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Abstract. A 3D-variational data assimilation scheme for a
quasi-geostrophic channel model (Morss, 1998) is used to
study the structure of the background error and its relation-
ship to the corresponding bred vectors. The “true” evolution
of the model atmosphere is defined by an integration of the
model and “rawinsonde observations” are simulated by ran-
domly perturbing the true state at fixed locations.

Case studies using different observational densities are
considered to compare the evolution of the Bred Vectors to
the spatial structure of the background error. In addition, the
bred vector dimension (BV-dimension), defined by Patil et al.
(2001) is applied to the bred vectors.

It is found that after 3–5 days the bred vectors develop well
organized structures which are very similar for the two dif-
ferent norms (enstrophy and streamfunction) considered in
this paper. When 10 surrogate bred vectors (corresponding
to different days from that of the background error) are used
to describe the local patterns of the background error, the ex-
plained variance is quite high, about 85–88%, indicating that
the statistical average properties of the bred vectors represent
well those of the background error. However, a subspace of
10 bred vectors corresponding to the time of the background
error increased the percentage of explained variance to 96–
98%, with the largest percentage when the background errors
are large.

These results suggest that a statistical basis of bred vectors
collected over time can be used to create an effective constant
background error covariance for data assimilation with 3D-
Var. Including the “errors of the day” through the use of bred
vectors corresponding to the background forecast time can
bring an additional significant improvement.

1 Introduction

Numerical weather prediction has made major progress in
the last two decades (e.g. Kalnay et al., 1998; Simmons and

Correspondence to:E. Kalnay (ekalnay@atmos.umd.edu)

Hollingsworth, 2002). This is due mostly to improvements
in the models and in the method whereby atmospheric ob-
servations are incorporated into the initial conditions of the
models, a process known as data assimilation (Daley, 1993;
Kalnay, 2002). Most operational centers use a method called
3-Dimensional Variational data assimilation (3D-Var) to cre-
ate the analysis that is used as an initial condition for the
model. This method is a statistical interpolation of a short
range forecast (typically 6 or 12 h) which serves as first guess
or background, and the new observations. In this statistical
interpolation, the background error covariance is maintained
constant. That is, there is no accounting for the variations of
the atmospheric state and consequent day-to-day variability
of the background error covariance of forecasts from those
states. These errors, not accounted by the fixed state of the
background covariance matrix, are hereafter referred to as the
“errors of the day”. The importance of the “errors of the day”
can be seen in Fig. 1. Plotted is the root mean square analysis
increment for the NCEP 50 year reanalysis during 1996, over
two data-rich regions: the western (open circles) and eastern
(gray dots) portions of the US. The average analysis incre-
ment (the correction introduced by the new observations) is
about 8 m at 500 hPa, but it varies widely from day-to-day,
between low values of less than 3 m to high values over 20 m.

There are several methods that try to account for the “er-
rors of the day” in the forecast error covariance, including
4D-Var, Kalman Filtering, ensemble Kalman Filtering and
the method of representers (e.g. Klinker et al., 2000; Ben-
nett et al., 1996; Houtekamer and Mitchell, 1998; Hamill
and Snyder, 2000). Unfortunately, these methods are com-
putationally very expensive, and can only be implemented
with substantial short-cuts, such as the use of a reduced rank
background error covariance matrix in Kalman Filtering and
lower model resolution in 4D-Var.

Kalnay and Toth (1994) argued that the similarity between
breeding (Toth and Kalnay, 1993, 1997) and data assim-
ilation suggests that the background errors should have a
structure similar to those of bred vectors, but this conjecture
has never been comprehensively tested. To test the validity
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Fig. 1. Root mean square analysis increment in the 500 mb geopo-
tential height for the NCEP 50 year reanalysis during 1996 over the
western (open circles) and eastern (gray dots) portions of the US.

of this argument, a 3D-variational data assimilation scheme
for a quasi-geostrophic channel model described in Morss
(1998) and Rotunno and Bao (1996) is used to study the
structure of the background error and its relationship to the
corresponding bred vectors. The purpose of this paper is to
test the extent to which bred vectors describe the shape of the
“errors of the day”, and therefore could be used to include
their effect in data assimilation, for example by augmenting
the constant forecast error covariance used in 3D-Var with
bred vectors (Corazza et al., 2002) or by performing an effi-
cient local ensemble Kalman Filtering (Ott et al., 2002).

In Sect. 2, the quasi-geostrophic model and data assimila-
tion system are reviewed and the method used to create bred
vectors is presented. In Sect. 3 we first discuss the proper-
ties of the bred vectors and present qualitative comparisons
of their structure with the background “errors of the day” for
a single case. In Sect. 4 we present statistics that summarize
the results over many cases. A summary and conclusions are
presented in Sect. 5.

2 Experimental set-up

The numerical model is a non-linear quasi-geostrophic mid-
latitude flow in a channel discretized by finite differences
both in horizontal and vertical directions (Rotunno and Bao,
1996; Morss, 1998; Morss et al., 2001; Snyder et al., 2002).
Each level consists of a grid of 64 longitude and 32 latitude
points with a grid size of roughly 250 km in both zonal and
meridional directions. The model has seven levels, with five
interior levels describing the evolution of potential vortic-
ity; while potential temperature is represented at the upper
and the lower boundaries. Horizontal diffusion is assumed
to be proportional to the squared Laplacian, and the model

(a)

(b)

Fig. 2. Horizontal distribution of the rawinsonde locations for(a)
the 16 stations experiments and(b) the 32 stations experiments.

is forced by relaxation to a zonal mean state (Hoskins and
West, 1979).

As in Morss (1998) and Hamill et al. (2000), we chose a
single model integration as the “true” evolution of the model
atmosphere. “Rawinsonde observations” are generated ev-
ery 12 h by randomly perturbing the true state at fixed obser-
vation locations (which were randomly chosen at initializa-
tion). Two different resolutions for the observation network
(16 and 32 locations, respectively) have been used based on
Morss (1998) results that indicate that these numbers of sta-
tions are representative of a low and medium density observ-
ing network, respectively. In Figs. 2a and 2b the observation
locations for the two cases are shown. In order to avoid errors
due to interpolation processes, measurements are taken at the
model grid points. For every rawinsonde, values for temper-
atureT and horizontal components of wind velocityu and
v are simulated for all the seven layers of the model. The
random noise to generate the observation errors is consistent
using an observation-error covariance matrix which is set to
zero except for variances and vertical covariances. The ver-
tical correlation values are obtained by adapting the rawin-
sonde variances given in Parrish and Derber (1992) and using
the vertical correlations given in Eq. (3.19) from Bergman
(1979) (Morss, 1998).

The simulated data assimilation is performed with an al-
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(a)

(b)

Fig. 3. (a)Schematic of the analysis cycle used in the system. Anal-
ysis times are indicated by the short vertical arrows.(b) Schematic
of the method used for the generation of the bred vectors.

gorithm similar to the operational Spectral Statistical Inter-
polation (SSI) at NCEP (Parrish and Derber, 1992), which is
a 3-D Var data assimilation scheme. In our experiments the
same model is used for generating the truth and the forecasts,
an approach known as a perfect model scenario (Fig. 3a). Be-
cause this is a simulation system in which the truth is known,
it allows for the explicit computation of the analysis and
background errors. The background-error covariance ma-
trix B is computed with the ”NMC method”, deriving it from
an ensemble of forecast differences, and assuming thatB is
fixed in time and diagonal in horizontal spectral coordinates
(as in Parrish and Derber, 1992). Moreover separate horizon-
tal and vertical structures and simple vertical correlations are
assumed. See Morss (1998) for more details on the implica-
tions of these assumptions and for a complete description of
the implementation of the Data Assimilation System.

We computek bred vectors in a manner similar to the
procedure used in the ensemble forecasting systems at the
National Centers for Environmental Prediction (Toth and
Kalnay, 1993, 1997). The outline of the procedure is
(Fig. 3b: (a)k random fields are added to the analysis; (b)
the model is integrated for 12 h for each of thek perturbed
fields; (c) the difference between each of thek perturbed
integrations and the background 12 h forecast is uniformly
scaled down so that the root mean square of the perturbation

is equal to the average squared analysis error at level three;
(d) thek rescaled fields are then added to the new analysis
and the steps (b) through (d) are repeated.

3 Characteristics of the Bred Vectors

Toth and Kalnay (1993, 1997) developed the breeding
method to mimic in a simple way the data assimilation cy-
cle, as suggested by a comparison of Figs. 3a and 3b. In
an optimal sequential data assimilation scheme, the analy-
sis error covariance is given by the forecast error covariance
multiplied by a matrix[I − −KH ], the identity matrix minus
the product of the effective filter gain and the observational
operator (e.g. Ide et al., 1997). In breeding, this matrix is
replaced by the identity times a constant scalar representing
the inverse of the global growth rate of the bred vector dur-
ing the interval between rescalings. Kalnay and Toth (1994)
conjectured that because of this similarity between the con-
struction of the bred vectors and the data assimilation system
both the background errors and the bred vectors would have
similar local structures. In a perfect data assimilation system
that accounts exactly for the errors of the day the conjecture
may not be valid. For imperfect systems such as 3D-Var, if
the background errors dominate the analysis errors, the con-
jecture is more plausible, but it needs to be experimentally
verified, and a simulation system provides the best tool for
this purpose.

In this section we qualitatively explore this conjecture and
other issues related to the robustness and representativeness
of the bred vectors after a finite transient. More quantitative
results based on a local analysis and statistical comparisons
with surrogate experiments are presented in Sect. 4.

When the “errors of the day” are large with respect to their
average, both in simplified and the operational systems, they
are dominated by the background errors (e.g. Fig. 7 in Szun-
yogh et al., 2000). Thus, it is of interest to compare the spa-
tial structure of the bred vectors to that of the background
error. It is the background error that is most relevant for
data assimilation, since the background error covariance de-
termines the characteristics of the assimilation. Figures 4a
and 4b show a typical example of the midlevel background
error of potential vorticity (contours) against two arbitrarily
chosen bred vectors (shaded), at an arbitrarily chosen time,
36 days after initialization of the bred vectors. These results
were obtained for a very low observation density (16 sta-
tions) simulation. There is a qualitative resemblance between
the background error and the bred vectors. The contour and
colored patterns shown in Fig. 4 are in good agreement in
some areas [e.g. the prominent structure between point 10
and point 30 in thex axis and point 5 and point 25 in they
axis in Figs. 4a and 4b], but agree less well in other areas. For
enhanced visualization, the contour lines of both the back-
ground error and of the bred vectors are shown in Fig. 4c.
Figure 4d shows plots of the quantities represented in Fig. 4c
for one dimensional slices aty = 10. Again the similarity
between the two bred vectors and the background error is ev-
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a)and(b) potential vorticity (color) at level three for two randomly chosen bred vectors after 36 days for a low density observing
network (16 rawinsondes). Contours represent the background error.(c) background error (black) and bred vectors shown in (a) and (b)
(blue and red, respectively) normalized by their root mean square; contour lines are for the values 2.3 and 3.(d) vertical cross-section of the
same vectors of (c) [y = 15]. (e)and(f) same as (a) and (b) but vertical cross-section fory = 15.
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Fig. 5. Background error (contour) and a bred vector (color shaded)
obtained with a breeding cycle based on the truth. The figure should
be compared with Figs. 4a and 4b where the breeding cycle is based
on the analysis.

ident over regions with large amplitudes. The conclusions
shown for the horizontal structure are equally valid for the
vertical structure. In the examples shown in Figs. 4e and 4f
the structure of the error in the potential vorticity over most
of the domain is well described by the bred vectors; never-
theless, in some areas it is possible to see secondary maxima
in the bred vectors that do not correspond to any signal in the
background error and vice versa.

3.1 Sensitivity to the details of the background flow

It has been questioned in the past whether bred vectors com-
puted using the analysis (which is only an estimate of the
truth) are representative of the bred vectors that would be ob-
tained if they were computed as perturbations of the “true”
atmosphere. The results for the quasi-geostrophic system
(Fig. 4) show that bred vectors obtained from the analysis are
indeed very similar to those obtained from the truth. More-
over, these results are valid for both low observational den-
sity (Fig. 4) and at higher observation density (Fig. 6). In
Fig. 6 level 3 potential vorticity from the bred vectors num-
ber 1 and 5 and the background error are shown for the 32
stations simulation. As in the case of lower observational
density, there is a good correspondence between the fields,
and the structure of both the background error and the bred
vector are similar to those obtained for the 16 observations
simulation. This suggests that the analysis provides suffi-
ciently close “shadowing” of the true atmosphere, and that
the bred vectors depend on the instabilities of the large scale
flow-of-the-day, rather than on the smaller scales details.

3.2 Finite time convergence

Toth and Kalnay (1993, 1997) observed for the operational
global model of NCEP that it took only a transient period of
few days for the randomly initialized bred vectors to develop
well organized spatial structures in the mid-latitudes. This
has been confirmed with the quasi-geostrophic model sys-
tem: 3–5 days after initiating the breeding process with ran-

dom perturbations, the bred vector growth rates attain their
typical asymptotic range of values, and the bred vectors de-
velop structures similar to the background errors. This is
in good agreement with the results of Reynolds and Errico
(1999), who computed finite time estimates of the Lyapunov
vector in a quasi-geostrophic atmosphere on the sphere (here
the growth over an analysis period is taken as the inverse of
the rescaling factor employed for the bred vector at the anal-
ysis time). This is shown in Fig. 7, which compares a bred
vector (color shaded) and the background error (contours)
five days after initiating the breeding process, and in Fig. 12,
in the next section, which shows the rate at which conver-
gence takes place.

3.3 Robustness with respect to the choice of norm

Because of their close relationship with leading Lyapunov
vectors (Legras and Vautard, 1996; Szunyogh et al., 1997;
Trevisan and Pancotti, 1998), bred vectors are expected to be
insensitive to the choice of norm used to define the growth
and rescaling. Figures 6 and 8 compare bred vectors obtained
using a potential enstrophy (vorticity squared) norm,

‖ 1q ‖=

√√√√ 1

N

N∑
i=1

(1q)2i ,

where(1q)i is the difference in potential vorticity at the con-
sidered grid pointi andN is the number of points, and a
stream function norm,

‖ 1ψ ‖=

√√√√ 1

N

N∑
i=1

(1ψ)2i ,

where(1ψ)i is the difference in streamfunction at the grid
point i. Bred vectors obtained with both norms show a sim-
ilar shape and relationship to the background error. This al-
lows us to present our results only for the potential vorticity
norm without losing generality in the conclusions.

These results are in contrast with singular vectors, which
are extremely sensitive to the choice of norm. Palmer et al.
(1998) and Snyder and Joly (1998) have shown that singular
vectors obtained with a squared streamfunction norm have a
horizontal scale much smaller than that obtained using an en-
strophy norm, and those obtained with an energy norm have
intermediate scales.

4 Local Analysis of the subspace of the Bred Vectors
and its relationship to the background error

In this section we present a local analysis of the bred vec-
tors that allows a quantitative comparison of the relationship
between bred vectors and the background error.

4.1 Effective dimension of the Bred Vectors subspace

We define a local dimension of the bred vector space as in
Patil et al. (2001). In the following we briefly describe this
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(a) (b)

(c) (d)

Fig. 6. (a)and(b) Two randomly chosen bred vectors for a medium density observing network (32 rawinsondes) (color shaded). Contours
represent the corresponding background error.(c) vertical cross-section of the same vectors in (a) (y = 10). (d) same as Fig. 4d for the
vectors represented in Figs. 6a and 6b [y = 10].

method. For every grid point a surrounding domain of 25
grid points (5× 5) – the local domain – is considered. For
every bred vector and every grid point, we consider the 25
dimensional vector composed of the values of potential vor-
ticity over the grid points of the local domain, which we refer
to as a local bred vector. If there arek bred vectors, then at
any point there arek corresponding local bred vectors (in this
sectionk ≤ 25). We are interested in the degree of linear in-
dependence of the local bred vectors. That is, we want to
determine a quantitative measure of the effective dimension-
ality of the subspace spanned by thek local bred vectors.

To do this Patil et al. (2001) use principal component anal-
ysis (Scheick, 1997) and define the bred vector dimension
(BV-dimension) as:

9(σ1, σ2, . . . , σk) =

(∑k
i=1 σi

)2

∑k
i=1 σ

2
i

,

whereσi, i = 1, . . . k are the singular values of thek × k

covariance matrix of the 25× k matrix formed by the local
vectors. In general this statistic returns a real value between
1 andk or 25, whichever is smaller. Note that while small
perturbations due to noise or numerical error will typically
cause the dimensionality of the space spanned by thek local
vectors to bek, the effective dimension (BV-dimension) may
be substantially lower and is robust to small changes in theσi
due to noise or numerical error. Its relationship to the com-
monly used explained variance depends on the distribution of
singular values. For example, if the squares of the two largest
singular values are 0.9 and 0.05, (with a total explained vari-
ance of 95%) then the BV-dimension is close to 1; if they are
0.48 and 0.47, (total explained variance also 95%) then the
BV-dimension is close to 2; if they are 0.47 and 0.46, (with
a total explained variance of 93%) then the BV-dimension is
still close to 2. In the first two cases, the number of singular
vectors needed to explain 95% of the variance is 2, and in
the third case it is at least 3. This simple example shows that
although the BV-dimension is related to the number of vec-
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Fig. 7. A bred vector (color shaded) and background error (contour)
in potential vorticity at midlevel after 5 days from its initialization
using the potential vorticity norm for rescaling.

tors needed to explain a certain level of variance, it has the
advantage that, unlike explained variance, it is insensitive to
the selection of an arbitrary threshold.

In our case we found that fork = 10 the local dimen-
sion of this subspace is always smaller than about 5, and that
there are areas where the dimensionality is much lower (less
than 3). In Fig. 9 an example of the bred vector dimension
is shown for the midlevel potential vorticity using different
numbers of bred vectors. It is seen that increasing the number
of bred vectors beyond 10 yields only a small spatial changes
in the BV-dimension, especially in the regions of low dimen-
sionality. This indicates that the results obtained with the
local analysis with a set of 10 bred vectors can be considered
representative of larger numbers of bred vectors in regions of
low dimensionality. A more detailed analysis can be found
in Patil (2001) and Patil et al. (2002).

Figure 10a shows a scatter plot with the BV-dimension
obtained at every grid point using 10 bred vectors during
a period of 90 days, versus the background error squared
valid at the same point in space and time. The same plot
is made for the BV-dimension using 10 surrogates (Theiler
et al., 1992) of the bred vectors, i.e. bred vectors correspond-
ing to randomly chosen times that are at least 10 days away
from each other and from the background error, so as to re-
move any temporal correlation. The minimum and maximum
BV-dimensions obtained on a daily basis with the real bred
vectors has a mean of 1.4 and 3.7, respectively, whereas for
surrogate vectors these values are about 4.2 and 7.5, respec-
tively. The average BV-dimension of the surrogates, about
5.5, is low compared to the total subspace, but much larger
than that obtained with bred vectors valid at the same time,
which is 2.6. An analysis similar to that presented in Ta-
ble 1 shows that (unlike explained variance), there is no sig-
nificant dependence of the BV-dimension on the size of the
background error.

Since bred vectors are computed using a finite time, finite
amplitude extension to the method used to compute leading
Lyapunov vectors, it might be expected that they should all
converge to a single leading bred vector. However this is not

Fig. 8. Same as Figs. 6a or 6b but with the bred vector obtained
using a streamfunction norm. Note that in Fig. 6 the bred vectors
were obtained using potential vorticity norm.

the case in the operational global forecast models or even
for the simpler quasi-geostrophic model (Fig. 10a). This is
due to nonlinear forcing and to the fact that in these com-
plex systems several instabilities can coexist in different lo-
cations (Kalnay et al., 2002). As a result the bred vectors
remain globally different, but in regions in which the back-
ground flow is locally unstable, they collapse into a lower-
dimensional subspace represented by the dominant local in-
stabilities.

4.2 Similarity between the local structure of bred vectors
and background errors

In Sect. 3 we showed qualitative instantaneous similarity be-
tween individual bred vectors and the background errors.
This similarity can be quantified by computing the extent to
which the background error lies within the subspace of the
bred vectors. At each point, for 90 days, we computed the
local angle between the background error and the subspace
of bred vectors, and therefore found that in most grid points
the angle is less than 10◦, corresponding to an explained vari-
ance (e.g. Wilks, 1995) of more than 0.97. Figure 11a shows
a scatterplot of the explained variance (square of the angle
between the background error and the subspace of 10 bred
vectors) as a function of the background error size for a pe-
riod of 90 days. It clearly shows that the background error
is mostly confined to the subspace of the bred vectors and
therefore that it is in principle possible to effectively correct
the background state by simply moving it toward the obser-
vations within this subspace. Figure 11b shows the same
scatterplot but for the surrogate bred vectors corresponding
to 10 randomly chosen times, as in Fig. 10b. Table 1 sum-
marizes the statistics for the explained variance. The t-test
corresponds to the null hypothesis that the real bred vectors
and the surrogates explain the same variance, and shows that
it should be rejected with very high significance.

It is interesting to notice that although the surrogates pro-
vide a lower value of explained variance of the local pattern
of the background error, they still explain over 85% of the
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Fig. 9. BV-dimension (5× 5 local domains) obtained using different numbers of bred vectors (5–25 vectors). The contour lines show the
background error (also shown in color shades in the bottom-right plot).

variance, much better that what a subspace of random vec-
tors would do. This should not be surprising, because, by
construction, the surrogates are representative of the statis-
tically averaged subspace of bred vectors. The construction
of the 3D-Var background error covariance using the “NMC
method” (Parrish and Derber, 1992) is based on a subspace

of vectors related to the surrogate bred vectors. It is obtained
from the difference between forecasts verifying at the same
time, which should be dominated by bred vectors, averaged
over one or two months. Therefore we can consider Fig. 11b
as a rough estimate of the projection of the background er-
rors onto the subspace of vectors used in 3D-Var. Figure 11a
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Table 1. Comparison of the explained variance of the background error using real bred vectors and surrogates (bred vectors corresponding to
randomly chosen times). The results are computed for every grid point over 90 days, and binned as a function of the square of the background
error

Explained Variance

Background error squared Real BVs Surrogate test
range % of points Mean STD Mean STD T test
0.0–0.1 57.58 0.9608 0.0505 0.8519 0.1188 92.01
0.1–0.2 14.39 0.9678 0.0454 0.8648 0.1167 47.42
0.2–0.3 7.82 0.9723 0.0396 0.8730 0.1129 36.62
0.3–0.4 4.75 0.9756 0.0317 0.8620 0.1220 27.04
0.4–0.5 3.17 0.9761 0.0330 0.8674 0.1154 23.21
0.5–0.6 2.40 0.9759 0.0351 0.8675 0.1072 21.53
0.6–0.7 1.70 0.9746 0.0500 0.8711 0.1047 17.60
0.7–0.8 1.52 0.9814 0.0293 0.8693 0.1165 16.08
0.8–0.9 1.12 0.9789 0.0326 0.8800 0.1018 15.49
0.9–1.0 0.95 0.9797 0.0359 0.8652 0.1244 11.76
1.0–1.5 3.08 0.9831 0.0268 0.8810 0.1039 25.63
1.5–2.0 1.53 0.9819 0.0296 0.8804 0.1123 16.66

Fig. 10. BV-Dimension as a function of the background error
squared, computed for 90 days over every grid point.(a) using
10 bred vectors corresponding to the same time as the background
error. (b) using 10 surrogate bred vectors corresponding to random
times.

shows the potential improvement that including the “errors
of the day” could bring to the 3D-Var data assimilation.

Finally, in Fig. 12 we show the evolution of the average ex-

plained variance as a function of time for bred vectors started
from initial random perturbations. It shows that the bred vec-
tor subspace converges quickly, within 3–5 days, and that the
results are robust in time. For the surrogates the explained
variance does not change with time.

5 Discussion and conclusions

In this paper we have used a 3D-variational data assimilation
scheme for a quasi-geostrophic channel model (Morss, 1998)
to study the structure of the background error and its relation-
ship to the corresponding bred vectors. By defining a model
integration as the “true” evolution of the model atmosphere
we were able to explicitly compute the background errors
and make direct comparisons of these errors to bred vectors.
We have observed that in the quasi-geostrophic simulation
system, as in the operational data assimilation system, the
background errors have a large day-to-day variability, which
we have called “errors of the day”. The errors of the day tend
to have periods of fast growth, resulting in large amplitudes
intermittent in both space and in time.

We have obtained the following results:

– Convergence to well organized structures in the bred
vectors occurs within a few (3–5) days (Sects. 3.2 and
4.2).

– Bred vectors obtained using normalizations based on
the potential vorticity and on the streamfunction have
very similar structures (Sect. 3.3).

– Bred vectors obtained using the “true” atmosphere are
very similar to those obtained using the “analysis” at-
mosphere (Sect. 3.1). This is true whether we use a
high or low density observing network, suggesting that
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Fig. 11. Explained variance (square of the cosine of the angle be-
tween the background error and the space defined by the local vec-
tors) as a function of the background error squared, computed for
90 days over every grid point.(a) using 10 bred vectors correspond-
ing to the same time as the background error.(b) using 10 surrogate
bred vectors corresponding to random times.

the bred vectors are not too sensitive to the details of
the flow and that the errors themselves are more likely
dependent on the large scale nature of the flow (at least
in a perfect model assumption). Since the truth is not
available in practice, this is important because it sug-
gests that basing bred vectors on the analysis is not a
significant limitation in operational systems.

– The bred vectors have spatial characteristics similar to
those of the background “error of the day” (Figs. 4, 12).

– Following Patil et al. (2001) we computed a measure of
the space spanned by the bred vectors (BV-dimension).
We found that the local dimension is much smaller than
the number of bred vectors. Moreover, the information
given by a set of ten bred vectors is not significantly
different from that obtained using a larger number of
vectors (Sect. 4).

– We also defined the local angle between the forecast er-
ror and the subspace of bred vectors. When averaging
over many cases, we found that in most of the model do-
main the angle is confined to less than 10◦, with a mean
explained variance of 96–98%, indicating that the back-
ground error is mostly confined to the subspace of the
bred vectors (Sect. 4.2). Larger angles (lower explained

Fig. 12. Evolution of the average explained variance as a function
of time for bred vectors started from initial random perturbations
(red dots) and for the surrogate (blue line).

variance) are only observed in regions where the back-
ground error is small (Fig. 12).

– The explained variance of the forecast error using sur-
rogate bred vectors (corresponding to random times) is
also high, about 85%. We suggest that this reflects the
reason why 3D-Var is quite successful even though it
does not take into account the errors of the day, since
the ”NMC method” used to construct the background
error covariance is based on forecast differences related
to bred vectors.

These results suggest that the bred vectors can indeed be
useful in specifying the part of the background error covari-
ance that corresponds to the “errors of the day”. We are
currently developing computationally inexpensive methods
to take advantage of this information. Preliminary results
(Corazza et al., 2002) indicate a substantial improvement in
the analysis errors and in the forecasts at a small computa-
tional overhead. An economic local ensemble Kalman Fil-
tering approach is described in Ott et al. (2002).

Finally, we point out that these results were obtained in the
context of a perfect model, and we have not yet addressed
the problem of model deficiencies. However, forecast expe-
rience with global models (e.g. Kalnay et al., 1998; Simmons
and Hollingsworth, 2002; Reynolds et al., 1994) indicates
that away from the tropics and for synoptic and larger scales,
model errors are small compared with the “errors of the day”
that grow due to the unstable dynamics, suggesting that in
these areas bred vectors can indeed be used to improve data
assimilation. We plan to assess the impact of model deficien-
cies by performing breeding with several different models.
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