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Abstract 1 

A deterministic Ensemble Kalman Filter (EnKF) with a large enough ensemble is optimal 2 

for linear models, since it assumes that a Gaussian analysis ensemble evolves into a 3 

Gaussian forecast ensemble. A new type of outer-loop, different from minimizing a cost-4 

function based on the maximum likelihood method, is proposed for EnKF to improve its 5 

ability to handle nonlinear evolving dynamics, especially for long assimilation windows. 6 

The idea is to increase the observation influence when there is strong nonlinear error 7 

growth. For this purpose, the “Running in place” (RIP) algorithm that improves both the 8 

ensemble perturbations and the mean within the Local Ensemble Transform Kalman 9 

Filter (LETKF) framework is applied to achieve an incremental analysis correction. A 10 

“quasi outer-loop” (QOL) method, newly proposed as a simplified version of RIP, aims 11 

to improve the ensemble mean so that ensemble perturbations are centered at a more 12 

accurate state.  13 

 14 

We first show that in a linear model, Kalman Filter (KF) reusing observations N times, as 15 

in KF-RIP, accelerates the spin-up and yields the same long-term analysis as the standard 16 

KF, except that the estimated analysis error covariance is N times smaller. We argue that 17 

for nonlinear models the use of RIP should be advantageous: first, the linear 18 

approximation to the set of possible model states provided by the ensemble is better with 19 

a smaller ensemble spread; and second, breaking the analysis increment into smaller steps 20 

and recomputing the linear approximation at each step can allow the increments to follow 21 

the nonlinear set toward the truth better than a single increment. 22 

 23 

The performance of the LETKF-RIP and LETKF–QOL in the presence of nonlinearities 24 

is tested with the Lorenz 3-variable model. The results support the above arguments: RIP 25 

and QOL allow the LETKF to use longer assimilation windows with significant 26 

improvement of the analysis accuracy during periods of high nonlinear growth. The 27 

improvements in accuracy obtained using either RIP or the computationally less 28 

expensive QOL are large. For low-frequency observations (every 25 steps, leading to 29 

long assimilation windows), and using optimal inflation, the standard LETKF RMS error 30 

is 0.68, whereas for the QOL and RIP the RMS errors are 0.47 and 0.35 respectively. 31 



 3 

This should be compared with the best 4D-Var analysis error of 0.53, obtained using both 1 

optimal long assimilation windows (75 steps) and the quasi-static variational analysis. 2 

When only one or two of the three variables are observed, the relative improvement of 3 

the QOL and RIP algorithms are further increased, suggesting that these methods can be 4 

used to handle nonlinearity introduced by data voids. A comparison with other iterative 5 

EnKF shows a superior performance of RIP. Based on the success with the QOL and RIP 6 

methods, we argue that reusing observations with multi-step analysis increments is 7 

advantageous for performing data assimilation with nonlinear models, especially during 8 

spin-up.  9 

10 
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1. Introduction 1 

 2 

Data assimilation involving nonlinear perturbations becomes problematic in both 3 

incremental variational methods, which use linear adjoint models and observation 4 

operators to evolve model and observation perturbations, and in Ensemble Kalman Filters 5 

(EnKFs), which assume that ensemble perturbations are Gaussian. Nonlinear growth of 6 

perturbations can result from strong dynamical instabilities, from observations that have 7 

either insufficient sampling frequency, from the use of nonlinear observation operators, 8 

or even from model errors. When strong nonlinearities occur, a data assimilation scheme 9 

may lose its ability to track the true dynamics, a problem known as “filter divergence” 10 

(Miller et al. 1994, Evensen 1992) within Kalman Filter based assimilation schemes 11 

(Kalman, 1960). Also, with non-Gaussian ensemble distribution, the EnKF cannot give 12 

an optimal solution (Evensen and van Leeuwen, 2000). In this study, we focus on the 13 

nonlinearity since it plays a dominant role in the filter failure, despite the fact that the 14 

“filter divergence” can also take place in a linear system. 15 

 16 

In the Kalman Filter formulas derived using the best linear unbiased estimation (BLUE), 17 

the error covariance is evolved with the tangent linear model.  Evensen (1992) pointed 18 

out that unbounded error growth could be caused by the use of the tangent linear model 19 

due to the lack of nonlinear saturation effects. Ensemble-based Kalman Filters (EnKFs) 20 

are less vulnerable to this error growth than either the Kalman Filter or the Extended 21 

Kalman Filter because EnKFs have the advantage of using the full nonlinear model that 22 

includes the saturation of nonlinear perturbation growth (Evensen, 1994, 1997, Verlaan 23 

and Heemink, 2001). Nevertheless, filter divergence can still take place when 24 

nonlinearities appear and result in a non-Gaussian distribution of the ensemble (Evensen, 25 

1997 and Lawson and Hansen, 2004). As a result, a short assimilation window is required 26 

for EnKF to better preserve the Gaussianity of the ensemble. Fertig et al. (2007) 27 

compared the 4D-Var and EnKF implemented in the Lorenz 40 variable model (Lorenz, 28 

1996). They showed that EnKF did very well with short windows but did not handle well 29 

long windows because ensemble perturbations became non-Gaussian. Studies also show 30 

that EnKFs characterized by being either deterministic or stochastic (Tippett et al., 2003) 31 
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may have different ability to handle the nonlinearities or non-Gaussianity. Lawson and 1 

Hansen (2004) compared nonlinearities handled by the Ensemble Square Root Filter 2 

(EnSRF, Whitaker and Hamill, 2002) and the perturbed observation EnKF (Evensen, 3 

1994), representing prototypes of deterministic and stochastic EnKF respectively. They 4 

found that, as nonlinearity becomes significant, square root (deterministic) filters break 5 

down earlier. They show that the stochastic EnKF effectively does a resampling to get 6 

closer to the dominant mode of the a posteriori PDF, while the deterministic EnKF 7 

cannot do this even though the analysis ensemble from the two EnKF schemes are both 8 

linearly transformed from the background ensemble. Not directly affected by the 9 

magnitude of the nonlinearity, filter failure can also occur gradually in a system with 10 

weak nonlinearity after successive updates with non-Gaussian ensembles, which result in 11 

far outliers (Sakov and Oke, 2008). In addition, Leeuweburgh et al. (2005) showed that 12 

the deterministic EnSRF tends to introduce non-Gaussianity, but that using a random 13 

rotation step in EnSRF could alleviate this. Outliers in the EnSRF systems can also arise 14 

from the use of one-sided, non-symmetric solution in the calculation of the square root of 15 

a matrix for deriving the analysis perturbations nonlinearity (Sakov and Oke, 2008), but 16 

the LETKF uses the symmetric square-root solution (Ott et al., 2004). 17 

 18 

EnKF needs to use short windows, but, in contrast, 4D-Var performs better with 19 

longer windows because it is iterated within a window, producing a more accurate 20 

nonlinear trajectory under the constraint of the observations. In the incremental 4D-Var 21 

framework (Courtier et al. 1994), an outer loop is applied to adjust the nonlinear 22 

evolution of the trajectory with the high-resolution nonlinear model with complete 23 

physics while the inner loop is used to minimize the incremental cost function with the 24 

adjoint model derived from a low-resolution simplified model (Andersson et al. 2005). 25 

The 4D-Var outer-loop aims to improve the nonlinear evolution of the model state by 26 

improving the sensitivity matrix of the linearization of the observation operator and the 27 

background trajectory used for computing the innovation vector. The 4D-Var outer-loop 28 

is essential for nonlinear cases in order to improve the linear approximation and derive 29 

the correct gradient for minimization the cost function. During the iterations of 30 

minimization, the first guess of the initial state (prior state) and its corresponding error 31 
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statistics are kept constant. An important reason for the failure of EnKF with long 1 

windows is that EnKF does not have an outer loop to deal with nonlinear dynamics as the 2 

one used in the incremental 3D-Var and 4D-Var (Arlindo DaSilva, pers. comm., 2006, 3 

Kalnay et al., 2007a).  4 

 5 

Inspired by the advantages shown by the outer-loop in improving the nonlinear trajectory 6 

in 4D-Var (Courtier et al. 1994, Rabier et al. 2000, Andersson et al. 2005), here we 7 

introduce a different type of an “outer loop” within the framework of the EnKF and 8 

implement it for the Local Ensemble Transform Kalman Filter (LETKF, Hunt et al. 9 

2007). The idea is to increase the influence of the observations for cases with nonlinear 10 

error growth when the estimation given by the background mean is not reliable and the 11 

ensemble perturbations are distorted by the strong nonlinearity. In these cases, the 12 

ensemble perturbations cannot represent the uncertainties of the prior mean state, and 13 

therefore the observation information cannot be effectively extracted to correct the model 14 

state. In these cases, the observation impact in the standard LETKF is clearly suboptimal. 15 

A “hard” way to increase the observation influence would be to artificially reduce the 16 

observation error before assimilating the observation. A “softer” way is to use the 17 

original observation error, and assimilate this observation multiple times so that the total 18 

analysis increment is obtained as the sum of multiple smaller increments. Thus, the rule 19 

of “using the observations only once” (Ide et al. 1997) is modified by reducing the 20 

amplitude of the background error covariance (Section 2). We note that the soft way of 21 

using small increments becomes an additional advantage for nonlinear dynamics because 22 

the system can remain closer to the true nonlinear attractor with smaller steps. 23 

 24 

The “Running in Place” (RIP) scheme recently developed by Kalnay and Yang (2008, 25 

2010) is able to increase the observation influence, and improve the ability of EnKF to 26 

deal with nonlinearity. The RIP method updates both the ensemble mean and the 27 

ensemble perturbations and was originally proposed to capture the underlying evolving 28 

dynamics in order to accelerate the spin-up of EnKF. The observations are repeatedly 29 

assimilated and the ensemble spread self-adjusted (reduced). Here we further propose a 30 

“quasi outer-loop” (QOL) algorithm, as a simplified version of RIP, aiming to improve 31 
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the ensemble mean so that ensemble perturbations are centered at a more accurate state. 1 

Both the RIP and QOL methods can be applied to improve the LETKF for nonlinear 2 

cases like a “cold start” of an EnKF or when the background error statistics suddenly 3 

change. An example of cold start is the initialization of regional data assimilation from a 4 

global analysis obtained at coarser resolution, thus lacking features that represent the 5 

underlying mesoscales. Also, when the model trajectory encounters a rapid change into a 6 

new regime with a short transition period (such as in the development of a severe storm), 7 

this may result in a sudden change of the background trajectory and error statistics. In 8 

these cases, the newly proposed QOL scheme aims to improve the nonlinear trajectory of 9 

the ensemble mean while RIP further reduces strong nonlinearities in ensemble 10 

perturbations when they do not represent the true dynamical uncertainties.  11 

 12 

We also note that other iterative methods related to Kalman filter have been developed to 13 

deal with the nonlinearity or long assimilation window. For example, the iterated Kalman 14 

filter (IKF, Bell and Cathey, 1993, Bell, 1994), using an incremental form similar to the 15 

incremental variational methods, has been proposed for better handling the nonlinearity 16 

than the extended Kalman Filter to consider the nonlinearity of the observation operator. 17 

Bell and Cathey (1993) showed that the IKF is equivalent to using the Gauss-Newton 18 

method for constructing the maximum likelihood estimate. However, as in the 19 

incremental 4D-Var outer loop, the IKF only modifies the sensitivity matrix related to the 20 

observation operators, and does not change the initial guess and the corresponding error 21 

statistics of the background state during the minimization iterations. For reservoir 22 

engineering application, several iteration-based ensemble Kalman Filter/Smoother 23 

(IEnKF, Gu and Oliver, 2007, Krymskaya et al. 2009, Li and Reynolds, 2009 and Wang 24 

et al., 2010) were recently proposed for parameter estimation and to deal with the 25 

nonlinearity arising from the historical matching problem. Among them, Ensemble 26 

Randomized Maximum Likelihood (EnRML) by Gu and Oliver (2007) shares the same 27 

concept of an outer-loop similar to incremental 4D-Var.  In these methods, including the 28 

variational methods, the problem of nonlinearity is solved via iterating the linear solution 29 

for a cost-function, e.g. finding the optimum with the Gauss-Newton method. With each 30 

iteration the model trajectory is improved until the linear approximation of the 31 
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observation operator (sensitivity matrix) is close enough to the true state and thus the 1 

linear solution becomes optimal. When such sensitivity is known at the very first 2 

iteration, like in the linear case, the system could yield an optimal update in just one 3 

iteration. However, we should note that such framework for outer-looping is more 4 

complicated within the EnKF systems because the sensitivities incorporated the error 5 

statistics are entangled with the ensemble state. In EnKF we cannot correct the 6 

sensitivities (and the ensemble-based estimated covariances) without correcting the 7 

model state. For example, the EnRML scheme re-evaluates the sensitivity matrix based 8 

on the “re-evolved” ensemble at each iteration.  9 

 10 

In the RIP (Kalnay and Yang, 2011) and proposed QOL schemes, by contrast, we take 11 

advantage of a "no-cost" smoother for the ETKF/LETKF (Kalnay et al., 2007b) to 12 

improve not the sensitivity, but the full initial ensemble (RIP), or just the initial ensemble 13 

mean (QOL), based on the knowledge about the state from the "future" observations 14 

within the window. We will show that by using observations multiple times, RIP/QOL 15 

reduce the spin-up and attain the same optimal analysis as the regular Kalman Filter even 16 

in the case of a linear system. In a nonlinear system they have the additional advantage of 17 

correcting the ensemble incrementally following a trajectory closer to the true dynamics. 18 

We will show that this improves the analysis beyond what can be obtained under the 19 

framework of the maximum likelihood method with Gauss-Newton method (e.g. the 4-20 

DVar outer-loop or the EnRML).  21 

 22 

In this study, we first compare in Section 2 the standard KF with KF-RIP for a 23 

simple linear model, showing that KF-RIP (or QOL) reach the same asymptotic analysis 24 

accuracy as KF but substantially accelerate the spin-up, while reducing the ensemble 25 

spread (estimated error variance). Assimilation experiments testing the impact of the 26 

QOL and RIP on nonlinearity are carried out with the Lorenz 3-variable model (Lorenz, 27 

1963), described in Section 3, together with the setup for the observing system simulation 28 

experiments. Section 4 introduces the standard LETKF, the RIP and QOL methods within 29 

the LETKF framework. In Section 5, the ability to handle nonlinearities of RIP and QOL, 30 

which modify the prior ensemble, are compared with EnRML, which, like the standard 31 
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4D-Var outer loop, does not modify the prior state. Finally, Section 6 contains a summary 1 

and discussion of the theoretical framework for RIP and QOL. 2 

 3 

2. Basic RIP in a linear model 4 
 5 

In this section, we show that if the number of iterations of RIP per analysis cycle is 6 

constant over time, then in the linear scenario where the Kalman Filter (KF) is optimal, 7 

using RIP produces the same analysis means after spin-up as not using RIP.  The main 8 

differences are that with RIP, the estimated error variance will be systematically smaller, 9 

and the total analysis increment in a given analysis cycle is applied as the sum of multiple 10 

smaller increments. The full RIP algorithm implemented in the LETKF framework is 11 

discussed in more detail in section 3. Here, the basic RIP is presented in the framework of 12 

Kalman Filter with linear dynamics. 13 

 14 

With linear dynamics, the RIP algorithm is the same as assimilating observations multiple 15 

times, and the background at each iteration is provided by the analysis derived from the 16 

previous iteration. We acknowledge that if the background covariance used in a data 17 

assimilation procedure is commensurate with the typical error in the background state, 18 

then using observations more than once in a given assimilation cycle can lead to 19 

overfitting the observations.  However, in a procedure based on the Kalman filter, if all of 20 

the observations are used more than once, then the background and analysis covariances 21 

computed by the filter will, after spin-up, underestimate the background and analysis 22 

errors.  Furthermore, in the linear scenario in which the Kalman Filter is optimal, if each 23 

observation is used the same number of times, the resulting analyses will in the long run 24 

be essentially the same as if each observation was used once.  25 

 26 

We apply a basic RIP scheme to a simple linear model with linear error growth and 27 

compare its results to the solution of optimal Kalman Filter (KF). The simple linear 28 

model has the following governing equation for a scalar x          29 

xn = M (xn!1) = Cxn!1                                                  (1) 30 

where n indicates the time step. The error variance growth is also linear: 31 
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where C is a constant. In the following, we will use operators M and G to denote the 2 

forward integration for the model state and error variance. 3 

 4 

The Kalman Filter analysis and estimated error variance are  5 
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where 

 

xa,n ,

 

xb,n , and

 

yn  are respectively the values of analysis, background and 9 

observation at time tn and 

 

!a,n
2 ,

 

!b,n
2 and 

 

!o
2 are the corresponding error variances. We note 10 

that the observation operator is the identity in this example. 11 

 12 

In the RIP algorithm with N iterations, the background state at each iteration i is evolved 13 

from the “smoothed” analysis (Eq. 5) at tn-1 that has already assimilated the observation at 14 

later time tn, indicated with a tilde: 15 
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i = !xa,n!1

i!1 +
!" a,n!1
i!1( )2

!" a,n!1
i!1( )2 +" o

2

#

$
%
%

&

'
(
(
(yn ! !xa,n!1

i!1 )                                 (5) 16 

 

xb,n
i = Mtn!1 " tn

˜ x a,n!1
i[ ]                                                 (6) 17 

Similarly, the “smoothed” analysis error variance, 
 
!! a,n"1
i( )2 , at tn-1 is modified because of 18 

the observation at tn, shown as Eq. (7). It is evolved and provides the background error 19 

variance at iteration i. 20 
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=
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KF formulas are used again to re-assimilate the observation 

 

yn  and to estimate the 23 

analysis error variance. 24 
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For the first iteration,  !xa,n!1
1 = xa,n!1

N  and  !! a,n"1
1 =! a,n"1

N , the final analysis and error 3 

variance from RIP for the previous time interval obtained at tn-1. If there is only one 4 

iteration,

 

xa,n
1  and ! a,n

1  give the same analysis as the KF solution.  5 

  6 

In the following perfect model experiment, we choose C = 1.25  but the results are rather 7 

insensitive to these choices. The truth starts from 

 

x0 = 0  and an observation is created at 8 

every time-step with an error variance of 1. The initial conditions at t=0 for the analysis 9 

and error variance are 30 and 5, respectively, but the results derived with this simple 10 

model are not sensitive to the initial values either. We choose the initial analysis far from 11 

the truth to illustrate how RIP recovers more quickly from poorly specified initial 12 

conditions. After spin-up, which takes less than 20 analysis cycles, the KF analysis has a 13 

mean accuracy of 0.6175 and the mean estimated analysis error variance is 0.36. 14 

 15 

Figure 1a compares the results of KF, with RIP using 2 or 10 iterations. With one 16 

additional iteration (KF is considered to be the first iteration), the RIP analysis reach an 17 

error of 0.5877, smaller than the one derived with the optimal KF, and the estimated 18 

analysis error variance is 0.18, half as large as the error variance estimated with the KF. 19 

The results also suggest that RIP has a time-smoothing effect on the analysis error from 20 

averaging the observation error at tn-1 and tn. With 10 iterations, the RIP analysis error 21 

increases to 0.6069 and the estimated error variance is 0.036, one tenth of the KF 22 

estimation. Such increase in error is due to the increasing correlation of the observation 23 

and the background errors in RIP iterations, resulting from the earlier influence of the 24 

later observation. We also note that RIP shows a clear advantage in accelerating the spin-25 

up (Figure 1b) that increases with the number of iterations (Kalnay and Yang, 2010). As 26 

discussed in the introduction, if the number of RIP iterations N per analysis cycle is 27 

constant, the estimated analysis error variance in the long term is N times smaller than the 28 
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analysis error variance estimated from KF. We should note that the estimated error 1 

variance in RIP does not represent the analysis error, but that it is essential for RIP to use 2 

the smaller estimated variance in order to perform N analysis increments with optimal 3 

results. 4 

 5 

With more iterations, the RIP analysis approximates the KF analysis, as shown in Figure 6 

(1c). Although RIP after the second iteration does not fulfill anymore the assumption that 7 

observation and background errors are uncorrelated, the results with linear dynamics 8 

confirm that the RIP algorithm assimilating observations multiple times essentially gives 9 

the same KF analysis accuracy. KF-RIP shows the best performance with just two 10 

iterations (regular KF + one additional RIP iteration), when background and observation 11 

errors are least correlated for cases with iteration number larger than two.    12 

 13 

Figure 1(b) shows that the estimated analysis error variance from KF-RIP becomes 14 

smaller with the number of iterations. More importantly, the estimated variance is the 15 

same as the one that would be computed from KF with higher assumed observation 16 

accuracy; specifically, with the observation error variance ! o
2  replaced by ! o

2 N . KF 17 

performed with an observation variance divided by N can be viewed as a “hard” way to 18 

increase the observation influence since the analysis correction is derived all at once. The 19 

KF-RIP can then be viewed as a “softer” way to achieve same analysis correction but 20 

with multi-step analysis corrections. We also argue that the RIP algorithm is 21 

advantageous in nonlinear cases since the analysis increment is obtained in small steps 22 

and thus is better able to follow the true nonlinear dynamics. 23 

 24 

3. RIP and QOL algorithms for the Local Ensemble Transform Kalman Filter 25 

(LETKF) 26 

In Section 2, the KF-RIP could be carried out by using explicitly future observations. 27 

With LETKF, future information can be also be used earlier by means of a “no-cost” 28 

smoother. In this section we describe the LETKF ensemble Kalman filter, the “no-cost” 29 

smoother valid at the beginning of the assimilation window, and apply the smoother to 30 

derive the RIP and QOL algorithms for the LETKF. 31 
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 1 

3.a The Local Ensemble Transform Kalman Filter (LETKF)  2 

 3 

The LETKF scheme (Hunt et al., 2007) performs an analysis locally in space using local 4 

information, including the background state (short-range forecasts) and observations. The 5 

analysis correction by the LETKF is calculated within the space spanned by the local 6 

ensemble. Here we describe the 3-dimensional LETKF (i.e., with all observations 7 

available at the end of the assimilation window). The 4-dimensional extension of the 8 

LETKF (where observations are available throughout the assimilation window) is 9 

straightforward (Hunt et al., 2004, 2007). We note that in this study no localization is 10 

required due to the small dimension of the Lorenz 3-variable model and therefore, the 11 

variables denote the globally defined model states or the observations. Without 12 

localization, the LETKF is formally equivalent to the Ensemble Transform Kalman Filter 13 

(ETKF, Bishop et al., 2001) but with centered spherical simplex ensemble (Wang et al. 14 

2004, Ott et al., 2004). Since the notation used in both methods is different, here we 15 

follow Hunt et al. (2007).  16 

 17 

At the analysis time, the LETKF computes a weight matrix to linearly combine the 18 

background ensemble members so that the mean and the error covariance of the analysis 19 

ensemble agree with the Kalman Filter formula. With K ensemble members, the analysis 20 

ensemble perturbations at the analysis time tn are computed with a right-multiplied 21 

transform of the background perturbation matrix: 22 

 23 

Xn
a = Xn

bWn
a .                                                           (11) 24 

Here Xn
b = !xn

b,1 | .... |!xn
b,K"# $%  is the matrix of the background perturbations whose 25 

columns are the vectors of ensemble member perturbations (deviations from the mean): 26 

!xn
b,k = xn

b,k " xn
b , where   

 

xn
b,k is the kth background ensemble member and   

 

x n
b  is the 27 

background ensemble mean. The analysis perturbations are represented in a similar way. 28 

The analysis weight perturbation matrix,   

 

Wn
a , is obtained from 29 

 

Wn
a = [(K !1) ˆ P n

a ]1
2 ,      (12) 30 



 14 

where                                                       1 

 

ˆ P n
a = [(K !1)I " + Yn

bTR!1Yn
bT ]!1                                             (13) 2 

is the analysis error covariance in the ensemble space, and Yn
b = !yn

b,1 | .... |!yn
b,K"# $% is the 3 

matrix of background perturbations in observation space, !yn
b,k = h(xn

b,k ) " h(xn
b,k ) . R is 4 

the observation error covariance,

 

h(•)  is the observation operator that converts a variable 5 

from model to observation space and

 

!  is the multiplicative covariance inflation, which in 6 

Eq (13) has essentially the same effect as inflating the amplitude the background error 7 

covariance (Hunt et al. 2007). We note that the nonlinear observation operator 

 

h(•) is also 8 

an important source of nonlinearity for observations like satellite radiances or 9 

scatterometer backscatter. With the LETKF, such nonlinear effects are partially taken into 10 

account by using the full nonlinear observation operator, in contrast to variational 11 

methods where the adjoints of the linearized observation operators (Jacobians) are 12 

required in order to minimize the cost function. 13 

 14 

The ensemble mean analysis at time tn is obtained from 15 

 16 

xn
a = Xn

bwn
a + xn

b                                                     (14) 17 

where  18 

wn
a = P̂n

aYn
bTR!1(yn

o ! yn
b ) .                                            (15) 19 

 20 

In Eq. (15),   

 

yn
oand   

 

y n
b  are the vectors of observations and of the background mean state 21 

in the observation space. The difference between them,   

 

dn = yn
o ! y n

b , is referred to as the 22 

innovation vector. As pointed out by Ott et al. (2004) and Hunt et al., (2007) the use of a 23 

symmetric square root algorithm in Eq. (12) ensures that of all possible square roots, 24 

Wa is the matrix closest to the identity, and that it varies smoothly in space and time. The 25 

accuracy of the LETKF analysis depends on the accuracy of both the matrix of weights 26 

Wa associated with the flow dependent errors (or “errors of the day”) and of the vector of 27 

weights wa  used to estimate the mean analysis correction. The properties of these 28 

weights are important for the performance of the LETKF. Yang et al. (2009a) showed 29 
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that the weights vary on larger spatial scales than either the analyses or the analysis 1 

increments, so that interpolating the weights derived from a coarse resolution LETKF can 2 

still retain the accuracy of the full resolution analysis.  3 

 4 

3.b The no-cost smoother 5 

 6 

In Eqs. (11) and (14), the weights linearly combine background ensemble trajectories in 7 

such a way that they are closest to the true atmosphere at the analysis time tn. The linear 8 

combination of ensemble trajectories is also a model trajectory, and if it is close to the 9 

truth at the analysis time it should also be close to the truth throughout the assimilation 10 

window (tn-1 – tn), at least to the extent that we can neglect	   nonlinearities and model 11 

errors. Therefore the same weights obtained at the analysis time should be valid 12 

throughout the assimilation window. This allows constructing a “no-cost” smoother for 13 

certain types of EnKF (including the LETKF) that improves the analysis state at the 14 

beginning of the assimilation window from observations obtained later within the 15 

window, without the need of an adjoint model (Kalnay et al. 2007b, Yang et al. 2009b, 16 

Kalnay and Yang, 2010, footnote 1). Such ensemble-based smoother for asynchronous 17 

assimilation is applicable to any EnKF scheme that expresses the updated ensemble via 18 

right-multiplied ensemble transforms as in Eq. (11) (Sakov and Oke, 2008), depending on 19 

how nonlinearity affects the time correlation between the model states. Thus, the form of 20 

the no-cost smoother can be compared with the ensemble Kalman smoother (EnKS) used 21 

in Evensen and van Leeuwen (2000) and Evensen (2003, Appendix D) based on the 22 

solution of the stochastic (perturbed observations) EnKF. Specifically, the no-cost 23 

ETKF/LETKF smoother has the lagged-1 form of the EnKS in Evensen and van Leeuwen 24 

(2000). In both methods, the analysis ensemble is obtained by linearly combining the 25 

background ensemble but the ensemble perturbations in the perturbed observation EnKF 26 

are updated differently*.  27 

                                                
* Given the analysis error covariance, a symmetric square root solution is used in Eq.(12) to ensure the zero 
mean of the perturbations in LETKF. For perturbed observation EnKF, besides the linear combination of 
the background perturbations, random Gaussian perturbations are added to the observations   

 

Yn
o to ensure 

that the analysis ensemble perturbations have the form Xn
a = (I ! KH)Xn

b + KYn
o , where K is the 
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 1 

In the no-cost smoother, we apply the weights derived at the end of the window tn to the 2 

analysis ensemble derived at the previous analysis time, tn -1, so that 3 

 !xn!1
a = xn!1

a + Xn!1
a wn

a                                                  (16a) 4 

is used to smooth the analysis mean, and 5 

 
!Xn!1
a = Xn!1

a Wn
a .                                                    (16b) 6 

is used to smooth the analysis perturbations. More specifically, the background without 7 

the information at tn, is taken from the analysis with the available observation at tn-1. The 8 

“tilde” indicates the use of the later information.  9 

 10 

Kalnay and Yang (2010) show that such smoothed analysis is always more accurate than 11 

the original LETKF analysis because of its “knowledge” of the observations made later, 12 

and, as is the case in other smoothers under the linear assumption,	  that	  the forecast from 13 

the smoothed analysis valid at tn-1 coincides with the EnKF analysis at tn, i.e., 14 
a
n

a
n-M xx =)~( 1  and 

 

M( ˜ X n-1
a ) = Xn

a  (see also Appendix A in Yang et al. 2009b). Sakov et al. 15 

(2010) discuss a similar idea of using the weight coefficients for asynchronous data 16 

assimilation. Thus, the ensemble-based Kalman smoother and the RIP and QOL methods 17 

discussed below could also be applied to any framework of the ensemble-based Kalman 18 

Filter that expresses the updated ensemble via right-multiplied ensemble transforms. 19 

Although in this study we assimilate observations available at the end of the assimilation 20 

window, the RIP and QOL methods are equally applicable if observations are distributed 21 

throughout the assimilation window (see Hunt et al., 2004, 2007).  22 

 23 

3.c Running in place (RIP) algorithm 24 

 25 

The linear KF-RIP used in Section 2 is now modified for nonlinear dynamics in the EnKF 26 

framework. Because of nonlinearity, EnKF and EnKF-RIP do not give the same results, 27 

but, as argued in Section 2, EnKF-RIP is better able to handle nonlinearities due to a 28 

smaller ensemble spread and a multi-step analysis increment, i.e., it provides a “softer” 29 
                                                                                                                                            
ensemble-based Kalman gain. The EnKS in Evensen et al. (2003) is also a no-cost smoother since no 
additional adjoint backward integration is required. 



 17 

way to increase the influence of the observations. In the same way that the optimal linear 1 

formulation of EnKF benefits from ad hoc modifications such as covariance inflation, 2 

EnKF-RIP benefits from modifications such as adaptive estimation of the number of 3 

iterations per analysis cycle, and addition of small perturbations. 4 

 5 

The RIP scheme was originally proposed to accelerate the spin-up of the Ensemble-based 6 

Kalman filter. This spin-up is especially long in the absence of prior information (e.g. 7 

during a cold start) or when the background error statistics suddenly change. With RIP, 8 

the analysis correction and ensemble-based background error covariance are both updated 9 

simultaneously and quickly spin-up towards the corresponding underlying dynamics. 10 

Details of the RIP method are presented in Kalnay and Yang (2008, 2010).  11 

 12 

The RIP is a more general form of the QOL addressing the nonlinear evolution of all 13 

ensemble members, rather than improving only the mean ensemble state as in the QOL 14 

scheme introduced in the next sub-section.  15 

 16 

The backbone of the RIP method is the no-cost smoother, which is used multiple times to 17 

adjust the ensemble trajectories within the assimilation window [tn-1, tn] with the 18 

observations arranged at the end of the window, tn. During the RIP iterations, the same 19 

set of observations is repeatedly used only if it is estimated that additional useful 20 

information can be extracted. To use the RIP, the standard LETKF (based on the 21 

knowledge of observations made at tn or before) is applied as the iteration i=0, given a 22 

background ensemble initialized from the analysis ensemble at tn-1 (

 

x n!1
a,0  and 

 

Xn!1
a,0 ) and 23 

deriving weight coefficients at tn (

 

w n
a,0  and   

 

Wn
a,0), using Eqs. (12), (13) and (15).  24 

 25 

At the ith iteration, the no-cost smoother is applied so that the smoothed ensemble mean at 26 

tn-1 is given by	  27 

 

x n!1
a,i+1 = x n!1

a,i + Xn!1
a,i w n

a,i ,                                             (17) 28 

and the smoothed perturbations are obtained as 29 

 

 

Xn!1
a,i+1 = Xn!1

a,i Wn
a,i +En!1

i+1                                             (18) 30 
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where 

 

En!1
i+1 are small random Gaussian perturbations. With the modified analysis 1 

ensemble at tn-1, the nonlinear model is used to integrate all ensemble members forward 2 

to the end of the assimilation window, tn.	   The newly evolved ensemble is the new 3 

background ensemble (

 

xn
b,i+1) and the weight coefficients are computed again to obtain 4 

  

 

w n
a,i+1 ,  

 

Wn
a,i+1  based on 

 

yn
o ! y n

b,i+1  and   

 

Yn
b,i+1  with Eqs. (12), (13) and (15). The new 5 

background ensemble has a better mean (closer to the truth) and perturbations (more 6 

reliable flow-dependent structures) because it is initialized from a more accurate 7 

ensemble. More specifically, 

 

yn
o  (the observation at tn) has been used i times in 

 

xn
b,i  and 8 

 

xn!1
a,i , and i+1 times in 

 

xn
a,i . At i=0, 

 

xn!1
a,0  is the final analysis ensemble derived from the 9 

previous analysis cycle at tn-1 and 

 

xn
b,0 are the following forecast. Therefore, they do not 10 

know the observation 

 

yn
o . With the no-cost smoother, 

 

xn!1
a,1  then contains the information 11 

about 

 

yn
o   (i.e. use the observation once) and so does the following forecast 

 

xn
b,1.  12 

 13 

The random perturbations,

 

En!1
i+1 , are added in Eq. (18) because, under linear conditions, 14 

integrating the smoothed analysis from tn-1 to tn will end up with the same analysis 15 

ensemble previously derived. Adding these very small random Gaussian perturbations 16 

before the forward integration of the smoothed analysis ensemble not only avoids 17 

evolving into the same ensemble, but also has the advantage of exploring new growing 18 

directions that may have been missed by the ensemble (Kalnay et al., 2007a). Corazza et 19 

al. (2002) have shown that adding random perturbations on the ensemble members can 20 

“refresh” the space spanned by the ensemble into new growing directions that may be 21 

missed otherwise, so that the forecast errors project better into the slightly perturbed 22 

ensemble space. In the EnKF, the analysis corrections are made within the space spanned 23 

by the ensemble. Under nonlinear condition and by slightly perturbing the ensemble 24 

space, we can generate a (slightly) different evolved ensemble and have better chance to 25 

correct the errors within the newly growing error subspace, given exactly the same 26 

observations. Adding small random perturbations at each iteration also has the effect of 27 

slightly reducing the time correlation between the analysis and the observation errors 28 

(Craig Bishop, personal communication, 2009).  29 

 30 
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The criterion of when to stop the iterations is based on the reduction of the forecast misfit 1 

to the observations (measured by the RMS of the differences between the observations 2 

and the forecasts RMS_OMFi) and scaled by the observation error, 

 

! o . The procedure of 3 

modifying and re-evolving the ensemble at tn-1 is repeated, for as long as the relative 4 

reduction of the misfit ε is greater than a threshold εs (Eq. 19). If the reduction of the fit is 5 

smaller than the chosen threshold εs, it indicates little useful additional information can be 6 

extracted from the same set of observations without seriously overfitting them. 7 

 8 

  

 

! = RMS_OMFi"1 "RMS_OMFi

# o

> !s                                     (19) 9 

 10 

Kalnay and Yang (2010) showed that the spin-up period needed for the LETKF to 11 

provide accurate analysis is very substantially reduced with the RIP when the initial 12 

ensemble is chosen without using any prior information. Section 2 shows that the 13 

reduction of spin-up also takes place when using RIP with a linear model and the 14 

standard Kalman Filter. Although RIP was developed for accelerating spin-up, when the 15 

error statistics suddenly change due to strong nonlinearity, it can also be applied as a 16 

generalized quasi outer loop aimed at improving the whole ensemble, not just the mean.  17 

 18 

In the experiments with the Lorenz model, iterations of the RIP scheme are continued as 19 

long as 

 

! > 0.001 in Eq. (19) but the maximum number of iterations allowed is set to 10. 20 

The criteria for stopping may depend on the density of observations. Experimental results 21 

suggest that more iterations with a stricter threshold are required to optimize the 22 

performance of the RIP method with fewer observations (see Section 4.d). Although the 23 

success of the RIP scheme was demonstrated in Kalnay and Yang (2010), we should note 24 

that the computational cost of the RIP scheme is relatively high since all the ensemble 25 

members have to be integrated using the nonlinear model. In the next sub-section, the 26 

QOL scheme is introduced as a simplified version of the RIP scheme where only the 27 

ensemble mean is integrated within the assimilation window, and only one or two 28 

iterations are allowed. 29 

 30 
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3.d Quasi Outer-Loop (QOL) algorithm  1 

  2 

The main purpose of the QOL is to improve the nonlinear trajectory of the ensemble 3 

mean and re-center the ensemble without the need to integrate again the whole ensemble 4 

as in the RIP. The steps for performing the QOL in the LETKF framework within the 5 

assimilation window [tn-1, tn] are as follows: 6 

 7 

As in RIP, the standard LETKF analysis is used as the iteration i=0 of the QOL, given the 8 

analysis ensemble (  

 

x n!1
a,0  and   

 

Xn!1
a,0 ,) at tn-1 and weight coefficients for correcting the mean 9 

state (  

 

w n
a,0) at tn. The QOL uses the weights wn

a,i  obtained at the end of the window to 10 

update the analysis ensemble mean at tn-1: 11 

 

x n!1
a,i+1 = x n!1

a,i + Xn!1
a,0w n

a,i                                                         (20) 12 

Note that 

 

Xn!1
a,0 , the matrix of analysis ensemble perturbations from the previous analysis 13 

cycle at tn-1, is not modified in the QOL. After applying Eq. (20), the nonlinear model is 14 

used to evolve only the ensemble mean trajectory:   

 

x n
b,i+1 = M(x n!1

a,i+1) . The innovation 15 

vector is now updated to 

 

yn
o ! h(x n

b,i+1).  16 

 17 

Without re-evolving the ensemble like in RIP, the matrix of perturbations in QOL still 18 

undergoes changes with each iteration because of the change of the mean trajectory. It is 19 

given by the analysis ensemble perturbations derived at previous iteration, and, as in RIP, 20 

small perturbations are added: 21 

  

 

Xn
b,i+1 = Xn

a,i + En
i+1                                                   (21) 22 

As in Eq (18), small random Gaussian perturbations 

 

En
i+1 are added so that   

 

Xn
b,i+1 is not 23 

identical to   

 

Xn
a,i , and as noted before, this also reduces slightly the dependence of the 24 

analysis on the observations. We then define the weights corresponding to the updated 25 

innovation vector as in Eq. (4):  26 

 27 

                            

 

w n
a,i+1 = ˆ P n

a,i+1(Yn
b,i+1)T R!1(yn

o ! h(x n
b,i+1))                          (22) 28 

 29 



 21 

Eq. (19) is again used to determine whether another QOL iteration should be applied, 1 

with a criterion of 

 

! > 0.01. Otherwise, 

 

x n
a,i+1 and   

 

Xn
a,i+1 are the final analysis ensemble 2 

mean and perturbations and serve as the initial conditions for the next analysis cycle. The 3 

results are less sensitive to the value of 

 

! than RIP, since only one or two outer-loop 4 

iterations are allowed. If the criterion is not satisfied, the QOL becomes the same as the 5 

standard LETKF with zero iteration. 6 

 7 

Jazwinski (1970) had already suggested a very similar idea of an outer loop allowing the 8 

ensemble to be recentered on a more accurate nonlinear solution for the Extended 9 

Kalman Filter (p. 276, footnote 3). This method was then introduced as the IKF in Bell 10 

and Cathey (1993) to linearize the observation operator with respect to a more accurate 11 

state so that the linearity assumption is less likely to be violated. The incremental 4D-Var 12 

(Courtier et al., 1994) and other iterative EnKFs (e.g. Gao and Reynolds, 2009, Gu and 13 

Oliver, 2007) related to the Gauss-Newton method share the same concept of outer-14 

looping. An important difference between these methods and the RIP/QOL is that we 15 

modify the background error covariance at each iteration in order to reflect the 16 

improvement of the mean state (Eq. 21), whereas in 4D-Var, IKF and IEnKFs the 17 

background state (first guess) and the corresponding statistics are kept constant. 18 

 19 
4. Results with the Lorenz three-Variable model 20 

 21 

In this section, Observing System Simulation experiments (OSSEs) are performed for the 22 

standard LETKF, LETKF-QOL and LETKF-RIP schemes with the Lorenz three-variable 23 

model. We first discuss the results based on the QOL scheme newly proposed in this 24 

study, and then results from the RIP scheme are viewed as the additional benefit obtained 25 

from the use of a more general (and more expensive) form of the QOL scheme.  26 

 27 

4.a Lorenz 3-variable model and experiment settings  28 

The Lorenz (1963) model is a three-variable nonlinear system: 29 

 30 



 22 

dx
dt

= ! (y " x); dy
dt

= rx " y " xz; dz
dt

= xy " bz                                                  1 

 2 

The standard values for the parameters in this system used here, 

 

! =10 , 

 

r = 28 and 3 

 

b = 8 3, result in a chaotic behavior with two regimes (the famous butterfly pattern). The 4 

model is integrated here using the fourth-order Runge-Kutta method with a time step of 5 

0.01. With exponential instability of the model solution and abrupt regime changes, this 6 

model has been widely used to demonstrate issues related to predictability (e.g., Palmer, 7 

1993) or to evaluate the feasibility of an assimilation scheme (e.g., Miller et al., 1994, 8 

Evensen, 1997, Yang et al. 2006, Kalnay et al. 2007a). Evans et al. (2004) showed that 9 

the growth rate of perturbations with this model depends on the state where the 10 

perturbation resides, and that large perturbation growth rate is observed in the last orbit 11 

before the model trajectory changes regimes. These are also the locations where the 12 

ensemble Kalman filter is observed to diverge (see Miller et al., 1994, Evensen, 1997 13 

who used an adaptive time scheme integrator and an ensemble of 1000 members,), 14 

because strong nonlinear perturbation growth results in poor estimates of the state by the 15 

ensemble and causes the filter to fail.  16 

 17 

Observing System Simulation Experiments (OSSEs) are performed to evaluate the 18 

assimilation scheme proposed in this study.  The “truth” run is obtained from a long 19 

integration initialized from (8.0, 0.0, 30.0). After discarding the first 600 time-steps of the 20 

truth run, observations every 8 or 25 time steps (0.08 and 0.25 time units respectively), 21 

are generated for the three variables by adding to the true values Gaussian perturbations 22 

with zero mean and variance equal to 2.0, and a total of 2000 analysis cycles are then 23 

performed. We note that the experimental setup is the same as in Kalnay et al. (2007a) 24 

who compared the results using standard LETKF with those obtained with 4D-Var, with 25 

the analysis time defined at the end of the assimilation window. The observation time is 26 

the same as the analysis time. Also, the observation error and observing frequency of 25 27 

time-steps are also the same as in Miller et al. (1994) and Evensen (1997). The initial 28 

forecast ensemble is obtained by adding to the truth random Gaussian perturbations with 29 

mean equal to 5.0 and variance equal to 1.0.  30 



 23 

 1 

 2 

4.b Nonlinearity with a long assimilation window 3 

 4 

With the same model and assimilation settings (section 4.a), Kalnay et al. (2007a) 5 

compared the analysis accuracy between fully optimized LETKF and 4D-Var schemes. 6 

Their results (reproduced in Table 1) show that the performance of LETKF with 3 7 

ensemble members is comparable to 4D-Var when using a short assimilation window (8 8 

time steps or 0.08 time units) for which perturbations remain linear and Gaussian. 9 

However, when a long assimilation window is used (with 25 time steps or 0.25 time 10 

units), the 4D-Var analysis becomes significantly more accurate than the LETKF 11 

analysis, but only if the 4D-Var quasi-static variational method of solution (Pires et al., 12 

1996) is implemented, allowing the use of even longer windows by handling the presence 13 

of multiple minima in the cost function. It is clear that the outer-loop used in 4D-Var has 14 

the advantage of improving the nonlinear trajectory in a long assimilation window, 15 

whereas the LETKF is hindered by the fact that the nonlinear perturbations are no longer 16 

Gaussian.  17 

 18 

Table 1 compares the analysis accuracy of 4D-Var, the standard LETKF, the LETKF 19 

with QOL, and the LETKF with RIP, for assimilation windows of 8 and 25 time-steps, 20 

representing linear and nonlinear behavior respectively. The random Gaussian 21 

perturbations used for the QOL and RIP schemes (in Eqs. 8 and 11) have zero mean with 22 

standard deviations of 0.0004 and 0.0001 respectively. All the LETKF-related schemes 23 

use K=3 ensemble members. This is a small ensemble size compared with the thousands 24 

of ensemble members used in other studies such as Evensen (1997) and Evensen and van 25 

Leeuwen (2000), but this choice reflects the fact the ensemble size is necessarily small in 26 

practical applications. In Table 1, analysis accuracy is computed as the RMS analysis 27 

error averaged over 2000 analysis cycles (no significant differences were observed when 28 

experiments were repeated with 1,000,000 cycles). For both 4D-Var and LETKF-related 29 

systems, the RMS analysis error is defined at the end of the assimilation window, where 30 

the observations are available. The values in the first two columns are the same as those 31 
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obtained by Kalnay et al. (2007a). Their study showed that with an observation frequency 1 

of 25 time steps, the optimal length of the assimilation window for 4D-Var is a window 2 

of 75 time steps for this model, and that for such long windows the optimized 4D-Var is 3 

significantly more accurate than the optimized LETKF.  4 

 5 

The LETKF-QOL improves the performance of the standard LETKF to an error level 6 

now better than the optimized 4D-Var. The improvement is especially significant for the 7 

longer window with nonlinear perturbations, suggesting that the LETKF-QOL is much 8 

better in handling the nonlinearity of the trajectory for long assimilation windows. We 9 

also note that the optimal multiplicative covariance inflation is much reduced from 22% 10 

with the standard LETKF to 8% with the QOL, indicating that the ensemble-based 11 

background error covariance can better represent the dynamic uncertainties. RIP shows a 12 

performance similar to the QOL with the linear window, for which little further 13 

improvement can be gained. With the longer nonlinear window, however, the 14 

improvement obtained using the RIP is significantly larger than with the QOL, and the 15 

RMS analysis error is further reduced from 0.47 to 0.35 with only 4.7% multiplicative 16 

covariance inflation. The RIP out-performs the QOL because it also enables improving 17 

the analysis ensemble perturbations as well as the mean at the beginning of each 18 

assimilation window. We note that, on the average, eight iterations are required but when 19 

the dynamics become very nonlinear, as during a regime transition, RIP may take as 20 

many as 10 iterations to fulfill the criterion 

 

! " 0.001. We note that the RIP analysis (with 21 

3 ensemble members and about eight iterations) is still more accurate than the standard 22 

LETKF with 24 ensemble members. 23 

 24 

Table 1 confirms the advantage of QOL for dealing with long assimilation windows and 25 

that RIP is even more advantageous. Figure 2 shows the true time evolution of the 26 

variable y (black line), the analysis/forecast ensemble mean state from the standard 27 

LETKF (blue lines), and the ensemble mean from the LETKF with the QOL (red lines) in 28 

a typical example of a dynamical instability leading to nonlinearity and filter divergence. 29 

In Figure 2, the dots are the analyses, i.e., the initial states of the forecasts. Such filter 30 

divergence is found to occasionally occur in the standard LETKF even if the ensemble 31 
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size is increased (here K=3). As shown in Figure 2, the standard LETKF (in blue) fails to 1 

track the regime transition and gives wrong information about whether a regime change 2 

actually takes place or whether the system stays close to the borderline state. For 3 

example, starting at time=17.0, the analysis mean states (blue dots) become less and less 4 

accurate and the corresponding forecasts are completely off the true trajectory even 5 

though the observations are still being assimilated. Only when the background happens to 6 

be again close to the true dynamics (given by the observations) near time=24.5, is the true 7 

trajectory re-captured, and the LETKF gets back onto the right regime solution. With the 8 

QOL, by contrast, the evolution of the trajectory is much improved and stays on the 9 

correct regime, following the true trajectory very well, and suggesting that the quasi 10 

outer-loops have a clear advantage during unstable periods. When getting close to the 11 

boundary between regimes (Evans et al., 2004), nonlinear perturbation growth quickly 12 

degrades the forecast trajectory for the standard LETKF and for the QOL before the 13 

second iteration. Particularly for the assimilation window between time=17.25 and 17.5 14 

(between point C and D), both forecasts quickly get into the wrong regime. Even with the 15 

observation at time=17.5, the analysis obtained from the standard LETKF is still in the 16 

wrong regime, causing a further worse forecast and leading to filter divergence. By 17 

comparison, the QOL corrects the trajectory because it makes use of the observation at 18 

the end of the assimilation window. Thus, the analysis mean, serving as the initial state as 19 

the next analysis cycle (the red dot at Point D) is close to the truth and is able to stay in 20 

the right regime. 21 

 22 

4.c Ensemble distribution 23 

 24 

This section we evaluate the ensemble of the standard LETKF, QOL and RIP with the 25 

statistical moments to depict the shape of the ensemble distribution, including the 26 

standard deviation and kurtosis of the ensemble. Also, to exhibit statistical significance, 27 

results in the following are shown with a large ensemble member for K=24 and both 28 

QOL and RIP uses random perturbations with an amplitude of 0.003. Filter divergence 29 

(i.e., the analysis stays in the wrong regime for several cycles) still occurs occasionally 30 

with the standard LETKF with 24 ensemble members while the other two schemes are 31 
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always in the right regime even with K=3. The large ensemble size just helps the standard 1 

LETKF to recover from filter divergence more quickly so that it can begin to track the 2 

true dynamics again. 3 

 4 

First, the standard deviation of the ensemble represents the spread of the ensemble 5 

distribution. Table 2 shows the mean RMS error and ensemble spread (standard 6 

deviation) of the background and analysis ensemble from three schemes. Results show 7 

that on the average the ensemble spread and mean state error are quite comparable in the 8 

standard LETKF, but the mean state is the least accurate among the three schemes. When 9 

the standard LETKF performs poorly, the spread is severely underestimated. Among the 10 

three schemes, RIP shows a most accurate analysis mean but with a small ensemble 11 

spread. This agrees with what we illustrated in Section 2 that a small ensemble spread is a 12 

necessary characteristic of RIP in order to perform the assimilation in a “soft” way 13 

assimilating the same observation repeatedly, and giving the optimal analysis. Given the 14 

success of RIP, we argue that the small ensemble spread from RIP is essential for 15 

performing incremental analysis correction instead of representing the uncertainty of the 16 

mean state. As for QOL, the analysis ensemble spread is only slightly smaller than the 17 

RMS error, reflecting the fact that only one or two iterations are used.  18 

 19 

For a linear model, if the analysis ensemble has a Gaussian distribution, the forecast 20 

ensemble will also be Gaussian. If the model is nonlinear and the assimilation window is 21 

long, ensemble perturbations grow nonlinearly, and as discussed in the introduction, the 22 

presence of strong nonlinearities will distort the distribution of the ensemble making it 23 

non-Gaussian, so that the Kalman Filter formulation ceases to be optimal. To investigate 24 

whether using the QOL improves Gaussianity, kurtosis is used to measure the “flatness” 25 

of the LETKF ensemble distribution. In a Gaussian distribution, kurtosis is equal to zero. 26 

Large positive kurtosis represents a non-Gaussian flatter distribution with heavy tails, i.e. 27 

with many outliers. Negative kurtosis corresponds to a peaked distribution narrower than 28 

the Gaussian.  29 

 30 
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Table 3 compares the median and interquartile range of the kurtosis values of the 1 

ensemble from the experiments of the QOL and RIP methods with and without the 2 

random perturbations. Results show that the QOL and RIP have a much more Gaussian 3 

distribution than the standard LETKF, for both the background and analysis ensembles: 4 

the median is closer to zero with smaller interquartile ranges (IQR), compared with the 5 

standard LETKF (first two row in Table 3). Through nonlinear evolution, strong 6 

nonlinearity of the underlying dynamics can still affect the ensemble distribution but has 7 

the largest influence on the ensemble from the standard LETKF centered at less accurate 8 

states. By keeping the ensemble mean close to the true trajectory, the uncertainty about 9 

the dynamical evolution is reduced and the perturbations evolve more linearly, largely 10 

reducing outliers. Therefore, the assumption about Gaussianity is better satisfied with the 11 

QOL and RIP schemes. We should note that the standard deviations of the ensemble are 12 

smaller for the QOL and RIP than for the standard LETKF, and this tends to magnify the 13 

impact on kurtosis produced by an outlier.  14 

 15 

Without adding the random perturbations, the RMS analysis errors become slightly larger 16 

for both schemes (0.49 to 0.51 with QOL and 0.33 to 0.37 with RIP). Comparing the 17 

results with and without the E term for both schemes, results show that the random 18 

perturbations have contributed positively to the Gaussianity of the ensemble distribution: 19 

the IQRs of the kurtosis become smaller, especially for the RIP method, since for the 20 

QOL only up to two iterations are allowed. Results from Table 3 also imply that the 21 

random perturbations with Gaussian statistics have the function of modifying the 22 

ensemble distribution into a more Gaussian shape so that fewer outlier members occur. A 23 

similar stochastic effect from the random perturbations regulating the ensemble 24 

distribution has been discussed for a stochastic EnKF (Lawson and Hansen, 2004).  25 

 26 

4.d Impact of incomplete observations 27 

 28 

So far, observations were made available for all three variables, x, y and z, so that the 29 

influence of error covariances between variables is not dominant. We further consider the 30 

impact of nonlinearity due to sparse observations. For this purpose, instead of 31 



 28 

assimilating observations in x, y and z, we only observe subsets of these observations, 1 

both for the linear (8 time-step) and non-linear (25 time-step) windows (Table 4). We 2 

note that with fewer observations available, the optimal threshold used in the RIP was 3 

reduced to 0.0001, indicating that more iterations are required to make the model states 4 

pull closer to the observations. 5 

 6 

Yang et al. (2006) pointed out that in the Lorenz 3-variable model, the y variable provides 7 

the most effective observations to synchronize the model trajectory with the true states. In 8 

agreement with this observation, when only two observations are assimilated every 8 time 9 

steps with the standard LETKF (the first row in Table 4a), the analysis accuracy with 10 

observations (x, y) or (y, z) is comparable with the analysis with all three observations 11 

assimilated, while the one assimilating observations (x, z) is much less accurate. With the 12 

25 time-step window, the analysis error with observations (x, z) is even larger than the 13 

observation error. As a consequence, with fewer observations and a longer assimilation 14 

window, it becomes more difficult to keep the model trajectories close to the truth, and 15 

the errors for the non-observed variables are large enough to quickly amplify the 16 

nonlinear effect. 17 

 18 

From the last row in Table 4(a) and (b), with only one or two observations, the relative 19 

improvement of the RIP method with respect to the standard LETKF is even larger than 20 

when all three observations are available. For the nonlinear window and incomplete 21 

observations, the RIP method has at least 40% smaller errors than the standard LETKF. 22 

The RIP analysis with two observations is more accurate than the standard LETKF 23 

analysis with all three observations. Observations of only x and z also become more 24 

effective with the RIP method. For the 8-steps linear window, the improvement with the 25 

RIP method is most significant when the observation y is not available because the 26 

available observations are less effective than y. Even when observing z alone, it is still 27 

possible to constrain the model trajectory. The result implies that the RIP method can be 28 

used to help overcome nonlinearity problems exhibited in data void regions.  29 

 30 

With the nonlinear window, the performance of the QOL is always in between the RIP 31 



 29 

method and the standard LETKF, sharing the same characteristic effectiveness in 1 

assimilating different observations. As regards the linear window, the improvement is 2 

also noticeable for the cases without the observation y and particularly evident for cases 3 

with the “least effective” observation z. This indicates the importance of adjusting the 4 

ensemble (and the ensemble-based error covariance) in response to the strong nonlinear 5 

instabilities. The ability of EnKF to do multivariate data assimilation and estimate 6 

unobserved variables relies on its linear estimation of the background error covariance, so 7 

that in the case of data voids it is particularly important for the perturbations to be small 8 

enough to evolve linearly. This helps to explain why the impact of the QOL and RIP is 9 

even larger when not all observations are available.  10 

 11 

Among all the cases, assimilating observations y and z with the QOL and RIP methods 12 

significantly improves the Gaussianity of the ensemble compared with the standard 13 

LETKF. The nonlinear growth of the errors can be best controlled with these two 14 

observations because the nonlinear terms appear only in the governing equations for y 15 

and z variables. The ensemble distribution of the non-observed x variable also becomes 16 

more Gaussian: the median values of the kurtosis are 1.06, 0.35 and 0.24, for the standard 17 

LETKF, QOL and RIP methods respectively, and the corresponding IQR values are 7.69, 18 

4.06 and 1.49. This implies that the dynamical adjustment of RIP and QOL is useful to 19 

constrain the perturbations growth for unobserved variable or data-void region. 20 

 21 

4.e Impact of the choice of the threshold  22 

The threshold (

 

!) used in RIP that determines when to stop the iterations and avoid over-23 

fitting the observations. Figure 3 shows the RIP performance with different criteria as the 24 

threshold for cases with all 3 observations and only 2 observations (x and z), still under 25 

the limitation of a maximum of 10 iterations. Results from Figure 3 indicate that the 26 

performance of RIP has reached the asymptotic level at 

 

! > 0.001. In addition, even with 27 

a large threshold like 

 

! > 5  (only one or no iteration is used) RIP always provides 28 

improvement over the standard LETKF and the performance is close to the QOL. In 29 

contrast, RIP with two observations is more sensitive to the criterion and the best 30 

performance is obtained at 

 

! >10"5 (always using close to 10 iterations). A threshold that 31 



 30 

is too small and results too many iterations will produce some degradation in the analysis 1 

accuracy due to over-fitting the observations. For example, if 10 iterations are always 2 

used in RIP for assimilating all observations, the RMS error degrades from 0.35 to 0.39. 3 

The results also suggest that most of the corrections take place at the first few iterations 4 

and RIP with small ensemble size can always perform well with a conservative criterion 5 

that stops iterating rather early. 6 

 7 

We note again that the QOL is less sensitive to the threshold since in practice we only 8 

allow for a second iteration when the evolution of the background state is under strong 9 

nonlinear instability.  10 

 11 

4.f Impact of the forecast/observation error correlation 12 

 13 

We note that after the first iteration, reusing the observation in QOL and RIP, introduces 14 

a correlation of the forecast and observation errors. Since this correlation is not accounted 15 

for in RIP and QOL, this error correlation should reduce their accuracy. To estimate the 16 

impact of neglecting the correlation between the observation and background errors, we 17 

have artificially eliminated the correlation by repeating the experiments in Table 1 but 18 

introducing new, independent observation errors at every new iteration (something that 19 

could not be done in practice). There was indeed a reduction of analysis error in RIP and 20 

QOL, but it is small compared to the large improvement obtained with both methods over 21 

the standard LETKF. For the infrequent observation case (assimilation window of 25 22 

steps) the QOL analysis errors without error correlation were reduced from 0.47 to 0.38, 23 

and for RIP from 0.35 to 0.26 respectively. The fact that both RIP and QOL have 24 

achieved excellent results in reducing the analysis errors, both for the Lorenz 63 model 25 

and with much larger systems with real observations (Yang et al. 2011 and Penny et al. 26 

2011) indicates that neglecting the correlation between the observation and background 27 

errors does less harm to the assimilation with RIP/QOL than the strong nonlinear 28 

perturbation growth does to the standard LETKF. Nevertheless, the results imply that the 29 

performance RIP/QOL could be further improved by accounting for this correlation of 30 

errors effect of correlated errors. 31 



 31 

 1 
5. Comparisons between iterative EnKFs schemes 2 

 3 

We now compare the RIP and QOL iterative schemes discussed in Section 4 with the 4 

Ensemble randomized maximum likelihood (EnRML) method proposed by Gu and 5 

Oliver (2007), also designed for handling nonlinear data assimilation. The EnRML was 6 

originally proposed for solving the historical data matching in the petroleum reservoir 7 

flow problem by improving the model parameters. In EnRML, the cost-function is 8 

minimized with the Gauss-Newton method with a reduced step adjustment for highly 9 

nonlinear cases, determined by the parameter βi. For this comparison, the formulas of 10 

EnRML are modified to derive the optimal initial state within each window as in 4D-Var, 11 

without including the model parameters as in Gu and Oliver (2007). The modified 12 

formulas and implementation of EnRML are briefly discussed below.  13 

 14 

With a similar assimilation setup to the one used in RIP, a cost-function (Eq. 23) is 15 

defined to assimilate observations arranged at the end of the assimilation window, tn.  16 

J(xn!1) =
1
2
xn!1 ! xb,n!1"# $%

T
Pb,n!1

!1 xn!1 ! xb,n!1"# $% +
1
2
H (M[xn!1])! yo,n"# $%

T
R!1 H (M[xn!1])! yo,n"# $%17 

(23) 18 

The optimal estimation, 

 

xn!1, at the beginning of the window tn-1 is obtained by 19 

minimizing Eq (23).  20 

 21 

In Eq. (23), is xb,n!1  the first guess at initial time tn-1 and Pb,n!1  is the corresponding error 22 

covariance, and the operators, H and M, have the same definition as in Section 3. In 23 

EnRML, the error covariance matrices are then represented by the ensemble and 24 

observations are perturbed following Evensen (1994): 25 

 26 

The implementation of the EnRML algorithm is as follows: 27 

1. The cost-function is minimized for each ensemble member (k), with perturbed 28 

observations, giving the new iteration i+1 of the window initial condition: 29 
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2. The misfit between the analysis and the observations is estimated for both 

 

xn!1
k,i+1 3 

and 

 

xn!1
k,i  4 

 OMFi =
1
2
H (M[xn!1

k ,i ])! yo,n
k"# $%

T
R!1 H (M[xn!1

k ,i ])! yo,n
k"# $%  5 

3. If OMFi+1< OMFi, 

 

xn!1
k,i+1 = xn!1

k,i and βi is increased, otherwise we keep 

 

xn!1
k,i  and 6 

decrease βi  7 

4. Repeat 1.-3., until one of the following criteria to stop iterating is satisfied: 8 

a. (OMFi − OMFi+1)/OMFi < 10-4 9 

b. The number of iterations exceeds the maximum (20)  10 

 11 

Recall that with only 3 ensemble members and a nonlinear assimilation window of 25 12 

steps, QOL and RIP have an RMS analysis error of 0.47 and 0.35 respectively (Table 1). 13 

By contrast, with 3 ensemble members the EnRML algorithm fails because of sampling 14 

problems associated with the use of perturbed observations. Since the EnRML scheme 15 

needs a large ensemble size, comparisons are then made using 24 ensemble members for 16 

assimilating observations arranged at the end of a 25 time-step window. As indicated 17 

before, increasing the number of ensemble members from 3 to 24 does not improve the 18 

performance of QOL and RIP, which now have errors of 0.49 and 0.33 respectively. 19 

 20 

Running EnRML with 24 ensemble members is successful, with βi starting at 0.5 and 21 

with an average of 7 iterations needed for minimization. Without the reduced step 22 

adjustment, the RMS analysis error from EnRML is 1.44, but with the reduced step it 23 

becomes 0.41, comparable to the values of 0.33 and 0.49 obtained from RIP and QOL 24 

respectively. Tuning the covariance inflation can slightly improve the performance of 25 

EnRML which attains its best RMS error of 0.39, still larger than RIP with 3 ensemble 26 

members. 27 

 28 
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The RMS error shown in Figure 4(a) indicates that the RIP and EnRML have a similar 1 

performance most of the time, but there are still some situations when the EnRML 2 

analysis has catastrophic errors. These usually happen during regime change or saddle 3 

points, as in the example shown in Figure 4(b). These large errors correspond to cases 4 

where the cost function is trapped and fails to obtain a reliable initial condition due to an 5 

ill-conditioned error covariance matrix based on the background ensemble. In contrast, 6 

RIP successfully avoids this problem.  7 

 8 

The statistical behavior of the ensemble perturbations among QOL, RIP and EnRML are 9 

also examined. Results show that the Gaussianity of the EnRML is not significantly 10 

different from the one with RIP (figure not shown). However, we observe that the spread 11 

of the EnRML ensemble represents well the uncertainty of the mean state when the 12 

EnRML analysis is very accurate; in comparison, the ensemble spread from RIP is 13 

smaller for these cases because, as discussed in section 2, RIP has adjusted to the re-use 14 

of the observations by reducing the ensemble spread. 15 

 16 

In summary, EnRML derives the optimal state and its uncertainty through minimizing a 17 

cost-function. Given a poor prior state and/or non-representative prior error statistics, the 18 

ability to fit the model solution to observations through the minimization of a cost-19 

function is limited. RIP instead aims to improve the prior state and corresponding error 20 

structure so that the observations can be better used: at every iteration, RIP, solves a 21 

different cost-function that is closer to being quadratic since the prior state is improved. 22 

Since in the RIP ensemble perturbations are repeatedly rescaled, RIP has an ensemble 23 

spread smaller than the analysis error but consistent with the multiple use of the 24 

observations. 25 

 26 

6. Summary and discussion 27 

 28 

A new type of outer-loop, different from the incremental minimization of a cost-function 29 

based on the maximum likelihood method, is proposed for the Ensemble Kalman Filter 30 

(EnKF) framework. It improves the EnKF ability to handle the strongly nonlinear 31 
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evolving dynamics that can take place in long assimilation windows. Unlike the 1 

variational outer loops, which do not modify the prior state, RIP and its simpler version, 2 

QOL, take advantage of the information from “future observations” to improve the initial 3 

ensemble in the assimilation window, and use the observations more than once. 4 

 5 

In Section 2 we show with a simple linear model that after the initial spin-up, using RIP 6 

with a constant number of iterations per analysis cycle produces essentially the same 7 

analysis means as the optimal Kalman Filter. The main differences are that with RIP, the 8 

size of the ensemble squared spread is reduced by N, the number of iterations per cycle, 9 

and the total analysis increment in a given analysis cycle is applied as the sum of multiple 10 

smaller increments.  We argue that in a nonlinear scenario, these differences can be an 11 

advantage: first, the linear approximation to the set of possible model states provided by 12 

the ensemble is better with a smaller ensemble spread; and second, breaking the analysis 13 

increment into smaller steps and recomputing the linear approximation at each step can 14 

allow the increments to follow the nonlinear set toward the truth better than a single 15 

increment. 16 

 17 

When there is strongly nonlinear error growth, the extraction of information from 18 

observations in the standard EnKF is less than optimal. Therefore, it is important to 19 

increase the influence of the observations on the analysis. RIP does this by improving 20 

both the ensemble mean and the perturbations incrementally, reusing the observations N 21 

times, rather than reducing the observation error covariance by N. The QOL method, 22 

newly proposed as a simplified version of RIP, aims to improve just the ensemble mean 23 

so that ensemble perturbations are centered at a more accurate state.  Both the RIP and 24 

QOL schemes are based on the application of a no-cost smoother to improve the analysis 25 

at the beginning of the assimilation window and thus the nonlinear trajectory of the 26 

ensemble based on information provided by “future” observations available within the 27 

assimilation window. QOL and RIP were implemented here within the LETKF 28 

framework to examine their ability to handle the nonlinearities of the dynamics, but they 29 

could be applied to any EnKF where the analysis perturbation matrix is obtained from the 30 
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background perturbation matrix through a right multiplication by a matrix of weights, 1 

such as the ETKF or LETKF.  2 

 3 

In a nonlinear scenario, EnKF and EnKF-RIP will give different results, but as we argued 4 

above, EnKF-RIP may handle nonlinearities better due to smaller ensemble spread and a 5 

multi-step analysis increment.  Just as Ensemble Kalman Filters benefit from ad hoc 6 

modifications (such as covariance inflation) from the optimal linear formulation, RIP 7 

benefits from modifications such as adaptively varying the number of iterations per 8 

analysis cycle, and adding small perturbations.  In this article we use such modifications 9 

of the basic RIP approach described above, but we emphasize that the basic approach 10 

provides most of the improvement we find in our numerical experiments. These 11 

modifications require tuning two parameters in order to optimize the performance of both 12 

RIP and QOL. The first is a threshold for the improvement of the fit of the forecasts to 13 

the observations, and the second is the size of additive random perturbations. For the RIP, 14 

the threshold determines when to stop the iterations. Experimental results suggest that for 15 

smaller ensembles, a larger threshold (with fewer iterations) would be appropriate to 16 

avoid overfitting the observations. Kalnay and Yang (2010) tested LETFK-RIP to 17 

accelerate the spin-up in a quasi-geostrophic model, and used the threshold to estimate 18 

whether the spin-up phase was over, and then stop the RIP iterations and return the 19 

system to the standard LETKF.   The QOL is much less sensitive to the threshold because 20 

only one or two iterations are used when the model trajectory undergoes nonlinear 21 

instabilities.  Since most of the improvements are attained in the first few iterations, both 22 

RIP and QOL should work with a conservative approach using only few iterations. 23 

Results from both schemes show that the analysis accuracy is slightly improved by 24 

adding small random perturbations that also play a role in regulating the Gaussianity of 25 

the ensemble distribution. 26 

 27 

The performance of the LETKF with the QOL and RIP schemes is tested with the Lorenz 28 

3-variable model. Results show that QOL and RIP allow the LETKF to use longer 29 

assimilation windows with significant improvements of the analysis accuracy, especially 30 

during periods of highly nonlinear growth. For low-frequency observations (every 25 31 
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steps, leading to long assimilation windows), and using optimal inflation, the standard 1 

LETKF RMS error is 0.68, whereas for the QOL and RIP the RMS errors are 0.47 and 2 

0.35 respectively. This can be compared with the best 4D-Var analysis error of 0.53, 3 

obtained using both optimal long assimilation windows (75 steps) and the quasi-static 4 

variational analysis (Pires et al., 1996). As discussed in Section 2, RIP has a small 5 

ensemble spread due to the incremental analysis correction, while the standard LETKF, 6 

with an ensemble spread comparable to the uncertainty of the mean state, computes the 7 

analysis increment only once, but with worse accuracy during strong nonlinear growth. 8 

When only one or two of the 3 variables are observed, the improvements of the QOL and 9 

RIP algorithms with respect to the standard LETKF are further enhanced, suggesting that 10 

these methods can be used to handle nonlinearity introduced by data voids. 11 

 12 

Results from RIP and QOL are also compared with the EnRML method, an iterative 13 

EnKF with Gauss-Newton minimization with a similar framework as the incremental 4D-14 

Var. With 24 ensemble members, the EnRML performance is in between RIP and QOL. 15 

But with only 3 ensemble members, EnRML fails to converge, while both RIP and QOL 16 

achieve the same optimal level of performance with 3 members as with 24 members. 17 

Moreover, RIP robustly outperforms EnRML at the locations of regime change and 18 

saddle points.  19 

  20 

The original outer-loop used in variational data assimilation in incremental form does not 21 

change the background state (first guess) in the outer loop: it only improves the nonlinear 22 

trajectory of the model used to compute the innovations and the state used to linearize the 23 

observation operator (Courtier, 1994). By contrast, the QOL uses the no-cost smoother 24 

and the future observations within the assimilation window to improve the ensemble 25 

mean and re-center the smoothed perturbations around this improved mean. RIP reruns 26 

the whole ensemble, so that it not only improves the initial ensemble mean but also the 27 

perturbations. This makes the QOL and RIP quite different from the variational outer 28 

loop and seems to violate the basic rule that “data should be used once and then 29 

discarded” (Ide et al, 1997). In this study, we provide a theoretical explanation for the 30 

success of RIP based on linear dynamics and show that repeatedly assimilating same 31 
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observations is a “soft” way to increasing the observation influence. Most importantly, 1 

such multi-step analysis increment becomes advantageous for nonlinear cases since the 2 

updated state can better follow the true dynamics. In addition, we note that the smaller 3 

ensemble spread is a characteristic of RIP, allowing multi-step analysis corrections with 4 

small increments, and is associated with the fact that the observations are used multiple 5 

times. If the ensemble needs to be inflated for the purpose of obtaining enough spread for 6 

the long-term forecasts, one can then either use fewer RIP iterations or inflate the 7 

ensemble with an adaptive inflation scheme (e.g. Miyoshi, 2011). 8 

 9 

Since the performance of the QOL and RIP on the 3-variable Lorenz model and several 10 

other small models is excellent, they are now being tested within more realistic and 11 

dynamically complex models in order to investigate the potential impact on improving 12 

the nonlinearity of the background trajectory. Applications to typhoon regional data 13 

assimilation  (Yang et al., 2011) and global ocean assimilation (Penny, 2011) also have 14 

demonstrated very encouraging results. 15 

 16 
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Table 1 The analysis error of 4D-Var, LETKF, LETKF with QOL and LETKF with RIP. 1 
ρ is the optimal multiplicative covariance inflation. 2 

 

 
4D-Var 

LETKF 

(3 members) 

LETKF 

+ QOL 

LETKF 

+ RIP 

Obs every 8 time steps 

(linear window) 
0.31 0.30 0.27 0.27 

Obs every 25 time steps 

(nonlinear window) 

0.53 

(assim window=75) 

0.68 

(ρ  =1.22) 

0.47 

(ρ  =1.08) 

0.35 

(ρ  =1.047) 

 3 

 4 

 5 

 6 

 7 

8 
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  1 
Table 2 The RMS analysis error and ensemble spread of the standard LETKF, LETKF 2 
with QOL and LETKF with RIP. Results are obtained with 24 ensemble members.  3 
 4 

K=24 LETKF LETKF-QOL LETKF-RIP 

Background error 

(spread) 

1.32 (1.32) 0.63 (0.66) 0.67 (0.26) 

Analysis error 

(spread) 

0.65 (0.63) 0.49 (0.33) 0.33 (0.13) 

5 
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 1 

Table 3 Median and interquartile range of the Kurtosis values obtained from the 2 
background and analysis ensemble of standard LETKF, QOL and RIP methods, with and 3 
without the random perturbations E. The amplitude of the random perturbation is 0.003. 4 
 5 

Median Interquartile range (difference between 
25% and 70% quantiles)  Background 

ensemble 
Analysis 
ensemble 

Background 
ensemble Analysis ensemble 

Standard LETKF 0.79 0.78 5.96 5.98 

QOL (with E) 0.33 0.32 4.27 4.27 

QOL (without E) 0.47 0.50 4.56 4.78 

RIP (with E) -0.10 0.45 1.74 1.74 

RIP (without E) -0.64 0.05 2.16 2.97 

 6 
7 
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 1 

Table 4(a) The RMS analysis error of LETKF, LETKF with QOL and LETKF with RIP 2 
with the 8 time-step analysis cycles and different observations. The ensemble size is three 3 
in all experiments. 4 
 5 

Observations x y z xy xz yz xyz 
Standard 
LETKF 0.88 0.46 4.11 0.35 0.56 0.33 0.3 

QOL 0.82 0.48 2.73 0.41 0.39 0.30 0.27 

RIP 0.79 0.43 1.56 0.37 0.38 0.28 0.25 

 6 

 7 

Table 4(b) Same as Table 4(a), except for the 25 time-step analysis cycles. 8 

 9 

 10 

 11 
12 

Observations x y z xy xz yz xyz 
Standard 
LETKF 

2.9 1.67 7.16 1.01 1.53 0.78 0.68 

QOL 1.98 1.23 5.94 0.82 1.16 0.60 0.47 
RIP 1.57 0.97 3.81 0.56 0.66 0.40 0.35 
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  1 
Figure 1 (a) Analysis error of KF, KF-RIP with 2 and 10 iterations and observation error, 2 
(b) estimated error variance of KF, KF-RIP with 2 and 10 iterations, and (c) averaged 3 
RMS analysis error from KF and KF-RIP with different iteration numbers 4 

5 
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 1 

 2 
Figure 2 Time evolution of the variable y during a typical regime transition with strong 3 
nonlinear growth between t=17 and t=18. The black line denotes the true trajectory and 4 
the blue line denotes the evolution initializing from the standard LETKF analysis mean, 5 
marked as the blue dots. The red lines are the evolution from the analyses with the QOL 6 
marked as red dots. The points A, B, C, D indicate a regime transition, where the filter 7 
divergence occurs with the standard LETKF. Three ensemble members are used in these 8 
experiments. 9 

10 

A 

B 

C 
D 
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 1 

 2 
Figure 3 RMS analysis error of RIP with different criteria as the threshold with three 3 
observations and with two observations. Three ensemble members are used in these 4 
experiments. 5 
 6 
 7 

8 
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 1 
 2 

 3 
 4 
Figure 4 (a) The RMS error from different analyses from the 800th to 1200th analysis 5 
cycles and (b) analysis of the y variable from the truth and different analyses. 6 

(a) 

(b) 


