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Abstract 

Past attempts to assimilate precipitation by nudging or variational methods have succeeded 1	  

in forcing the model precipitation to be close to the observed values. However, the model 2	  

forecasts tend to lose their additional skill after few forecast hours. In this study, a local 3	  

ensemble transform Kalman filter (LETKF) is used to effectively assimilate precipitation by 4	  

allowing ensemble members with better precipitation to receive higher weights. In addition, two 5	  

other changes in the precipitation assimilation process are proposed to solve the problems related 6	  

to the non-Gaussianity of the precipitation variable: a) transform the precipitation variable into a 7	  

Gaussian distribution based on its climatological distribution, and b) only assimilate precipitation 8	  

at the location where at least some ensemble members have positive precipitation. Unlike most 9	  

current approaches, both positive and zero rain observations are assimilated effectively. 10	  

Observing system simulation experiments (OSSEs) are conducted using the SPEEDY 11	  

model, a simplified but realistic general circulation model. When the global precipitation is 12	  

assimilated in addition to rawinsonde observations, both the analyses and the medium range 13	  

forecasts are significantly improved as compared to only having rawinsonde observations. The 14	  

improvement is much reduced when only modifying the moisture field by precipitation 15	  

observations with the same approach. The effect of precipitation assimilation on the analyses is 16	  

retained on the medium-range forecasts, and is larger in the Southern Hemisphere than that in the 17	  

Northern Hemisphere because the NH analyses are already accurate by the denser rawinsonde 18	  

stations. Both the Gaussian transformation and the new observation selection criterion are shown 19	  

to be beneficial to the precipitation assimilation especially in the case of large observation errors. 20	  

Assigning smaller horizontal localization length scales for precipitation observations further 21	  

improves the LETKF analysis. The new approach could be used in the assimilation of other non-22	  

Gaussian observations. 23	  

 
Key words: ensemble Kalman filter, data assimilation, precipitation, non-Gaussianity   24	  
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1. Introduction 

Precipitation has long been one of the most important and useful meteorological 25	  

observations. The traditional rain gauge measurement of precipitation can be traced back to 19th 26	  

century before the rawinsonde network was established yet (e.g., Jones and Bradley 1992). In 27	  

recent years, more advanced precipitation estimations from a variety of remote sensing platforms, 28	  

such as satellite and ground-based precipitation radar, have also become available. For example, 29	  

The Tropical Rainfall Measuring Mission (TRMM) has been producing a set of high-quality, 30	  

high-resolution global (50S–50N) precipitation estimates (Huffman et al. 2007) which have been 31	  

widely used in many research areas. The Global Precipitation Measurement (GPM; Hou et al. 32	  

2008) mission is scheduled for launch in 2014 as the successor to TRMM. Because of the large 33	  

impact that effective assimilation of precipitation could have in forecasting severe weather 34	  

(Bauer et al. 2011), many efforts to assimilate precipitation observations have been made. 35	  

Nudging or variational methods have been used previously to assimilate precipitation by 36	  

modifying the model’s moisture and sometimes temperature profiles as well, in order to either 37	  

enhance or reduce short-term precipitation according to the model parameterization of rain (e.g., 38	  

Tsuyuki 1996, 1997; Falkovich et al. 2000; Davolio and Buzzi 2004; Koizumi et al. 2005; 39	  

Mesinger et al. 2006). They are generally successful in forcing the forecasts of precipitation to be 40	  

close to the observed precipitation during the assimilation, but they revert to the regular forecasts 41	  

soon after the assimilation of rain ceases. For example, a nudging method was applied to the 42	  

North American Regional Reanalysis (NARR), and achieved the objective of making the Eta 43	  

NARR 3 hour forecasts essentially identical to the observed precipitation used to nudge the 44	  

model. As a result, in the hydrological cycle of the NARR, the model precipitation was 45	  

extremely close to the observed precipitation (Mesinger et al. 2006). However, the Eta forecasts 46	  

from the NARR were not superior to the operational forecasts beyond a few hours. Nudging was 47	  

not effective presumably because it is not an efficient way to update the potential vorticity field, 48	  

which is the “master” dynamical variable that primarily determines the evolution of the forecast 49	  

in NWP models. 50	  

There also have been a number of essential issues for the precipitation assimilation in the 51	  

variational framework. Precipitation processes parameterized by the model physics are usually 52	  

very nonlinear and even discontinuous at some “thresholds” (Zupanski and Mesinger 1995). 53	  

Therefore, it is problematic to create and use the linearized version of the forward model which 54	  

is required in the 4D-Var assimilation of precipitation variables (Errico et al. 2007). An 55	  

inaccurate tangent linear model and adjoint model would yield a poor estimate of the evolution 56	  

of finite perturbations and degrade the 4D-Var analyses. Sometimes an alternative moist physical 57	  

parameterization scheme that is more linear and continuous has been used to reduce the 58	  

nonlinearity problem (e.g., Zupanski and Mesinger 1995; Lopez and Moreau 2005). In addition, 59	  

the highly non-Gaussian distribution of the precipitation observations seriously violates the basic 60	  

assumption of normal error statistics made in most data assimilation schemes. The flow-61	  



4	  

independent background error covariance that is usually used in variational methods cannot 62	  

describe the relation between precipitation and other state variables. All of the above problems 63	  

have contributed to the difficulties of the precipitation assimilation, leading to a widely shared 64	  

experience that forecasts starting from analyses with precipitation assimilation lose their extra 65	  

skill after just a few forecast hours (e.g., Tsuyuki and Miyoshi 2007; Davolio and Buzzi 2004; 66	  

Errico et al. 2007). One notable exception is Hou et al. (2004) who used forecast tendency 67	  

corrections of temperature and moisture as control variables in variational data assimilation in 68	  

the assimilation of hurricane observed precipitation. They were able to show that large changes 69	  

in precipitation had long-lasting positive impacts on a hurricane forecast, presumably because 70	  

the release of latent heat corrected the potential vorticity. 71	  

Bauer et al. (2011) recently reviewed the current status of precipitation assimilation and 72	  

concluded that there are still major difficulties related to (1) the moist physical processes in 73	  

NWP models and their linear representation and (2) the non-Gaussianity of both precipitation 74	  

observations and model perturbations. Here we use the EnKF framework to address these critical 75	  

issues. First, the EnKF method does not require linearization of the model, and it should be able 76	  

to more efficiently change the potential vorticity field	  by allowing ensemble members with better 77	  

precipitation (due to presumably better dynamics) to receive higher weights. Second, a general 78	  

variable transformation is introduced to solve the problem that precipitation is highly non-79	  

Gaussian. Recognizing this non-Gaussianity, transformations such as a logarithmic 80	  

transformation have been previously applied to the precipitation assimilation (e.g., Hou et al. 81	  

2004; Lopez 2011). The logarithmic transformation can alleviate the non-Gaussianity of positive 82	  

precipitation, whereas our proposed algorithm can transform any continuously distributed 83	  

variable into a Gaussian distribution. In addition, we also address the issue of zero precipitation. 84	  

Zero precipitation observations can be successfully assimilated by using a criterion that requires 85	  

that at least several background ensemble members have positive precipitation in order to 86	  

assimilate the precipitation observation. We also note that within the variational methods, 87	  

considerable efforts have focused on the more accurate microphysical parameterizations (e.g, 88	  

Treadon et al. 2003; Li and Mecikalski 2010, 2012). In the ensemble framework, the 89	  

precipitation determined by the ensemble model variables can be used in the assimilation without 90	  

having to account for details in the physical processes.  Several pioneering experiments of 91	  

precipitation assimilation using ensemble data assimilation methods have been conducted, in 92	  

which promising results have been obtained (Miyoshi and Aranami 2006; Zupanski et al. 2011; 93	  

Zhang et al. 2012). 94	  

In this paper we carry out observing system simulation experiments (OSSEs) using the 95	  

same system that we had previously tested unsuccessfully before introducing the Gaussian 96	  

Transform of precipitation and the new criterion for precipitation assimilation. The paper is 97	  

organized as follows. The methodology including the Gaussian transformation and special 98	  

treatment of zero precipitation observations are introduced in section 2. Section 3 describes the 99	  

model, the local ensemble transform Kalman filter (LETKF) used in this study, and the detailed 100	  
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settings of the OSSEs. Section 4 shows the results of the precipitation assimilation. Concluding 101	  

remarks and further issues are in section 5. 102	  

2. Proposed methodology for an effective assimilation of precipitation 

(a) Gaussian transformation 

In order to satisfy the basic assumption of Gaussian distribution and error statistics in data 103	  

assimilation, we seek a general transformation algorithm to transform any variable ! with a 104	  

known arbitrary distribution into a Gaussian variable !trans. It can be achieved through the 105	  

connection between the two cumulative distribution functions (CDFs) of ! and !trans: 106	  

 !trans = !!! ! !  , (1) 107	  

where ! !  stands for the CDF of ! (by definition having values from 0 to 1), and !!! is the 108	  

inverse CDF of a normal distribution with zero mean and unit standard deviation such as !trans is 109	  

designed to be. Here, 110	  

 !!! ! = 2  erf!! 2! − 1  , (2) 111	  

where erf!! is the inverse error function. The CDF of ! can be determined empirically. In this 112	  

study, we first run the SPEEDY model for 10 years and in order to compute the CDF of 113	  

precipitation variables (previous 6-hour accumulated precipitation) at each grid point and at each 114	  

season based on this 10-year model climatology. Accordingly, transformations of both 115	  

observation and model precipitation variables are thus made in terms of their spatial location and 116	  

season during the assimilation process. This technique is sometimes called “Gaussian 117	  

anamorphosis” and has been also used by Schöniger et al. (2012) in hydrology, providing a more 118	  

comprehensive theoretical explanation. Note that this method transforms the climatological 119	  

distribution of the original variable into a Gaussian distribution as a whole, but not its error 120	  

distribution at every measurement and model background. Nevertheless, we assume that the error 121	  

distribution in a more Gaussian variable would also have more Gaussian error statistics, and test 122	  

whether this method is really beneficial in the experiment results. 123	  

The transformation ensures a simple one-to-one relationship between the original variable 124	  

and the transformed variable if their CDFs are continuous. Figure 1 illustrates how the 125	  

transformation works for the precipitation distribution at a grid point near Maryland in the winter 126	  

season. The probability density function (PDF) and CDF [i.e., ! ! ] of the original precipitation 127	  

variable are shown in Figures 1a and 1c, respectively. Using the inverse CDF of normal 128	  

distribution !!!, the ! !  is converted back to the transformed variable !trans, with the CDF 129	  

shown in Figure 1d and the PDF in Figure 1b. It is apparent that the precipitation is not a 130	  

continuous variable since it contains a large portion of zero values1  so that the CDF is 131	  

discontinuous at zero. The dashed parts of lines in Figures 1b, 1c, and 1d are associated with 132	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  In this study, we define 6-hour accumulated precipitation less than 0.1 mm as “zero precipitation.”	  
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those zero precipitation values. This issue will be addressed and the figure will be further 133	  

discussed in the next subsection. 134	  

In addition, !!! will transform zero and one to −∞ and +∞ respectively, suggesting that 135	  

the outliers of precipitation values will cause problems. In order to avoid problems transforming 136	  

those outliers, we set all precipitation values with cumulative distribution less than 0.001 and 137	  

greater than 0.999 to the values 0.001 and 0.999, respectively. This only affects very few values 138	  

that are close to the tails of the model climatological distribution or that may even fall outside the 139	  

distribution. Consequently, they will be transformed into -3.09 and 3.09.  140	  

 (b) Handling zero precipitation 

As mentioned in the last subsection, precipitation variables contain a large portion of zero 141	  

values, which is manifested as a delta function in the PDF (Figure 1a). Since any deterministic 142	  

transformation of a delta function will still result in a delta function, it would be impossible to 143	  

obtain a transformed precipitation variable with perfect normal distribution if all precipitation 144	  

values are considered. A naïve approach would be to only transform the non-zero part of 145	  

precipitation data. However, this is not practical in data assimilation because even if all zero 146	  

precipitation observations are discarded, in the background forecast there may be zero values at 147	  

the corresponding observation location which still need to be transformed (via the observation 148	  

operator) before they are passed into the assimilation calculation. In ensemble data assimilation 149	  

framework, this problem is even more apparent than in variational data assimilation since it is 150	  

very likely that a random ensemble member would have zero precipitation at an observation 151	  

location. Therefore, a heuristic solution to the transform of zero precipitation values is necessary2. 152	  

In our proposed algorithm, the CDF ! !  is discontinuous at ! = 0, thus the problem with 153	  

zero precipitation in this algorithm is equivalent to assigning a value of cumulative probability F 154	  

for zero precipitation (! = 0). In the absence of a better solution, a reasonable choice is to assign 155	  

the middle value of zero-precipitation cumulative probability to ! 0 . In the example shown in 156	  

Figures 1c and 1d, the probability of zero precipitation is about 63.4% (CDF = 0.634 for 157	  

minimum positive precipitation; open circles), thus ! 0  = 0.317 is assigned for all zero 158	  

precipitation (solid circles) at that grid point. In this way, the zero precipitation in the 159	  

transformed variable is still a delta function in its PDF (Figure 1b), but it is located at the median 160	  

of the zero precipitation part of the normal distribution). Therefore, though not perfectly 161	  

Gaussian, it is more reasonable than the original skewed distribution3. We tested other more 162	  

sophisticated approaches, including one that assigned uniformly distributed random values to fill 163	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  In the traditional logarithmic transformation, an arbitrary constant is usually added to the original 
precipitation value before the transformation [e.g., !!"#$% = log ! + 1 ] in order to avoid the singularity 
at zero precipitation.	  
3	  This approach to transforming zero precipitation does not maintain the properties of zero mean and unit 
standard deviation. However, this does not create problem in the data assimilation	  because such properties 
are essentially not required in the climatological distribution.	  
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up the zero-precipitation cumulative probability so that a perfect Gaussian variable could be 164	  

generated, but their experimental impact in the assimilation experiments were no better than that 165	  

of the simple median approach. 166	  

We note that traditional precipitation assimilation systems in the variational framework 167	  

usually discard the zero precipitation observations (e.g., Koizumi et al. 2005) because those 168	  

observations are difficult to use. Nevertheless, zero precipitation observations should contain 169	  

valuable (and accurate) information about the atmospheric state. With our current transformation 170	  

algorithm handling the zero precipitation and an ensemble data assimilation system, zero 171	  

precipitation observations are, indeed, assimilated. Instead of discarding zero observations, a 172	  

different criterion is used in this study: assimilation is conducted at all grid points where at least 173	  

some members of prior ensemble are precipitating (regardless of the observed values). This is 174	  

because if the ensemble spread is zero (i.e., all forecasts have zero precipitation), it is not 175	  

possible to assimilate precipitation using an EnKF. In section 4.a we will show that assimilating 176	  

precipitation observations at locations with only a few precipitating members does not show 177	  

improvements so that the criterion we have chosen is to require that at least half of the forecasts 178	  

have positive precipitation, which controls the assimilation quality and saves computational time. 179	  

3. Experimental design 

(a) The SPEEDY-LETKF system 

The Simplified Parametrizations, primitivE-Equation DYnamics (SPEEDY) model (Molteni 180	  

2003) is a simple, computationally efficient, but realistic general circulation model widely used 181	  

for data assimilation experiments. The version of SPEEDY model used in this study is run at a 182	  

T30 resolution with 7 vertical sigma levels. It has five state variables: the zonal (U) and 183	  

meridional (V) components of winds, temperature (T), specific humidity (Q), and surface 184	  

pressure (Ps). The previous 6-hour accumulated precipitation (PP) is also outputted by the model. 185	  

The LETKF (Hunt et al. 2007) is an ensemble Kalman filter scheme that performs most of 186	  

the analysis computations in ensemble space and in each local domain. As all other ensemble 187	  

data assimilation schemes, the flow-dependent background error covariance P! is inferred from 188	  

the sample covariance among ensemble members. The background error covariance can be 189	  

written as 190	  

 P! =    !
!!!

  X! X! ! , (3) 191	  

where X! = x!(!) − x! ,… , x!(!) − x!  is the matrix whose columns are background ensemble 192	  

perturbations (i.e., the departure of members from the ensemble mean) of state variables, and ! 193	  

is the ensemble size. The dimension of P! is exceedingly large in modern NWP models, thus it is 194	  

not computed explicitly. Instead, when performing the LETKF analysis, P! , the analysis 195	  

covariance in ensemble space is computed first (Hunt et al. 2007): 196	  

 P! = ! − 1   I+ Y! !R!!  Y! !! . (4) 197	  
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After that, the mean weight vector w! and the weight matrix for the ensemble perturbation W! 198	  

are computed from: 199	  

 w! = P!   Y! !R!! y! − y!  , (5) 200	  

 W! = ! − 1   P! ! !
 , (6) 201	  

where Y! = y!(!) − y! ,… , y!(!) − y!  is the matrix that consists of columns of background 202	  

observation perturbations, R is the observation error covariance, and y! is the observation. The 203	  

background (forecasted) observation values are calculated through the observation operator: 204	  

y!(!) = ! x!(!) . Finally, the analysis ensemble mean and perturbations can be computed by 205	  

applying the weights to the background ensemble: 206	  

 x! = x! + X!  w! , (7) 207	  

 X! = X!  W! . (8) 208	  

In the LETKF, Eqs. (4)-(8) are computed locally for every model grid point with its nearby 209	  

observations, which allows easy implementation of covariance localization and parallelization 210	  

(Hunt et al. 2007). A computationally efficient code for the LETKF is available at the public 211	  

Google Code platform by Miyoshi (http://code.google.com/p/miyoshi/), including the SPEEDY-212	  

LETKF system that couples the SPEEDY model with the LETKF codes. 213	  

When applying the Gaussian transformation, the precipitation observations in y!  are 214	  

replaced by the transformed observations, and the transformation algorithm is also included in 215	  

the observation operator H to get the transformed precipitation values from the background. In 216	  

addition, the observation errors associated with each observation also have to be transformed. 217	  

Conceptually, 218	  

 !trans! ≅ !! + !! trans − !trans! ≅ !trans! − !! − !! trans , (9) 219	  

where !! is the observation error and !trans!  is the transformed observation error whose squares 220	  

appear in the diagonal elements of R. This means that the observation error is rescaled based on 221	  

the differences between the transformed observation value and its adjacent values (i.e., 222	  

plus/minus one observation error). In this study, we calculate both ϵtrans!! = y! + ϵ! trans-‐ytrans!  223	  

and ϵtrans
!-‐ = ytrans! -‐ y!-‐ϵ!

trans
, requiring them be at least 0.1 (unitless in the transformed 224	  

variable), and then regarding their average as the transformed observation error; namely, 225	  

 !trans! = max !trans!! , 0.1 +max !trans!! , 0.1 2 . (10) 226	  

 (b) The observing system simulation experiment 

The SPEEDY model is first run for a one year spin-up, arbitrarily denoted year 1981, and 227	  

then for 10 years, from January 1, 1982 to January 1, 1992 forced by the climatological sea 228	  

surface temperature. These 10 years of simulation are used to compute the precipitation CDF at 229	  

each grid point and at each season in preparation for the Gaussian transformation as introduced 230	  

in the previous section. The same run in the period from January 1, 1982 to January 1, 1983 is 231	  

also regarded as the nature run, or the “truth” in the OSSEs. Simulated observations are taken 232	  
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from this nature run by adding random noise corresponding to the designated observation errors. 233	  

The basic observing system used in this study is just conventional rawinsonde observations that 234	  

are assimilated in the control run (“Raobs” hereafter). The rawinsonde locations are distributed 235	  

realistically as shown by open circles in Figure 2. Variables assimilated include u, v winds, 236	  

temperature, specific humidity, and surface pressure, whose observation errors are listed in Table 237	  

1. Additional precipitation observations are assimilated in other experiments to estimate the 238	  

impact of the precipitation assimilation. The 6-hour accumulated precipitation data are gathered 239	  

uniformly every 2 by 2 (4) model grids points over the globe simulating satellite retrievals 240	  

(indicated with plus signs in Figure 2). The observation errors of precipitation observations are 241	  

set to be either 20% or 50% of the observed values for the non-zero precipitation and no error 242	  

when zero precipitation is observed in the nature run. Covariance localization is computed 243	  

adjusting the observation errors by their distance (the “R localization” in Greybush et al. 2011), 244	  

with a horizontal length scale L = 500 km and a vertical length scale of 0.1 in natural logarithm 245	  

of pressure for all observations with two exceptions: (1) No vertical localization is applied for 246	  

precipitation observations because of the expected correlation between precipitation and model 247	  

variables in deep layers. (2) Reduced horizontal localization lengths for precipitation 248	  

observations are used in some experiments (“PP_GT_10mR_0.5L” and “PP_GT_10mR_0.3L”) 249	  

in order to discuss the sensitivity of localization. In addition, the adaptive inflation scheme of 250	  

Miyoshi (2011) is used. 251	  

Twenty ensemble members are used in our assimilation experiments. Starting from January 252	  

1, 1982, all experiments are initialized with the same initial ensemble created by a random 253	  

choice of model conditions at unrelated time in the nature run, so they are very different from the 254	  

“truth.” Observation data are then assimilated into the model with a 6-hour cycle. All 255	  

experiments are run for 1 year until January 1, 1983. The differences among experiments are 256	  

summarized in Table 2. First, in “Raobs”, only the rawinsonde observations are assimilated. We 257	  

denote the main experiment showing the effectiveness of precipitation assimilation as 258	  

“PP_GT_10mR”, indicating that precipitation (PP) is assimilated, that the Gaussian 259	  

Transformation (GT) is performed, and that the criterion requiring at least 10 members of the 260	  

ensemble (half of the total ensemble size) to rain in order to use a precipitation observation 261	  

(10mR) is being applied. All prognostic variables in the SPEEDY model are updated during the 262	  

assimilation as in the standard formula of LETKF. The observation error of precipitation 263	  

observations in this experiment is rather accurate, 20%, and the localization length of 264	  

precipitation observations is the same as rawinsonde observations (i.e., L=500 km). In 265	  

“PP_GT_10mR_Qonly”, only the specific humidity Q is updated during the LETKF assimilation 266	  

of precipitation observations, trying to resemble what conventional “nudging” methods do by 267	  

arbitrarily modifying the moisture field in the model. For other experiments, “PP_noGT_10mR” 268	  

does not use Gaussian transformation; “PP_GT_ObsR” uses the traditional criterion that 269	  

precipitation is only assimilated when at least a trace of rain is observed (ObsR > 0.1 mm 6h-1). 270	  

In addition, “PP_GT_10mR_50%err” and “PP_noGT_10mR_50%err” are conducted to test the 271	  



10	  

impact of lower observation accuracy on the precipitation assimilation, with much higher 272	  

precipitation observation errors of 50% rather than 20% are used. The minimum required number 273	  

of precipitating members is also varied (“PP_GT_1mR”, “PP_GT_5mR”, “PP_GT_15mR” and 274	  

compared with “PP_GT_10mR”). Finally, different localization length scales 275	  

(“PP_GT_10mR_0.5L”, “PP_GT_10mR_0.3L”) are also used in several experiments to test the 276	  

sensitivity of assimilation criteria and the localization lengths of precipitation observations. 277	  

Furthermore, for some experiments (“Raobs”, “PP_GT_10mR”, and “PP_GT_10mR_Qonly”), 278	  

we also conduct 5-day free forecasts based on each 6-hourly ensemble mean analysis over the 279	  

year in order to test whether the assimilation of precipitation is “remembered” during the forecast. 280	  

4. Results 

(a) Effect of global precipitation assimilation 

Figure 3a shows the evolution of the global root-mean-square (RMS) analysis errors 281	  

(verified against the nature run) of the u-winds over one year. We only show this variable 282	  

because the impacts are remarkably similar for all the model variables indicating that the 283	  

assimilation of precipitation approach is indeed able to influence the full dynamical evolution of 284	  

the model and not just the moist thermodynamics. Different time scales are used to show the 285	  

spin-up stage in the first month and for the remaining 11 months after the spin-up. The averaged 286	  

values of RMS analysis errors in the last 11 months are also listed in Table 3. Note that the spin-287	  

up takes about one month because the ensemble initial states were chosen to be very different 288	  

from the nature run at the initial time. In the LETKF (or any EnKF) a long spin-up is required in 289	  

order to estimate not only the truth (with the ensemble mean), but also the “errors of the day” 290	  

with the ensemble perturbations. This spin-up period can be substantially reduced by applying 291	  

Running in Place (RIP) or Quasi-Outer Loop (QOL), where during spin-up the observations are 292	  

used more than once in order to extract more information from them (Yang et al. 2012; Kalnay 293	  

and Yang 2010). 294	  

It is clear that when all variables (and therefore the full potential vorticity) are modified 295	  

(PP_GT_10mR; blue line in Figure 3a), the improvement introduced by precipitation 296	  

assimilation is quite large (27.2% reduction in the averaged global analysis error) after the first 297	  

month of spin-up. Not only is the long-term averaged RMS error reduced, but the temporal 298	  

variation of analysis accuracy is also reduced (e.g., the error jump observed in the Raobs 299	  

experiment during July is not seen in PP_GT_10mR). This result is very encouraging because it 300	  

clearly shows that assimilating precipitation does bring significant benefits to the LETKF 301	  

analysis. In contrast, when only the moisture field is modified (PP_GT_10mR_Qonly; orange 302	  

line in Figure 3a), the improvement is much smaller (13.6% reduction in the averaged global 303	  

analysis error after the spin-up), even though this approach did benefit from the Gaussian 304	  

transform of precipitation. 305	  
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In addition to the LETKF analysis, the impact of precipitation assimilation on model 306	  

forecasts is also shown on Figure 3b. The global RMS forecast errors of u-wind are computed 307	  

with respect to the forecast time and averaged over the last 11 months (i.e., after the spin-up). It 308	  

is evident that the improvements last throughout the 5-day forecasts, so that the effect of 309	  

precipitation assimilation is not “forgotten” by the model during the forecast, as experienced 310	  

with nudging. It is interesting that the improvement by LETKF modifying only moisture 311	  

(PP_GT_10mR_Qonly) also lasts throughout the forecast, which seems more effective than 312	  

nudging presumably because of the Gaussian transform and the use of an EnKF. However, the 313	  

improvement in PP_GT_10mR_Qonly is much smaller than that in PP_GT_10mR, and its error 314	  

growth rate (i.e., the slope) is close to that in Raobs whereas the error growth rate in 315	  

PP_GT_10mR is smaller than for the other two experiments. As indicated before, similar 316	  

improvements in the analysis and 5-day forecast errors are also observed in all other model 317	  

variables, including the very important precipitation forecasts. Figure 4 shows that the 318	  

precipitation forecasts are improved as well by assimilating the precipitation observations. 319	  

Starting from 12 forecast hours, the error growth rates become stable, and the forecast 320	  

improvement on precipitation in PP_GT_10mR is larger than 2 days. 321	  

The effects of Gaussian transformation (GT) and the criterion requiring at least 10 members 322	  

to rain in order to use an observation (10mR) are examined assuming accurate precipitation (20% 323	  

errors) by comparing the results of PP_GT_10mR, PP_noGT_10mR, and PP_GT_ObsR (Figure 324	  

5). As shown in the figure, during the spin-up stage the LETKF analysis without transforming 325	  

the precipitation variable (PP_noGT_10mR; red line in Figure 5) is worse than that applying 326	  

Gaussian transformation. However, with very accurate observations, the Gaussian transformation 327	  

does not make a significant difference after the spin-up period (Table 4; 26.1% vs. 27.2% 328	  

reduction in averaged global analysis errors). It is possible that the proposed Gaussian 329	  

transformation is especially useful to the LETKF assimilation when the model background is less 330	  

accurate and the difference between model background and the precipitation observations is 331	  

large. Therefore, when the analysis is accurate enough after the first month of spin-up, the 332	  

Gaussian transformation does not offer additional advantages. This point will be tested with 333	  

experiments with less accurate precipitation observations, discussed in a later subsection. 334	  

In addition, Figure 5 also shows the impact of the criteria for assimilation of precipitation. 335	  

We compare the results with the traditional criterion of assimilating only positive rain 336	  

observations (PP_GT_ObsR) and our newly proposed criterion of requiring at least half of the 337	  

members to rain, but allowing the assimilation of zero precipitation (PP_GT_10mR). The 10mR 338	  

criterion seems to be essential in order to have an effective precipitation assimilation. The 339	  

analysis of PP_GT_ObsR (green line in Figure 5) is obviously degraded from PP_GT_10mR 340	  

(Table 5; only 0.3% reduction in the averaged global analysis error). In particular, the 341	  

degradation comes mainly from the tropical region (30S ~ 30N; Table 5; 18.7% increase in the 342	  

averaged analysis error), which indicates that this observation-based criterion is not useful. 343	  

Additional experiments with different minimum numbers (1, 5, and 15 out of 20) of the 344	  
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precipitating member in order to pass the assimilation were also conducted. As shown in Table 5, 345	  

it is interesting that with a criterion that is too lenient (requiring only 1 or 5 precipitating 346	  

members), the improvement by precipitation assimilation is also degraded. This indicates that 347	  

assimilating precipitation observations at locations where precipitating members are rare can hurt 348	  

the analysis. If stricter criteria (10mR or even 15mR) are used as we do in most experiments in 349	  

this study, the results are better. Note that this type of criteria also automatically allows zero 350	  

precipitation observations to be assimilated (provided that there are enough precipitating 351	  

members at the observation location). In addition, requiring more precipitating members in the 352	  

background also reduces the number of observations assimilated and thus reduces computational 353	  

time. 354	  

(b) Regional dependence 

After observing the reduction of globally averaged analysis and forecast errors, the regional 355	  

dependence of the impact of precipitation assimilation is considered. The RMS errors are 356	  

computed for three regions: the Northern Hemisphere extratropics (30 – 90N; NH), the tropics 357	  

(30S – 30N; TR), and the Southern Hemisphere extratropics (30 – 90S; SH). Figure 6 shows the 358	  

RMS errors of u-wind in 0 – 5 day forecasts averaged over the last 11 months for main 359	  

experiments as Figure 3b, but for each region. Averaged RMS analysis errors in the same 11 360	  

months in terms of separate regions are also listed in Table 3-6 for all experiments. 361	  

 It is clear that, as in operational forecasts, these three regions have distinct characteristics 362	  

of analysis errors, error growth rate, and the impact of precipitation assimilation. With only 363	  

rawinsonde observations (Raobs), the analysis (0 hour) in the NH region is already very accurate, 364	  

while the TR analysis is less accurate and the SH analysis is the least accurate. As a result, the 365	  

precipitation assimilation only has a small effect on the NH region (20.6% reduction in 366	  

PP_GT_10mR) but a large effect on the SH region (55.2% reduction in PP_GT_10mR). The 367	  

effect on the TR region is even smaller (11.2% reduction in PP_GT_10mR), which would be 368	  

explained by different dynamical instabilities and precipitation mechanisms between the tropical 369	  

and extratropical regions. The prevailing convective precipitation in the tropics tends to maintain 370	  

small-scale features and thus would be more difficult to capture in this low-resolution global 371	  

model and by low-resolution observations. During the 5-day forecasts, the RMS errors in both 372	  

NH and SH regions grow with similar rate, faster than that in the TR region, as observed in 373	  

operational forecasts, due to the stronger growth rates of mid-latitude baroclinic instabilities. The 374	  

RMS errors in the NH region are then close to those in the TR region at the end of the 5-day 375	  

forecasts. The improvement by precipitation assimilation in the SH region is so large that the 376	  

RMS analysis and most forecast errors in the SH region in PP_GT_10mR is even better than 377	  

those in the TR region although without precipitation assimilation it is very inaccurate. The 378	  

difference between modifying all variables and only modifying moisture by LETKF is also 379	  

emphasized in the SH region during the later forecasts. It is also noted that in spite of different 380	  
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dynamical nature of error growth in these three regions, precipitation assimilation does lead to 381	  

positive impacts in all regions. 382	  

Global maps of (temporally averaged) RMS errors and error reduction of the mid-level 383	  

vorticity (! = 0.51) for the 72-hour forecasts during the last 11 months are shown in Figure 7. 384	  

As expected, the error in Raobs (contours) is large in the Southern Hemisphere since the 385	  

conventional rawinsonde network is quite sparse in that region. The Southern Ocean near the 386	  

southern end of South America has the largest error in the world presumably because it is the 387	  

least observed. By contrast, the Raobs forecast error is generally small in the Northern 388	  

Hemisphere, especially over the Euro-Asian continent with the densest rawinsonde observations. 389	  

By including the precipitation observations in LETKF assimilation, the error reduction (i.e., the 390	  

RMS error of PP_GT_10mR – the RMS error of Raobs; shade) is large in the SH extratropical 391	  

region, smaller in the NH extratropical region, and smallest in the tropical region. Once again, 392	  

the dynamical impact of assimilation of precipitation on the evolution is shown by the fact that 393	  

the largest error reduction is almost collocated with the regions with the largest error in Raobs, 394	  

where the room for improvement is large, and yet the error is still reduced even in rawinsonde-395	  

rich Northern Hemisphere. The tropical region, instead, shows the smallest improvement, and the 396	  

eastern equatorial Pacific and the central Africa are the only two areas that show slightly 397	  

negative impacts. Precipitation assimilation in EnKF has a profound impact on vorticity through 398	  

the dynamical impact of giving higher weights to the ensemble members that show better 399	  

precipitation, independent of the details of the physical processes involved in condensation and 400	  

precipitation.  401	  

 (c) Sensitivity to accuracy of the precipitation observations 

As mentioned in subsection 4.a, with accurate precipitation observations of 20%, the 402	  

application of the Gaussian transformation to the precipitation variable has only a minor impact 403	  

on the LETKF analysis accuracy after the spin-up (Figure 5). However, this is not the case with 404	  

the probably more realistic precipitation observation errors of 50%. Figure 8 and Table 4 shows 405	  

the impact of both larger observation errors as well as the use of the Gaussian transformation. 406	  

When the observation error of precipitation observations are increased from 20% to 50%4, and 407	  

the Gaussian transformation is used (PP_GT_10mR_50%err vs. PP_GT_10mR which uses 408	  

20%err), the analysis becomes only slightly worse (shown as a green line in Figure 8). However, 409	  

without the Gaussian transformation and with 50% errors (PP_noGT_10mR_50%err; red line in 410	  

Figure 8), the precipitation assimilation fails. The LETKF analysis in PP_noGT_10mR_50%err 411	  

is worse than not assimilating precipitation in the globe and all separate regions (Table 4). In 412	  

other words, without the Gaussian transformation the precipitation assimilation hurts the analysis, 413	  

whereas PP_GT_10mR_50%err with the Gaussian transformation is almost as good as that with 414	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  The 50%-error precipitation observations are generated independently from the nature run, and the 
observation errors are also set to 50% during the LETKF assimilation.	  
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the much smaller 20% errors. This sensitivity test demonstrates the importance of the Gaussian 415	  

transformation. Less accurate observations will tend to have larger differences from the model 416	  

background and may not be able to make the analysis accurate enough, so that the non-Gaussian 417	  

effects become more important for large errors. Note that a 50% error in precipitation 418	  

observations is within a realistic range if they are satellite or radar retrieval products. Therefore, 419	  

the Gaussian transformation proposed in this study seems essential for their practical assimilation. 420	  

(d) Sensitivity to the localization lengths of precipitation observations 

In all experiments so far we have used the same horizontal localization length scale for 421	  

precipitation assimilation as for rawinsonde observations (500 km, denoted as 1L). Since dense 422	  

global precipitation observations are assimilated in our OSSEs, and precipitation has more local 423	  

characteristics than other dynamical variables, we speculate that the optimal horizontal 424	  

localization length scale for precipitation observations might be smaller than that for rawinsonde 425	  

observations. Two additional experiments, PP_GT_10mR_0.5L and PP_GT_10mR_0.3L, with 426	  

0.5 and 0.3 times localization lengths for precipitation observations, respectively, are conducted. 427	  

It is observed in Table 6 that the smaller length scales are helpful to the LETKF analyses, and the 428	  

0.5L (250 km) length scale would be the optimal setting under our current experimental design. 429	  

The averaged RMS analysis error after the spin-up can be reduced by 32.7% of Raobs when the 430	  

0.5L length scale is used, compared with 27.2% when using the original length scale. This 431	  

suggests that the optimal localization length could vary with different observation datasets and 432	  

experimental settings and should be tuned appropriately. 433	  

5. Conclusions and discussion 

Past attempts to assimilate precipitation observations into NWP models have found difficult 434	  

to improve model analyses and, especially, model forecasts. In the experience with nudging or 435	  

variational methods, the forecasts starting from analyses with precipitation assimilation lose their 436	  

extra skill after a day or less (e.g., Errico et al. 2007). The linear representation of moist physical 437	  

processes required in the variational data assimilation and the non-Gaussianity of both 438	  

precipitation observations and model perturbations are two major problems in precipitation 439	  

assimilation (e.g., Bauer et al. 2011). 440	  

The EnKF does not require linearization of the model, thus addressing the first problem. 441	  

Besides, it is more efficient in improving the potential vorticity field than nudging or variational 442	  

approaches by giving higher weights to ensemble members that are precipitating closer to the 443	  

observations. Since potential vorticity is the variable that primarily determines the evolution of 444	  

the forecast in NWP models, it is not surprising that the analysis improvements in EnKF would 445	  

not be so quickly “forgotten” in the forecasts as in nudging.  446	  

In this study we tested these ideas with OSSEs of global precipitation assimilation with the 447	  

SPEEDY model and the LETKF. In addition, we introduced two important changes in the data 448	  

assimilation procedure that contribute to improving the performance of precipitation assimilation. 449	  
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Since EnKF (like Kalman filtering) assume that variables and observations have Gaussian 450	  

distributions, we first introduce a general algorithm to transform the precipitation variable into 451	  

Gaussian distribution based on its climatological distribution. To handle the problem that the 452	  

CDF of precipitation is discontinuous at zero, the middle value (median) of the zero-precipitation 453	  

cumulative probability is chosen to transform all zero precipitation values. Second, we do not 454	  

follow the approach used in most other studies of only assimilating positive precipitation 455	  

observations. Instead, we propose a model background-based criterion in the ensemble data 456	  

assimilation: precipitation observations are assimilated only at grid points where at least some 457	  

members of prior ensemble are precipitating. This automatically allows zero precipitation 458	  

observations to be assimilated. 459	  

Results in our simple OSSEs are extremely encouraging. By assimilating global 460	  

precipitation, the globally averaged RMS analysis errors of u-winds after the spin-up stage are 461	  

reduced by 27.2% as compared to only assimilating rawinsonde observations. The improvement 462	  

is not “forgotten” and remains throughout the entire 5-day forecasts. All model variables show 463	  

similar impacts of the precipitation assimilation. The improvement is much reduced when only 464	  

modifying the moisture field by precipitation observations as done with nudging. By separating 465	  

the globe into three verification regions, i.e., the NH extratropics, the tropics, and the SH 466	  

extratropics, it is shown that the effect of precipitation assimilation is larger in the SH region 467	  

than that in the NH region because the NH analyses are already accurate by denser rawinsonde 468	  

stations. The tropical region shows the least improvement probably because of the slower 469	  

dynamical instabilities and the prevailing convective precipitation type with small-scale features.  470	  

In addition, a number of comparisons among experiments were made in order to assess the 471	  

impact of the Gaussian transformation, the observation selection criteria, the sensitivities to the 472	  

precipitation error levels and the localization length scales of the precipitation observations. 473	  

Applying the Gaussian transformation does not large impact on the analysis errors when the 474	  

observation error level of precipitation is at an accurate 20% level, but it is very beneficial when 475	  

observation errors are at a much higher 50% level. The proposed 10mR criterion (assimilating 476	  

precipitation at the location where at least half of the members are precipitating) allows using 477	  

some zero precipitation observations, and gives much better results than the traditional 478	  

observation-based criterion of only assimilating positive precipitation, and even better than 479	  

assimilating more observations with a looser criteria (1mR and 5mR criteria). Assigning smaller 480	  

horizontal localization length scales for precipitation observations also improves the LETKF 481	  

analysis in the present OSSE design. 482	  

Although these results are promising, it is important to recognize that the SPEEDY model is 483	  

simple and that the simulated observations might be too ideal. Using the same model in creating 484	  

the nature run and in the assimilation experiments neglects model errors and could also lead to 485	  

overoptimistic results (i.e., the “identical twin” issue). Nevertheless, this is an essential first step 486	  

to understand the feasibility and potential of the precipitation assimilation using an ensemble 487	  

data assimilation method. The results indicate that the EnKF provides advantages for 488	  
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precipitation assimilation beyond the traditional nudging or variational methods. In addition, the 489	  

explicit weights available in the LETKF are particularly useful to implement the “no-cost 490	  

smoother” (Kalnay et al. 2007) and “Running in Place” (Yang et al. 2012), making better use of 491	  

the information from a time sequence of observations. Since the precipitation is a variable that is 492	  

tightly related to the past history of the moist physics, it is worthwhile to try these techniques in 493	  

future studies. 494	  
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Tables 

Table 1:  The observation errors for the simulated observations. 

Variable Observation error 
U 1.0 m s-1 
V 1.0 m s-1 
T 1.0 K 
Q (specific humidity) 1.0×10!! kg kg-1 
Ps (surface pressure) 1.0 hPa 
PP (previous 6-hour accumulated precipitation) 20% or 50% (in different experiments) 
 

Table 2:  Design of all experiments. 

Experiment Observations Gaussian 
transf. 

Criteria for prcp. 
assimilation 

Obs. error of 
prcp. obs. 

Loc. lengths 
of prcp. obs. Raws. Prcp. 

Raobs X      
PP_GT_10mR X X X Prcp. members >=10 20% 1L (= 500km) 
PP_GT_10mR_Qonly X X (only 

updating 
Q) 

X Prcp. members >=10 20% 1L 

PP_noGT_10mR X X  Prcp. members >=10 20% 1L 
PP_GT_ObsR X X X Obs. prcp. > 0.1 mm h-1  20% 1L 
       
PP_GT_10mR_50%err X X X Prcp. members >=10 50% 1L 
PP_noGT_10mR_50%err X X  Prcp. members >=10 50% 1L 
       
PP_GT_1mR X X X Prcp. members >=1 20% 1L 
PP_GT_5mR X X X Prcp. members >=5 20% 1L 
PP_GT_15mR X X X Prcp. members >=15 20% 1L 
       
PP_GT_10mR_0.5L X X X Prcp. members >=10 20% 0.5L 
PP_GT_10mR_0.3L X X X Prcp. members >=10 20% 0.3L 
 

Table 3:  Impact of precipitation assimilation on the last 11-month averaged analysis errors of u-
wind. 

Experiments Last 11-month averaged RMSE of U (m/s) (percentage changes relative to Raobs) 
Globe NH TR SH 

Raobs 1.58 0.67 1.64 2.03 
PP_GT_10mR 1.15 (-27.2%) 0.53 (-20.6%) 1.45 (-11.2%) 0.91 (-55.2%) 
PP_GT_10mR_Qonly 1.37 (-13.6%) 0.58 (-13.1%) 1.51 (  -7.4%) 1.59 (-21.8%) 
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Table 4:  Impact of the Gaussian transformation and accuracy of precipitation observations 

Experiments Last 11-month averaged RMSE of U (m/s) (percentage changes relative to Raobs) 
Globe NH TR SH 

Raobs 1.58 0.67 1.64 2.03 
PP_GT_10mR 1.15 (-27.2%) 0.53 (-20.6%) 1.45 (-11.2%) 0.91 (-55.2%) 
PP_noGT_10mR 1.17 (-26.1%) 0.52 (-22.0%) 1.47 (-10.3%) 0.95 (-53.0%) 
PP_GT_10mR_50%err 1.28 (-19.2%) 0.59 (-12.5%) 1.52 (  -6.9%) 1.26 (-38.1%) 
PP_noGT_10mR_50%err 1.87 (+17.8%) 0.79 (+18.2%) 2.00 (+22.0%) 2.29 (+12.9%) 
 

Table 5:  Impact of assimilation criteria of precipitation observations. 

Experiments Last 11-month averaged RMSE of U (m/s) (percentage changes relative to Raobs) 
Globe NH TR SH 

Raobs 1.58 0.67 1.64 2.03 
PP_GT_ObsR 1.58 (  -0.3%) 0.69 (  +3.4%) 1.94 (+18.7%) 1.40 (-31.0%) 
PP_GT_1mR 1.29 (-18.6%) 0.57 (-14.3%) 1.62 (  -0.9%) 1.04 (-48.6%) 
PP_GT_5mR 1.19 (-25.2%) 0.52 (-22.3%) 1.50 (  -8.5%) 0.94 (-53.6%) 
PP_GT_10mR 1.15 (-27.2%) 0.53 (-20.6%) 1.45 (-11.2%) 0.91 (-55.2%) 
PP_GT_15mR 1.13 (-28.9%) 0.52 (-23.0%) 1.42 (-13.4%) 0.89 (-56.0%) 
 

Table 6:  Impact of horizontal localization lengths of precipitation observations. 

Experiments Last 11-month averaged RMSE of U (m/s) (percentage changes relative to Raobs) 
Globe NH TR SH 

Raobs 1.58 0.67 1.64 2.03 
PP_GT_10mR 1.15 (-27.2%) 0.53 (-20.6%) 1.45 (-11.2%) 0.91 (-55.2%) 
PP_GT_10mR_0.5L 1.07 (-32.7%) 0.48 (-28.0%) 1.31 (-20.0%) 0.95 (-53.4%) 
PP_GT_10mR_0.3L 1.14 (-27.8%) 0.53 (-20.2%) 1.37 (-16.2%) 1.08 (-46.6%) 
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Figures 

 

Figure 1:  The probability density function and cumulative distribution function the of (a), (c) the 
original precipitation and (b), (d) the transformed precipitation at a grid point near Maryland 
(38.967N, 78.75W) in winter season (December – February) based on the 10-year nature run. 
The procedure of the Gaussian transformation is from (a) to (c), to (d), and to (b) as 
indicated by the arrows. 
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Figure 2:  The spatial distribution of conventional rawinsonde observations (open circle) and 
global precipitation observations (plus sign) used in the OSSEs. 
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Figure 3:  The global root-mean-square (a) analysis and (b) forecast errors (verified against the 
nature run) of u-winds in experiments Raobs, PP_GT_10nR, and PP_GT_10mR_Qonly. For 
the analysis errors, the evolution over one year is shown. Different time scales are used for 
the spin-up period (the first month) and the remaining 11 months. For the forecast errors, the 
11-month (after the spin-up) averaged values are shown versus the forecast time. 
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Figure 4:  As in Fig. 3(b), but for precipitation forecast errors. 
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Figure 5:  As in Fig. 3(a), but for experiments Raobs, PP_GT_10mR, PP_noGT_10mR, and 
PP_GT_ObsR. 
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Figure 6:  As in Fig. 3(b), but the RMS forecast errors are calculated separately for the Northern 
Hemisphere extratropics (30 – 90N; NH), the tropics (30S – 30N; TR), and the Southern 
Hemisphere extratropics (30 – 90S; SH), indicated by different marks on the lines. 
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Figure 7:  The global map of RMS 72-hour forecast errors of the vorticity at ! = 0.51 during the 
11 months after the spin-up in Raobs (brown contour) and the corresponding error reduction 
from PP_GT_10mR to Raobs (shade). The rawinsonde observation locations are also shown 
in blue open circles. 
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Figure 8:  As in Fig. 3(a), but for experiments Raobs, PP_GT_10mR, PP_GT_10mR_50%err, 
and PP_noGT_10mR_50%err. 

 


