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1 Introduction 

 
In this chapter we give an introduction to different types of Ensemble Kalman filter, 
describe the Local Ensemble Transform Kalman Filter (LETKF) as a representative 
prototype of these methods, and several examples of how advanced properties and 
applications that have been developed and explored for 4D-Var (four-dimensional 
variational assimilation) can be adapted to the LETKF without requiring an adjoint 
model. Although the Ensemble Kalman filter is less mature than 4D-Var, its 
simplicity and its competitive performance with respect to 4D-Var suggest that it 
may become the method of choice. 

The mathematical foundation of data assimilation is reviewed by Nichols 
(chapter Mathematical Concepts of Data Assimilation). Ide et al. (1997) concisely 
summarized the sequential and variational approaches in a paper introducing a 
widely used notation that we follow here, with bold low-case letters and bold capitals 
representing vectors and matrices, respectively. Non-linear operators are, however, 
represented in bold Kunster script (as in other chapters in this book). Since 
variational methods (chapter Variational Assimilation, Talagrand) and sequential 
methods basically solve the same problem (Lorenc 1986; Fisher et al. 2005) but 
make different approximations in order to become computationally feasible for large 
atmospheric and oceanic problems, it is particularly interesting to compare them 
whenever possible.  

In this chapter we briefly review the most developed advanced sequential 
method, the Ensemble Kalman filter (EnKF) and several widely used formulations 
(Section 2). In Section 3 we compare the EnKF with the corresponding most 
advanced variational approach, 4D-Var (see chapter Variational Assimilation, 
Talagrand). Because 4D-Var has a longer history (e.g. Talagrand and Courtier 1987; 
Courtier and Talagrand 1990; Thépaut and Courtier 1991), and has been 
implemented in many operational centers (e.g. Rabier et al. 2000), there are many 
innovative ideas that have been developed and explored in the context of 4D-Var, 
whereas the EnKF is a newer and less mature approach. We therefore present in 
Section 3 examples of how specific approaches explored in the context of 4D-Var 
can be simply adapted to the EnKF. These include the 4D-Var smoothing property 
that leads to a faster spin-up, the outer loop that increases the analysis accuracy in the 
presence of non-linear observation operators, the adjoint sensitivity of the forecasts 
to the observations, the use of lower resolution analysis grids, and the treatment of 
model errors. Section 4 is a summary and discussion. 
 
 
2 Brief review of ensemble Kalman filtering 
 



 

 

The Kalman filter equations are discussed by Nichols (chapter Mathematical 
Concepts of Data Assimilation, Section 1.3.1). Here we summarize key points of an 
alternative derivation of the Kalman filter equations for a linear perfect model due to 
Hunt et al. (2007) based on a maximum likelihood approach which provides 
additional insight about the role that the background term plays in the variational 
cost function (see Nichols, Chapter Mathematical Concepts of Data Assimilation, 
Section 1.2; Talagrand, Chapter Variational Assimilation, Section 2).  
      We start by assuming that the analysis a

n 1!x valid at time 1!nt has Gaussian errors 
with covariance a

n 1!P so that the likelihood of the true state t
x  is  
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where the overbar represents the expected value (cf. Chapter Mathematical Concepts 
of Data Assimilation, Nichols, Section 1.2.4). The past observations jy  from time 
1
t to 1!nt  (i.e. )1,,1 != nj …  are also assumed to have a Gaussian distribution with 
error covariances jR , so that the likelihood of a trajectory of states 

}1,,1|)({ != njt j …x given the past observations is proportional to 
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where jH is the linear observation operator that transforms the model into the 
corresponding observation. To maximize the likelihood function, it is more 
convenient, however, to write the likelihood function as a function of the state at a 
single time rather than for the whole trajectory. Let ji ,M be the linear forecast model 
that advances a state from )( itx  to )( jtx , we can then express the likelihood 
function as a function of the state x  at a single time say 1!nt , as follows 
 

!
"

=

""
"

"" #
$

%
&
'

(
"""

1

1

1,1

1

1,1 )()(
2

1
exp

n

j

njnjjj

T

njnjj xMHyRxMHy . 

 
Note that in this derivation we allow jt to be less than 1!nt , although integrating the 
model backward in time is problematic, it is used here only to derive the algorithm – 
in the end the algorithm will not require the backward integration of the model. Such 
an issue about time integration is found in the derivation of most Kalman smoother 
algorithms (see for instance Jazwinski 1970).  
     The analysis a

n 1!x  and its covariance a

n 1!P are the mean and covariance of a 
Gaussian probability distribution representing the relative likelihood of a state 1!nx  
given all previous observations, so that taking logarithms of the likelihoods, for some 
constant c,  
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     The Kalman filter determines a

nx and a

nP  such that an equation analogous to Eq. 1 
holds at time nt . In the forecast step of the Kalman filter the analysis a

nx  and its 
covariance are propagated to time nt  with the linear forecast model nn ,1!M  and its 
adjoint T

nn ,1!M  creating the background state and its covariance: 
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Propagating Eq. 1, using Eq. 2, we get a relationship valid for states at time nt  (see 
Hunt et al. 2007 for further details), showing that the background term represents the 
Gaussian probability distribution of a state, given the past observations up to 1!nt : 
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When the new observations at time nt  are obtained, we use Eq. 3 to obtain an 

expression equivalent to Eq. 1 valid at time nt , for another constant c’: 
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The analysis state that minimizes the variational cost function 
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is the state with maximum likelihood given all the observations (cf., chapter 
Mathematical Concepts of Data Assimilation, Section 1.2.4). Equation 3 shows that 
in this cost function the background term represents the Gaussian distribution of a 
state with the maximum likelihood trajectory (history), i.e., b

nx  is the 
analysis/forecast trajectory that best fits the past data available until 1!nt .  

Equating the terms in Eq. 4 that are quadratic and linear in x , the Kalman filter 
equations for the analysis step are obtained: 
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The Remark 1 of Ide et al. (1997) “[In sequential methods] observations are 

processed whenever available and then discarded” follows from the fact that the 
background term is the most likely solution given all the past data, i.e., if the Kalman 
filter has already spun-up from the initial conditions, the observations are to be used 
only once (but see the discussion on spin-up in Section 3). 



 

 

The Kalman gain matrix that multiplies the observational increment b
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o

n xHy !  
in Eq. 6 can be written as 
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For non-linear models nn ,1!M , the Extended Kalman filter (EKF) approximation 

uses the non-linear model in the forecast step to advance the background state, but 
the covariance is advanced using the model linearized around the trajectory b

n
x , and 

its adjoint (e.g. Ghil and Rizzoli 1991; Nichols, chapter Mathematical Concepts of 
Data Assimilation, Section 1.3): 
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The cost of advancing the background error covariance with the linear tangent 

and adjoint models in Eq. 7 makes the EKF computationally unfeasible for any 
atmospheric model of realistic size without major simplifications. 

Evensen (1994) suggested that Eq. 7 could be computed more efficiently with an 
Ensemble Kalman filter (EnKF) for non-linear models. The ensemble is created 
running K forecasts, where the size of the forecast ensemble is much smaller than n, 
the dimension of the model, nK << . Then Eq. 7 can be replaced by 
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where the overbar now represents the ensemble average. 

Because the background error covariance is estimated from a relatively small 
ensemble, there are sampling errors at long distances, so that Houtekamer and 
Mitchell (2001) and Hamill et al. (2001) introduced the idea of localizing b

nP , i.e., 
multiplying each term of the covariance by an approximation of the Gaussian 
function )2/exp( 22

Lr ji!  (Gaspari and Cohn 1999). Here, ji
r  is the distance between 

two grid points i,j, and L is the localization scale, so that the effect of localization is 
that long distance correlations are damped to zero. Mitchell et al. (2002) pointed out 
that this localization introduces imbalances in the analysis. Hunt (2005) and Miyoshi 
(2005) used an alternative localization multiplying the inverse of the observation 
error covariance 1!

R by the Gaussian function, thus assuming that long distance 
observations have larger errors and reducing their impact on the grid point analyses. 
Because, unlike b

nP , R is generally either diagonal or block diagonal, this 
“observation localization” may be less prone to generate imbalances (Greybush 
2009). 

There are two basic approaches to the EnKF, perturbed observations and square-
root filters. In the perturbed observations EnKF, Burgers et al. (1998), Houtekamer 



 

 

and Mitchell (1998), Keppenne (2000) and others used ensembles of data 
assimilation systems with randomly perturbed observations. Perturbing the 
observations assimilated in different ensembles is required in this approach in order 
to avoid an underestimation of the size of the analysis error covariance, but it may 
introduce an additional source of sampling errors (Whitaker and Hamill 2002).  

An alternative to the perturbed observations (or stochastic) approach are the 
ensemble square-root filters that generate an analysis ensemble mean and covariance 
satisfying the Kalman filter equations for linear models (Tippett et al. 2003; Bishop 
et al. 2001; Anderson 2001; Whitaker and Hamill 2002; Ott et al. 2004; Hunt et al. 
2007). We will focus in the rest of the chapter on square-root (or deterministic) 
filters. Houtekamer and Mitchell (2001) pointed out that observations with 
uncorrelated errors can be assimilated serially (one at a time), with the background 
for a new observation being the analysis obtained when assimilating the previous 
observation. Tippett et al. (2003) discuss the differences between several square-root 
filters that derive computational efficiency by assimilating observations serially. 
Another Monte Carlo method that avoids using perturbed observations is described 
in Pham (2001).  

Different square-root filters are possible because different analysis ensemble 
perturbations can have the same analysis error covariance. Of the three schemes 
discussed in Tippett et al. (2003), the Ensemble Adjustment Kalman Filter (EAKF) 
of Anderson (2001) has been implemented into the flexible Data Assimilation 
Research Testbed (DART) infrastructure and has been applied to many geophysical 
problems (http://www.image.ucar.edu/DAReS/Publications/). The square-root filter 
of Whitaker and Hamill (2002) results in simple scalar assimilation equations when 
observations are assimilated serially, and has also been adopted for a number of 
problems, such as the assimilation of surface observations (Whitaker et al. 2004), 
and for the regional EnKF of Torn and Hakim (2007) where only non-satellite data 
are assimilated. We note that the application of EnKF to regional models requires 
including appropriate perturbations in the boundary conditions to avoid a reduction 
in variance in the interior (Nutter et al. 2004). Torn et al. (2006) showed that in the 
absence of a global EnKF system to provide consistent perturbed boundary 
conditions, several perturbation methods could give results comparable to those 
obtained with a global ensemble boundary conditions, thus making regional EnKF 
practically feasible for many groups without access to global EnKF. The third 
square-root filter discussed in Tippett et al. (2003) is the Ensemble Transform 
Kalman Filter, ETKF (Bishop et al. 2001), which introduced the computation of the 
analysis covariance by a transform method also adopted by Hunt et al. (2007). 
Zupanski (2005) proposed the Maximum Likelihood Ensemble Filter (MLEF) where 
a 4D-Var cost function with possibly non-linear observation operators is minimized 
within the subspace of the ensemble forecasts. In this system, the control forecast is 
allowed to have higher resolution than the rest of the ensemble. A review of EnKF 
methods is presented in Evensen (2003), and a comparison of EnKF with 4D-Var 
results for several models in Kalnay et al. (2007a).  

Ott et al. (2002, 2004), and Hunt et al. (2007) developed an alternative type of 
square-root EnKF without perturbed observations by performing the analyses locally 
in space, as did Keppenne (2001). This is computationally efficient because the 
analyses at different grid points are independent and thus can be done in parallel. 
Since observations are assimilated simultaneously, not serially, it is simple to 
account for observation error correlations.  

In this chapter we present results mostly based on the Local Ensemble Transform 
Kalman Filter (LETKF) as a representative prototype of EnKF. The LETKF 
algorithm is summarized below (see Hunt et al. 2007, for full details).  



 

 

 
LETKF algorithm:  
This summary description is written as if all the observations are at the analysis time 
(i.e., for the 3D-LETKF), but the algorithm is essentially the same for the 4D-
LETKF (Hunt et al. 2007). In 4D-LETKF (discussed below) the observations are in a 
time window that includes the analysis time and the non-linear observation operator 
H  is evaluated at the observation time. M is the non-linear model forecast. 
 

a) LETKF forecast step (done globally) for each ensemble member k:  
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b) LETKF analysis step (at time 

n
t , so the subscript n is dropped):  

 
[ ]

[ ]bb

K

bbbb

k

b

k

Tbbbbb

K

bbb

yyyyYxy

XXPxxxxX

!!==

=!!=

,...,;)(

)(;,...,

1

1

H

 

 
These computations can be done locally or globally, whichever is more efficient. 

Here the overbar represents the ensemble average. 
Localization: choose for each grid point the observations to be used. Compute 

for each grid point the local analysis error covariance a
P̂  and analysis perturbations 

a
W  in ensemble space: 
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The square-root required for the matrix of analysis perturbations in ensemble 

space is computed using the symmetric square root (Wang et al. 2004). This square-
root has the advantage of having a zero mean and being closer to the identity than the 
square-root matrix obtained by Cholesky decomposition. As a result the analysis 
perturbations (chosen in different ways in different EnKF schemes) are also close to 
the background perturbations (Ott et al. 2002). Note that a

W can also be considered 
a matrix of weights since multiplying the forecast ensemble perturbations at each grid 
point by a

W  gives the grid point analysis ensemble perturbations. 
Local analysis mean increment in ensemble space:  
 

)()(ˆ 1 boTbaa
yyRYPw !=

!  
 
Note that the forecast ensemble at each grid point multiplied by the vector of weights 

a
w  gives the grid point analysis a

x . The ensemble space analysis a
w is added to 

each column of a
W  to get the analysis ensemble in ensemble space: 

aaa
wWW !"  

The new ensemble analyses are the K columns of 
 



 

 

baba
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Global analysis ensemble: 
The analysis ensemble columns for each grid point are gathered together to form 

the new global analysis ensemble a

kn ,x , and the analysis cycle can proceed.  
 
3 Adaptation of 4D-Var techniques into EnKF 
 
4D-Var and EnKF are essentially solving the same problem since they minimize the 
same cost function in Eq. 2 using different computational methods. These differences 
lead to several advantages and disadvantages for each of the two methods (see, for 
example, Lorenc 2003; Table 7 of Kalnay et al. 2007a; discussion of Gustafsson 
2007; response of Kalnay et al. 2007b).  

A major difference between 4D-Var and the EnKF is the dimension of the 
subspace of the analysis increments (analysis minus background). 4D-Var corrects 
the background forecast in a subspace that has the dimension of the linear tangent 
and the adjoint models used in the minimization algorithm, and this subspace is 
generally much larger than the local subspace of corrections in the EnKF of 
dimension K !1determined by the ensemble size. It would be impractical to try to 
overcome this apparent EnKF disadvantage by using a very large ensemble size. 
Fortunately, the localization of the error covariances carried out in the EnKF in order 
to reduce long distance covariance sampling errors, substantially addresses this 
problem by greatly increasing the number of degrees of freedom available to fit the 
data. As a result, experience has been that the quality of the EnKF analyses with 
localization increases with the number of ensemble members, but that there is little 
further improvement when the size of the ensemble is increased beyond about 100. 
The observation that 50-100 ensemble members are sufficient for the EnKF seems to 
hold for atmospheric problems ranging from the storm-scales and mesoscales to the 
global-scales (Fuqing Zhang, pers. comm.).  

There are a number of attractive properties of 4D-Var developed over the years. 
They include the ability to assimilate observations at their right time (Talagrand and 
Courtier 1987); the fact that within the data assimilation window 4D-Var acts as a 
smoother (Thépaut and Courtier 1991); the availability of an adjoint model allowing 
the estimation of the impact of observations on the analysis (Cardinali et al. 2004) 
and on the forecasts (Langland and Baker 2004); the ability to use long assimilation 
windows (Pires et al. 1996); the computation of outer loops correcting the 
background state when computing non-linear observation operators and the ability to 
use a lower resolution simplified model in the inner loop (see Fig. 3 discussed later); 
and the possibility of accounting for model errors by using the model as a weak 
constraint (Trémolet 2007). In the rest of this section we discuss how these 
advantageous methods that have been developed and implemented for 4D-Var 
systems can also be adapted and used in the LETKF, a prototype of EnKF. 

 
3.1 4D-LETKF and no-cost smoother 
 
Hunt et al. (2004) developed an extension of the Local Ensemble Kalman Filter 
(LEKF; Ott et al. 2004) to four dimensions (4-D), taking advantage of the fact that 
the observational increments are expressed as linear combinations (weights) of the 



 

 

forecast ensemble perturbations at the time of the observation1. This allows using the 
same coefficients to “transport” the observational increments either forward or 
backward in time to the time of the analysis. We note that within this 4-D 
formulation it is possible to account for observation errors correlated in time, as 
Järvinen et al. (1999) have done within 4D-Var. Hunt et al. (2007) showed that the 
4-D extension is particularly simple within the LETKF framework, requiring the 
concatenation of observations performed at different times within the assimilation 
window into the vectors bo

yy , and the vertical columns of b
Y  and of a block error 

covariance R  with blocks corresponding to the same observations. Note that 4D-
LETKF determines the linear combination of ensemble forecasts valid at the end of 
the assimilation window that best fits the data throughout the assimilation window.  

This property allows creating a “cost-free” smoother for the LETKF with 
analogous smoothing properties as 4D-Var (Fig. 1): the same weighted combination 
of the forecasts with weights given by the vector a

w is valid at any time of the 
assimilation interval. It provides a smoothed analysis mean that (as in 4D-Var) is 
more accurate than the original analysis because it uses the future data available 
within the assimilation window (Kalnay et al. 2007b; Yang et al. 2009a). As in 4D-
Var, the smoothed analysis at the beginning of the assimilation window is an 
improvement over the filtered analysis computed using only past data. At the end of 
the assimilation interval only past data is used so that (as in 4D-Var) the smoother 
coincides with the analysis obtained with the filter. 

It should be noted that in the same way we can use the weights a
w  to provide a 

mean smoother solution as a function of time, we can use the matrix a
W  and apply 

it to the forecast perturbations ab
WX  to provide an associated uncertainty evolving 

with time (Ross Hoffman, pers. comm.). The updating of the uncertainty is critical for 
the “Running in Place” method described next, but the uncertainty is not updated in 
the “outer loop” approach. 
 

 

 
Fig. 1. Schematic showing that the 4D-LETKF finds the linear combination of the 
ensemble forecasts at 

n
t  that best fits the observations throughout the assimilation 

                                                
1 Strictly speaking the combinations are not linear since the weights depend on the forecasts 
(Nerger et al. 2005). 



 

 

window 
nn
tt !!1 . The white circles represent the ensemble of analyses (whose 

mean is the analysis a
x ), the full lines represent the ensemble forecasts, the dashed 

line represents the linear combination of the forecasts whose final state is the 
analysis, and the grey stars represent the asynchronous observations. The cross at the 
initial time of the assimilation window 1!nt  is a no-cost Kalman smoother, i.e., an 
analysis at 1!nt  improved using the information of “future” observations within the 
assimilation window by weighting the ensembles at 1!nt  with the weights obtained 
at 

n
t . The smoothed analysis ensemble at 1!nt  (not shown in the schematic) can also 

be obtained at no cost using the same linear combination of the ensemble forecasts 
valid at 

n
t given by a

W  (Adapted from Kalnay et al. 2007b.).  
 

3.2 Application of the no-cost smoother to the acceleration of the spin-up 
 
4D-Var has been observed to spin up faster than EnKF (e.g. Caya et al. 2005), 
presumably because of its smoothing properties that allow finding the initial 
conditions at the beginning of the assimilation window that will best fit all the 
observations. The fact that we can compute a no-cost smoother allows the 
development of a new algorithm, called Running in Place by Kalnay and Yang 
(2009) that should be useful in rapidly evolving situations. For example, at the time 
radar measurements first detect the development of a severe storm, the available 
EnKF estimate of the atmospheric state and its uncertainty are no longer very useful. 
In other words, while formally the EnKF members and their average are still the 
most likely state and best estimate of the uncertainty given all the past data, these 
EnKF estimates are no longer likely at all. At the start of severe storm convection, 
the dynamics of the system changes substantially, and the statistics of the processes 
become non-stationary. In this case, as in the spin-up case in which there are no 
previous observations available, the running in place algorithm ignores the rule “use 
the data and then discard it” and repeatedly recycles the new observations.  
 
 
Running in place algorithm: 
This algorithm is applied to each assimilation window during the spin-up phase. The 
LETKF is “cold-started” with any initial ensemble mean and perturbations at 0t . The 
“running in place” loop at time 

n
t  (initially 0t ) is as follows: 

1. Integrate the ensemble from 
n
t to 1+nt , perform a standard LETKF analysis and 

obtain the analysis weights for the interval ],[ 1+nn
tt , saving the mean square 

observations minus forecast (OMF) computed by the LETKF; 
2. Apply the no-cost smoother to obtain the smoothed analysis ensemble at 

n
t by 

using these weights;  
3. Perturb the smoothed analysis ensemble with small zero-mean random Gaussian 

perturbations, a method similar to additive inflation. Typically, the perturbations 
have an amplitude equal to a small percentage of the climate variance; 

4. Integrate the perturbed smoothed ensemble to 1+nt . While the forecast fit to the 
observations continues to improve according to a criterion such as  

OMF
2
(iter) !OMF

2
(iter +1)

OMF
2
(iter)

> " , 

   go to step 2 and perform another iteration. If not, replace 
n
t  with 1+nt  and go to 

step 1; 
5. If no additional iteration beyond the first one is needed, the running in place 



 

 

analysis is the same as the standard EnKF. When the system converges, no 
additional iterations are needed, so that if several assimilation cycles take place 
without invoking a second iteration, the running in place algorithm can be 
switched off and the system returns to a normal EnKF. 

 
The purpose of adding perturbations in step 3 is twofold: it avoids reaching the 

same analysis as in the previous iteration, and it increases the chances that the 
ensemble will explore unstable directions of error growth missed by the unperturbed 
ensemble and not be “trapped” in the “unlikely” subspace of the initial perturbations. 

Running in place was tested with the LETKF in a quasi-geostrophic, QG, model 
(Fig. 2, adapted from Kalnay and Yang 2009). When starting from a 3D-Var (three 
dimensional variational) analysis mean, the LETKF converges quickly (not shown), 
but from random initial states it takes 120 cycles (60 days) to reach a point in which 
the ensemble perturbations represent the “errors of the day” (black line in Fig. 2). 
From then on the ensemble converges quickly, in about 60 more cycles (180 cycles 
total). 

By contrast, the 4D-Var started from the same initial mean state, but using as 
background error covariance the 3D-Var B scaled down with an optimal factor, 
converges twice as fast, in about 90 cycles (blue line in Fig. 2). The running in place 
algorithm with ! = 5% (red line) converges about as fast as 4D-Var, and it only takes 
about 2 iterations per cycle (i.e., one additional assimilation for each window). The 
green line is also for ! = 5% , but with K=20 ensemble members, not K=40 as used 
in the other experiments and also gives good results, but experiments with K=10 
failed to spin-up faster with this technique. With ! = 1%  (not shown) the initial 
convergence (in real time) is faster, but it requires about 5 times more iterations. It is 
interesting that when the number of iterations is fixed to 10 (not shown), the data are 
over-fitted so that the system quickly converges to a final level of error about twice 
as large than when the iterations are chosen adaptively. 

 



 

 

 
Fig. 2. Comparison of the spin-up of a quasi-geostrophic model simulated data 
assimilation when starting from random initial conditions. Observations (simulated 
radiosondes) are available every 12 hours, and the analysis root-mean-square (RMS) 
errors are computed by comparing with a nature run (see the chapter Observing 
System Simulation Experiments, Masutani et al.). Black line: original LETKF with 
40 ensemble members, and no prior statistical information, blue line: optimized 4D-
Var, red line: LETKF “running in place” with %5=!  and 40 ensemble members, 
green line: as the red line but with 20 ensemble members.  

 
3.3 “Outer loop” and dealing with non-linear ensemble perturbations 
 
A disadvantage of the EnKF is that the Kalman filter equations used in the analysis 
assume that the ensemble perturbations are Gaussian, so that when windows are 
relatively long and perturbations become non-linear, this assumption breaks down 
and the EnKF is not optimal (Harlim and Hunt 2007a, b). By contrast, 4D-Var is 
recomputed within an assimilation window until the initial conditions that minimize 
the cost function for the non-linear model integration in that window are found. In 
many operational centres (e.g. the National Centers for Environmental Prediction, 
NCEP, and the European Centre for Medium-Range Weather Forecasts, ECMWF) 
the minimization of the 3D-Var or 4D-Var cost function is done with a linear “inner 
loop” that improves the initial conditions minimizing a cost function that is quadratic 
in the perturbations. In the 4D-Var “outer loop” the non-linear model is integrated 
from the initial state improved by the inner loop and the linearized observational 
increments are recomputed for the next inner loop (Fig. 3).  

The ability of including an outer loop increases significantly the accuracy of both 
3D-Var and 4D-Var analyses (Arlindo da Silva, pers. comm.), so that it would be 
important to develop the ability to carry out an equivalent “outer loop” in the 



 

 

LETKF. This can be done by considering the LETKF analysis for a window as an 
“inner loop” and, using the no-cost smoother, adapting the 4D-Var outer loop 
algorithm to the EnKF. As in 4D-Var, we introduce into the LETKF the freedom of 
the inner loop to improve the initial analysis (i.e., the mean of the ensemble) but keep 
constant the background error covariance, given by the ensemble initial 
perturbations. This re-centres the initial ensemble forecasts about the value improved 
by the inner loop, and another “outer loop” with full non-linear integrations can be 
carried out2. Note that this algorithm is identical to “running in place”, except that 
only the mean is updated, not the perturbations about the mean at 

n
t . 

 

 
Fig. 3. Schematic of how the 4D-Var cost function is minimized in the ECMWF 
system. (From Yannick Trémolet, August 2007 class on Incremental 4D-Var at 
University of Maryland summer Workshop on Applications of Remotely sensed data 
to Data Assimilation.) 

 
 
 
 
 
 
 
 

Table 1: Comparison of the RMSE (RMS error, non-dimensional units) for 
4D-Var and LETKF for the Lorenz (1963) 3-variable model. 4D-Var has 
been simultaneously optimized for the window length (Kalnay et al. 2007a; 
Pires et al. 1996) and the background error covariance, and the full non-
linear model is used in the minimization. LETKF is performed with 3 
ensemble members (no localization is needed for this problem), and 

                                                
2 Takemasa Miyoshi (pers. comm.) has pointed out that Jazwinski (1970) proposed the same 
“outer loop” algorithm for Extended Kalman filter (see footnote on page 276). 
 



 

 

inflation is optimized. For the 25 steps case, “running in place” further 
reduces the error to about 0.39.  

 
Experiment details 4D-Var  LETKF 

(inflation factor) 
LETKF with less than 3 
“outer loop” iterations 
(inflation factor) 

Window=8 steps 
(perturbations are 
approximately linear) 

0.31  0.30 
(1.05) 

0.27 
(1.04) 

Window=25 steps 
(perturbations are non-linear) 

0.53 0.66 
(1.28) 

0.48 
(1.08) 

 
This algorithm for an outer loop within the EnKF was tested with the Lorenz 

(1963) model for which comparisons between LETKF and 4D-Var were made, 
optimizing simultaneously the background error covariance and the length of the 
window for 4D-Var (Kalnay et al. 2007a). For short assimilation windows, the 3-
member LETKF gives analysis errors similar or smaller than 4D-Var, but with long 
assimilation windows of 25 steps, when the perturbations grow non-linearly, Kalnay 
et al. (2007a) were not able to find an LETKF configuration competitive with 4D-
Var. However, as shown in Table 1 above, the LETKF with an outer loop is able to 
beat 4D-Var. We note that “running in place” (with up to one additional analysis) 
can further improve the results for the case of 25 steps, reducing the RMS (root-
mean-square) analysis error of 0.48 obtained using the outer loop to about 0.39, with 
inflation of 1.05. As in the case of the spin-up, this re-use of observations is justified 
by the fact that for long windows and non-linear perturbations, the background 
ensemble ceases to be Gaussian, and the assumption of statistical stationarity is no 
longer viable. 

These experiments suggest that it should be possible to deal with non-linearities 
and obtain results comparable or better than 4D-Var by methods such as an outer 
loop and running in place. 
 
3.4 Adjoint forecast sensitivity to observations without adjoint model 
 
Langland and Baker (2004) proposed an adjoint-based procedure to assess the 
observation impact on short-range forecasts without carrying out data-denial 
experiments. This adjoint-based procedure can evaluate the impact of any or all 
observations assimilated in the data assimilation and forecast system on a selected 
measure of short-range forecast error. In addition, it can be used as a diagnostic tool 
to monitor the quality of observations, showing which observations make the 
forecast worse, and can also give an estimate of the relative importance of 
observations from different sources. Following a similar procedure, Zhu and Gelaro 
(2008) showed that this adjoint-based method provides accurate assessments of the 
forecast sensitivity with respect to most of the observations assimilated. 
Unfortunately, this powerful and efficient method to estimate observation impact 
requires the adjoint of the forecast model which is complicated to develop and not 
always available, as well as the adjoint of the data assimilation algorithm. 

Liu and Kalnay (2008) proposed an ensemble-based sensitivity method able to 
assess the same forecast sensitivity to observations as in Langland and Baker (2004), 



 

 

but without adjoint. Following Langland and Baker (2004), they define a cost 
function )( 6|6|0|0|
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the previous analysis at t = -6 hours. The difference between the two forecasts is only 
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where K is the gain matrix of the data assimilation system. There is a slight error in 
Eq. 10 in Liu and Kalnay (2008) so that we re-derive here the forecast sensitivity 
equation (Hong Li, pers. comm.): 
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where M is the linear tangent forecast model that advances a perturbation from        
0-hours to time t. 

Langland and Baker (2004) compute this error sensitivity by using the adjoint of 
the model and of the data assimilation scheme: 
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In the EnKF we can take advantage of the fact that the Kalman gain is computed as 
K = P
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forecast differences at time t computed non-linearly rather than with the linear 
tangent model. As a result, for EnKF the forecast sensitivity is computed as 
 

!et ,EnKF
2

= y " H(x
0|"6
b
)#$ %&

T

R"1Ya
(Xt |0

f
)
T
(et |0 + et |"6 ) / (K "1)  

 
Because the forecast perturbation matrix f

t 0|X  is computed non-linearly, the forecast 
sensitivity and the ability to detect bad observations remains valid even for forecasts 
longer than 24 hours, for which the adjoint sensitivity based on the adjoint model 

T
M  ceases to be accurate. As in Langland and Baker (2004) and Zhu and Gelaro 
(2008), it is possible to split the vector of observational increments )( 6|0

b

!! xy H  
into any subset of observations and obtain the corresponding forecast sensitivity.  

Figure 4 shows the result of applying this method to the Lorenz (1996) 40-
variables model. In this case observations were made at every point every 6 hours, 
created from a “nature” run by adding Gaussian observational errors of mean zero 
and standard deviation 0.2. The left panel shows that both the adjoint and the EnKF 
sensitivity methods are able to estimate quite accurately the day-to-day variability in 
the 24-hour forecast sensitivity to the observations when all the observations have 
similar Gaussian errors. A “bad station” was then simulated at grid point 11 by 



 

 

increasing the standard deviation of the errors to 0.8 without “telling” the data 
assimilation system about the observation problems in this location. The right panel 
of Fig. 4 shows the time average of the forecast sensitivity for this case, indicating 
that both the adjoint and the ensemble-based sensitivity are able to identify that the 
observations at grid point 11 have a deleterious impact on the forecast. They both 
show that the neighbouring points improved the forecasts more than average by 
partially correcting the effects of the 11th point observations. 
 

 
 

Fig. 4. Left: Domain average variability in the forecast impact estimated by the 
adjoint method (plus symbols), the EnKF sensitivity (closed circles) and the actual 
forecast sensitivity. Right: Time average (over the last 7000 analysis cycles) of the 
contribution to the reduction of the 1-day forecast errors from each observation 
location. The observation at the 11th grid point has 8=

o
!  random errors rather 

than the specified value of 0.2. Adjoint sensitivity (grey plus), EnKF sensitivity 
(black). Adapted from Liu and Kalnay (2008). 

 
The cost function in this example was based on the Eulerian norm, appropriate 

for a univariate problem, but the method can be easily extended to an energy norm, 
allowing the comparison of the impact of winds and temperature observations on the 
forecasts. Although for short (one-day) forecasts the adjoint and ensemble 
sensitivities have similar performances (Fig. 4), the (linear) adjoint sensitivity ceases 
to identify the wrong observations if the forecasts are 2-days or longer. The ensemble 
sensitivity, which is based on non-linear integrations, continues to identify the 
observations having a negative impact even on long forecasts (not shown). 

We note that Liu et al. (2009) also formulated the sensitivity of the analysis to the 
observations as in Cardinali et al. (2004) and showed that it provides a good 
qualitative estimate of the impact of adding or denying observations on the analysis 
error, without the need to run these costly experiments. Since the Kalman gain 
matrix is available in ensemble space, complete cross-validations of each observation 
can be computed exactly within the LETKF without repeating the analysis.  
 
3.5 Use of a lower resolution analysis 
 
The inner/outer loop used in 4D-Var was introduced in subsection 3.3 above, where 
we showed that a similar outer loop can be carried out in EnKF. We now point out 
that it is common practice to compute the inner loop minimization, shown 



 

 

schematically in Fig. 3, using a simplified model (Lorenc 2003), which usually has 
lower resolution and simpler physics than the full resolution model used for the non-
linear outer loop integration. The low-resolution analysis correction computed in the 
inner loop is interpolated back to the full resolution model (Fig. 3). The use of lower 
resolution in the minimization algorithm of the inner loop results in substantial 
savings in computational cost compared with a full resolution minimization, but it 
also degrades the analysis. 

Yang et al. (2009b) took advantage that in the LETKF the analysis ensemble 
members are a weighted combination of the forecasts, and that the analysis weights 

a
W  are much smoother (they vary on a much larger scale) than the analysis 
increments or the analysis fields themselves. They tested the idea of interpolating the 
weights but using the full resolution forecast model on the same quasi-geostrophic 
model discussed before. They performed full resolution analyses and compared the 
results with a computation of the LETKF analysis (i.e., the weight matrix a

W ) on 
coarser grids, every 3×3, 5×5 and 7×7 grid points, corresponding to an analysis grid 
coverage of 11%, 4% and 2%, respectively, as well as interpolating the analysis 
increments. They found that interpolating the weights did not degrade the analysis 
compared with the full resolution, whereas interpolating the analysis increments 
resulted in a serious degradation (Fig. 5).  

The use of a symmetric square-root in the LETKF ensures that the interpolated 
analysis has the same linear conservation properties as the full resolution analysis. 
The results suggest that interpolating the analysis weights computed on a coarse grid 
without degrading the analysis can substantially reduce the computational cost of the 
LETKF. Although the full resolution ensemble forecasts are still required, they are 
also needed for ensemble forecasting in operational centres. 

We note that the fact that the weights vary on large scales, and that the use of a 
coarser analyses with weight interpolation actually improves slightly the analysis in 
data sparse regions, suggest that smoothing the weights is a good approach to filling 
data gaps such as those that appear in between satellite orbits. (Yang et al. 2009b; 
Lars Nerger, pers. comm.). Smoothing the weights, both in the horizontal and in the 
vertical may also reduce sampling errors and increase the accuracy of the EnKF 
analyses. 

 
 



 

 

 
Fig. 5. The time series of the RMS analysis error in terms of the potential vorticity 
from different data assimilation experiments. The LETKF analysis from the full-
resolution is denoted as the black line and the 3D-Var derived at the same resolution 
is denoted as the grey line. The LETKF analyses derived from weight-interpolation 
with different analysis coverage are indicated with blue lines. The LETKF analyses 
derived after the first 20 days from increment-interpolation with different analysis 
coverage are indicated with the red lines. Adapted from Yang et al. (2009b). 

 
3.6 Model and observational error 
 
Model error can seriously affect the EnKF because, among other reasons, the 
presence of model biases cannot be detected by the EnKF original formulation, and 
the ensemble spread is the same with or without model bias (Li 2007). For this 
reason, the most widely used method for imperfect models is to increase the 
multiplicative or additive inflation (e.g. Whitaker et al. 2007). Model biases can also 
be taken into account by estimating the bias as in Dee and da Silva (1998) or its 
simplified approximation (Radakovich et al. 2001) – see also chapter Bias 
Estimation (Ménard). More recently, Baek et al. (2007) pointed out that model bias 
could be estimated accurately augmenting the model state with the bias, and allowing 
the error covariance to eventually correct the bias. Because in this study the bias was 
assumed to be a full resolution field, this required doubling the number of ensemble 
members in order to reach convergence. 

In the standard 4D-Var, the impact of model bias cannot be neglected within 
longer windows because the model (assumed to be perfect) is used as a strong 
constraint in the minimization (e.g. Andersson et al. 2005). Trémolet (2007) has 
developed several techniques allowing for the model to be a weak constraint in order 
to estimate and correct model errors. Although the results are promising, the 
methodology for the weak constraint is complex, and still under development. 

Li (2007, 2009a) compared several methods to deal with model bias (Fig. 6), 
including a “Low-dimensional” method based on an independent estimation of the 



 

 

bias from averages of 6-hour estimated forecast errors started from a reanalysis (or 
any other available good quality analysis). This method was applied to the SPEEDY 
(Simplified Parameterizations primitivE-Equation Dynamics) model assimilating 
simulated observations from the NCEP-NCAR (National Centers for Environmental 
Prediction-National Center for Atmospheric Research) reanalysis, and it was found 
to be able not only to estimate the bias, but also the errors in the diurnal cycle and the 
model forecast errors linearly dependent on the state of the model (Danforth et al. 
2007; Danforth and Kalnay 2008). 

The results obtained by Li (2009a) accounting for model errors within the 
LETKF, presented in Fig. 6, indicate that: a) additive inflation is slightly better than 
multiplicative inflation; and b) methods to estimate and correct model bias (e.g. Dee 
and da Silva 1998; Danforth et al. 2007) should be combined with inflation, which is 
more appropriate in correcting random model errors. The combination of the low-
dimensional method with additive inflation gave the best results, and was 
substantially better than the results obtained assuming a perfect model (Fig. 6).  
 
 
 
 
 
    
 
 
 
 

 
Fig. 6. Comparison of the analysis error averaged over two months for the zonal 
velocity in the SPEEDY model for several simulations with the radiosonde 
observations available every other point. The yellow line corresponds to a perfect 
model simulation with the observations extracted from a SPEEDY model “nature 
run” (see chapter Observing System Simulation Experiments, Masutani et al.). The 
red is the control run, in which the observations were extracted from the NCEP-
NCAR reanalysis, but the same multiplicative inflation was used as in the perfect 
model case. The blue line and the black solid lines correspond to the application of 
optimized multiplicative and additive inflation, respectively. The long-dashed line 
was obtained correcting the bias with the Dee and da Silva (1998) method, and 
combining it with additive inflation. The short-dashed is as the long-dashed but 
using the Danforth et al. (2007) low-dimensional method to correct the bias, and the 
green line is as the long-dashed line but using the simplified Dee and da Silva 
method. Adapted from Li (2007). 

 
We note that the approach of Baek et al. (2007) of correcting model bias by 

augmenting the state vector with the bias can be used to determine other parameters, 
such as surface fluxes, observational bias, nudging coefficients, etc. It is similar to 
increasing the control vector in the variational approach, and is only limited by the 
number of degrees of freedom that are added to the control vector and sampling 
errors in the augmented background error covariance. 



 

 

     With respect to observation error estimations, Desroziers et al. (2005) derived 
statistical relationships between products of observations minus background, 
observations minus analysis, and analysis minus forecasts and the background and 
observational error covariances. Li (2007) took advantage of these relationships to 
develop a method to adaptively estimate both the observation errors variance and the 
optimal inflation of the background error covariance. This method has been 
successfully tested in several models (Li et al. 2009b; Reichle et al. 2008).  
 
4 Summary and discussion 
 
4D-Var and the EnKF are the most advanced methods for data assimilation. 4D-Var 
has been widely adopted in operational centres, with excellent results and much 
accumulated experience. EnKF is less mature, and has the disadvantage that the 
corrections introduced by observations are done in spaces of lower dimension that 
depend on the ensemble size, although this problem is ameliorated by the use of 
localization. The main advantages of the EnKF are that it provides an estimate of the 
forecast and analysis error covariances, and that it is much simpler to implement than 
4D-Var. A recent WWRP/THORPEX Workshop in Buenos Aires, 10-13 November 
2008, was dedicated to 4D-Var and Ensemble Kalman Filter Inter-comparisons with 
many papers and discussions (http://4dvarenkf.cima.fcen.uba.ar/). Buehner et al. 
(2008) presented “clean” comparisons between the operational 4D-Var and EnKF 
systems in Environment Canada, using the same model resolution and observations, 
showing that their forecasts had essentially identical scores in the Northern 
Hemisphere, whereas a hybrid system based on 4D-Var but using a background error 
covariance based on the EnKF gave a 10-hour improvement in the 5-day forecasts in 
the Southern Hemisphere. This supports the statement that the best approach should 
be a hybrid that combines “the best characteristics” of both EnKF and 4D-Var (e.g. 
Lorenc 2003; Barker 2008). This would also bring the main disadvantage of 4D-Var 
to the hybrid system, i.e., the need to develop and maintain an adjoint model. This 
makes the hybrid approach attractive to operational centres that already have 
appropriate linear tangent and adjoint models, but less so to other centres.  

In this review we have focused on the idea that the advantages and new 
techniques developed over the years for 4D-Var, can be adapted and implemented 
within the EnKF framework, without requiring an adjoint model. The LETKF (Hunt 
et al. 2007) was used as a prototype of the EnKF. It belongs to the square-root or 
deterministic class of the EnKF (e.g. Whitaker and Hamill 2002) but simultaneously 
assimilates observations locally in space, and uses the ensemble transform approach 
of Bishop et al. (2001) to obtain the analysis ensemble as a linear combination of the 
background forecasts.  

We showed how the LETKF could be modified to include some of the most 
important 4D-Var advantages. In particular, the 3D-LETKF or 4D-LETKF can be 
used as a smoother that is cost-free beyond the computation of the filter and storing 
the weights. This allows a faster spin-up in the “running in place” method, so that the 
LETKF spins up as fast as 4D-Var. This is important in situations such as the 
forecast of severe storms, which cannot wait for a slow ensemble spin-up. Long 
assimilation windows and the consequent non-linearity of the perturbations typically 
result in non-Gaussianity of the ensemble perturbations and, as a result, a poorer 
performance of LETKF compared to 4D-Var. The no-cost smoothing method can be 
used to perform the equivalent of the 4D-Var “outer loop” and help deal with the 
problem of non-linearity. One of the most powerful applications of the adjoint model 
is the ability to estimate the impact of a class of observations on the short range 
forecast (Langland and Baker 2004). Liu and Kalnay (2008) have shown how to 



 

 

perform the same “adjoint sensitivity” within the LETKF without an adjoint model. 
Yang et al. (2009b) showed that the analysis weights created by the LETKF vary 
smoothly on horizontal scales much larger than the analyses or the analysis 
increments, so that the analyses can be performed on a very coarse grid and the 
weights interpolated to the full resolution grid. Because these weights are applied to 
the full resolution model, Yang et al. (2009b) found that the weight interpolation 
from a coarse resolution grid did not degrade the analysis, suggesting that the 
weights vary on large scales, and that smoothing the weights can increase the 
accuracy of the analysis. Li et al. (2009b) compared several methods used to correct 
model errors and showed that it is advantageous to combine methods that correct the 
bias, such as that of Dee and da Silva (1998) and the low-dimensional method of 
Danforth et al. (2007), with methods like inflation that are more appropriate to 
account for random model errors. This is an alternative to the weak constraint 
method (Trémolet 2007) to deal with model errors in 4D-Var, and involves the 
addition of a relatively small number of degrees of freedom to the control vector. Li 
et al. (2009a) also showed how observation errors and background error inflation can 
be estimated adaptively within EnKF. 

In summary, we have emphasized that the EnKF can profit from the methods and 
improvements that have been developed in the wide research and operational 
experience acquired with 4D-Var. Given that operational tests comparing 4D-Var 
and the LETKF indicate that the performance of these two methods is already very 
close (e.g. Miyoshi and Yamane 2007; Buehner et al. 2008), and that the LETKF and 
other EnKF methods are simpler to implement, their future looks bright. For centres 
that have access to the model adjoint, hybrid 4D-Var-EnKF may be optimal. 
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