamara Singleton, Steve 
Penny, Takemasa Miyoshi, Jim Carton 

 
Thanks to the UMD Weather-Chaos Group, to Daryl Kleist 

and to the India Monsoon Mission 

GODAE Ocean View/WGNE Workshop 2013 
19 March 2013 



Outline 
•  Traditional approaches. 
•  Thesis of Tamara Singleton (DA with toy coupled model). 
•  The LETKF and Running in Place. 
•  Steve Penny: 7 years ocean reanalysis. 
•  Steve Penny: New EnKF-based hybrid. 
•  Shaoqing Zhang: GFDL coupled EnKF. 
•  Our planned approach to coupled LETKF (India Monsoon 

Mission) 
•  Questions: 

–  Can we do a robust coupled SST analysis? SSH? Scatterometer winds? 
–  Should we do LETKF-RIP? Short windows for the ocean and atm.? 
–  Should we do Gaussian Transformation (Lien et al.) 
–  Should we do Proactive QC with Ens. Fcst. Sens. to Obs. (EFSO)? 

•  Discussion 



Traditional approaches 

“In a typical coupling scheme for an ocean-atmosphere model, 
the ocean model passes SST to the atmosphere, while the 
atmosphere passes back heat flux components, freshwater 
flux, and horizontal momentum fluxes.” (Neelin, Latif & Jin, 
1994) 
 
SST in the ocean model is frequently nudged from Reynolds 
SSTs, not assimilated from observations. SSH may not be 
even be used. 
 
The data assimilation windows are very different for the ocean 
and the atmosphere. 
 
 



Tamara Singleton’s thesis 
Data Assimilation Experiments with a  

Simple Coupled Ocean-Atmosphere Model 

Questions she addressed: 
-- Which is more accurate: 4D-Var or EnKF? 
-- Is it better to do an ocean reanalysis separately, or as a 
single coupled system? 
-- ECCO is a version of 4D-Var where both the initial state 
and the surface fluxes are control variables. This allows 
ECCO to have very long windows (decades) and estimate 
the surface fluxes that give the best analysis.  
Is ECCO the best approach for ocean reanalysis?   



Simple Coupled Ocean-Atmosphere System 

Ocean 

Tropical atmosphere 

Extratropical atmosphere 

Model Parameter Definitions 

3 coupled Lorenz models: A slow “ocean” 
component strongly coupled with a fast 
“tropical atmosphere component”, in turn 
weakly coupled with a fast “extratropical 
atmosphere” (Peña and Kalnay, 2004). 

Model State: 

Variables Description Values 

c,cz,ce Coupling 
coefficient 

c,cz = 1 
ce = 0.08 

τ time scale τ = 0.1 
σ, b, and r 
 

Lorenz 
parameters 

σ=10, b=8/3, 
and r=28 
 

k1,k2 Uncentering 
parameters 

k1=10 
k2 = -11 

 

xe = σ (ye − xe ) − ce(xt + k1)
ye = rxe − ye − xeze − ce(yt + k1)
ze = xeye − bze

 

xt = σ (yt − xt ) − c(X + k2 ) − ce(xe + k1)
yt = rxt − yt − xtzt + c(Y + k2 ) + ce(ye + k1)
zt = xt yt − bze + czZ

 

X = τσ (Y − X) − c(xt + k2 )
Y = τrX − τY − τXZ + c(yt + k2 )
Z = τXY − τbZ + czzt

[xe, ye, ze, xt , yt , zt ,X,Y ,Z]
T



Simple Coupled Ocean-Atmosphere Model (Peña and Kalnay, 2004) 

Coupling strength Tropical Atmosphere 

Tropical Ocean Extra-tropical Atmosphere 

We do OSSEs with this simple coupled model 

Ocean is vacillating 
between a “normal 

year”  (lasts from ~3-8 
years) and an “El Nino” 

(lasts about a 1 year) 



Time series of the x-component 

Simple Coupled Ocean-Atmosphere Model (Peña and Kalnay, 2004) 

fast tropical 
atmosphere 

slow 
ocean 

fast 
extratropical 
atmosphere 

Δt=0.01 

We do OSSEs with this simple coupled model 

“El Niño” 1 year~35Δt 



4D-Var/ETKF Data Assimilation Summary 

•  We developed a 4D-Var data assimilation system for the simple 
coupled ocean-atmosphere model 

•  We found that lengthening the assimilation window and applying 
QVA improves the 4D-Var analysis.  

•  Tuning the amplitude of the background error covariance has 
an impact on the performance of the assimilation. 

•  EnKF-based methods (LETKF & ETKF-QOL) compete with 4D-
Var analyses for short and long assimilation windows. 

•  For much longer assimilation windows, 4D-Var outperforms the 
EnKF-based methods 

•  Short windows are good for ETKF 
•  Long windows are good for 4D-Var 
•  Optimal accuracy similar for 4D-Var and ETKF 



ECCO-like 4D-Var 

•  The consortium for Estimating the Circulation and Climate 
of the Ocean (ECCO) is a collaboration of a group of 
scientists from the MIT, JPL, and the Scripps Institute of 
Oceanography 

•  The main characteristic of ECCO is that they include 
surface fluxes as control variables. 
–  This allows them to have exceedingly long assimilation windows in 

4D-Var (e.g. 10 years or even 50 years). 
–  They used NCEP Reanalysis fluxes (Kalnay et al, 1996) as a first 

guess. 

•  ECCO used 4D-Var to estimate the initial ocean state and 
surface fluxes (Stammer et al., 2004; Kohl et al., 2007) in 
a 50-year reanalysis 



Comparison of ECCO-like & Ocean 4D-Var 
Obs. s.d error = 1.41 for ocean QVA APPLIED 

ECCO improves the 4D-analyses 
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 Are the ECCO fluxes more accurate? 

RMS Errors (Flux 3 Estimate)
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Answers to the Research Questions 
Questions: 
-- Which is more accurate: 4D-Var or EnKF? 
Fully coupled EnKF (with short windows) and 4D-Var (with long 
windows) have about the same accuracy. 
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coupled, but uncoupled (ocean only) reanalyses are fairly good.  



Answers to the Research Questions 
Questions: 
-- Which is more accurate: 4D-Var or EnKF? 
Fully coupled EnKF (with short windows) and 4D-Var (with long 
windows) have about the same accuracy. 
-- Is it better to do the ocean reanalysis separately, or as a single 
coupled system? 
Both EnKF and 4D-Var are similar and most accurate when 
coupled, but uncoupled (ocean only) reanalyses are quite good.  
-- Is ECCO 4D-Var with both the initial state and the surface 
fluxes as control variables the best approach? 
In our simple ocean model 4D-Var cannot remain accurate with 
very long windows. Our ECCO reanalysis remained satisfactory 
with very long windows but at the expense of less accurate 
fluxes. 



•  So far hybrids have been created combining an existing 
Var system with an ensemble to provide the flow 
dependence of the background error covariance. 

•  We would like to start with a well-developed EnKF 
(like the LETKF) and add a 3D-Var that provides the 
full rank that the ensemble lacks. 

•  Steve Penny developed a simple, locally Gaussian 3D-
Var for this purpose, and tested it on the Lorenz-96, a 
40 variable model. 

•  He plots the analysis error as a function of the number 
of ensemble members (2 to 40) and the number of 
observations (1 to 40).  

How about hybrids between Var and EnKF? 



An ensemble based hybrid with a simple local 
3D-Var (Steve Penny)  

applied to the Lorenz 96 model 
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The total model  dimension 
is K=40 
 
The LETKF is extremely 
accurate as long as  
k>7, number of obs>7. 
 

This is the corner where we 
are in ocean EnKF: too few 
obs, too few ensembles 

Standard LETKF 



An ensemble based hybrid with a simple local 
3D-Var (Steve Penny)  

applied to the Lorenz 96 model 
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Standard LETKF Add a simple 3D-Var to LETKF 

The hybrid LETKF-simple 3D-Var is more robust for few 
ensemble members and few observations, as in the ocean. 



Penny’s new ocean hybrid reanalysis: 
LETKF + GODAS hybrid 
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Basic idea for our coupled LETKF assimilation 
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Summary: ideas/questions for future 
coupled ocean-atmosphere EnKF 

•  Toy model: coupled assimilation and short windows are more 
accurate for LETKF even if ocean has longer time scales. 

•  Running in Place (RIP) extracts more information from the 
observations and allows the use of shorter windows.  

•  A new hybrid LETKF+simple 3D-Var would make the system 
more robust with fewer ensemble members and observations. 

•  For the coupled (India Monsoon Mission) CFS system, we will 
test the use of 6hr (short) windows for the ocean as well as the 
atmosphere assimilation. 

•  Assimilate SST and SSH observations directly.  
•  Localization of observations near the surface should allow for 

atm.-ocean interaction through the background error covariance 



Summary: ideas/questions for future 
coupled ocean-atmosphere EnKF 

•  Toy model: coupled assimilation and short windows are more 
accurate for LETKF even if ocean has longer time scales. 

•  Running in Place (RIP) extracts more information from the 
observations and allows the use of shorter windows.  

•  A new hybrid LETKF+simple 3D-Var would make the system 
more robust with fewer ensemble members and observations. 

•  For the coupled (India Monsoon Mission) CFS system, we will 
test the use of 6hr (short) windows for the ocean as well as the 
atmosphere assimilation. 

•  Assimilate SST and SSH observations directly.  
•  Localization of observations near the surface should allow for 

atm.-ocean interaction through the background error covariance 

Thanks! 


