Comparing Local Ensemble Transform Kalman Filter with 4D-Var in a Quasi-geostrophic model

Shu-Chih Yang^{1,2}, Eugenia Kalnay¹, Matteo Corazza³, Alberto Carrassi⁴ and Takemasa Miyoshi⁵

¹ University of Maryland
² GMAO/NASA GFSC
³ ARPAL CFMI-PC
⁴ University of Ferrara
⁵ Japan Meteorological Agency

- Ensemble Kalman Filter (eg. LETKF) and 4D-Var are DA methods which can take into account the "flow-dependent errors".
- The implementation of LETKF and 4D-Var are very different:
 - LETKF: treat model as a black box, *local*
 - 4D-Var: model dependent, *global*
- Compare the performance of LETKF and 4D-Var

Experiment setup

Quasi-Geostrophic Model

(Rotunno and Bao, 1996;Morss,1999)

- Channel model, periodic in x
- Horizontal: 64x33, Vertical: 7 levels
- Model variables

potential vorticity (q) arranged at interior 5 levels, potential temperature (θ) at top and bottom levels

- Experiment setup
 - 3% observation coverage (64 obs.) simulated rawinsonde (u,v,t) at all 7 levels, every 12hour
 - Analysis cycle: 12 hours
 - Initial condition, 3D-Var analysis solution

Data assimilation schemes

- 3D-Var (Morss, 1999)
 - B_{3D-Var} has been optimized and is time-independent
 - Observation error covariance, R, is diagonal: uncorrelated between observations and between variables
 - Used as the benchmark
- Ensemble-based hybrid scheme (Corazza et al., 2002, Yang et al. 2006)
 - B_{3D-Var} is augmented by the a set of bred vectors (the flow dependent errors) $B_{HYBD}=(1-\alpha) B_{3D-Var}+\alpha EE^{T}$. α is the hybrid coefficient

 $[\mathbf{I} + ((1 - \alpha)\mathbf{B}_{3DVAR} + \alpha \mathbf{E}\mathbf{E}^{\mathrm{T}})\mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{H}](x_{a} - x_{b}) = [(1 - \alpha)\mathbf{B}_{3DVAR} + \alpha \mathbf{E}\mathbf{E}^{\mathrm{T}}]\mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}(y - \mathbf{H}x_{b})$

– Implemented in the 3D-Var framework

Data assimilation schemes

- LETKF (Hunt et al., 2006)
 - An efficient method to implement Ensemble Kalman Filter
 - Perform in a local volume (19x19x7)
 - Compute matrix inverse in the space spanned by ensemble (ensemble size =40)
 - A random perturbations (3% vectors amplitude) is added to the ensemble vectors
- 4D-Var
 - The adjoint model is generated by TAMC, but need to correct several subtle bugs related to boundary conditions
 - B_0 needs to be optimized.

 $\mathbf{B}=\mathbf{0.02}\times\mathbf{B}_{\mathrm{3DVAR}}$

Ensemble-based hybrid scheme vs. Variational-based scheme

• The hybrid scheme performs better because of its ability to include the dynamically evolving errors

• By localizing the BVs, α increases and the hybrid scheme perform much better

RMS analysis/forecast errors

The performance of LETKF is better than 4D-Var with 12-hour but worse than 4D-Var with 24-hour window

Computational costs

• Computational time with 1 CPU

	3D-Var	HYBD	4D-Var		LETKF		
			12HR	24HR	L=5	L=7	L=9
RMS error (x10 ⁻²)	1.44	0.70	0.56	0.35	0.48	0.45	0.39
Time (hour)	0.5	5.0	8.0	14.0	5.5	8.3	10.0

LETKF can be computed in parallel

Error variance vs. ensemble spread

The structures of analysis increment

- 4D-Var analysis increments vs. singular vector(SV)
 - SV is defined with potential enstrophy norm with a chosen optimization time
 - Compared at initial/final time

- LETKF analysis increment vs. bred vector(BV)
 - At the analysis time

Structure of analysis increments

The initial analysis increments in 4D-Var are very different from the final increments, which are more similar to the analysis increments in LETKF

Relative improvement in spectral coordinates

Summary

From the perfect model experiments with an analysis cycle of 12-hour, we show that

- The ensemble spread from LETKF is able to reflect well the error covariance structure.
- LETKF has the performance in between the results of 4D-Var with 12-hour and 24-hour window. 4D-Var has an advantage with a long window.
- The analysis increment from LETKF is very similar to the analysis increment of 4D-Var at the end of the assimilation window. Both strongly resemble the BV and final SV.
- Both LETKF and 4D-Var successfully improve the 3D-Var analysis in all scales. The improvement of LETKF of large scale is as good as the 4D-Var with 24-hour window.