
Chapter 6: Ensemble Forecasting
and Atmospheric Predictability

Introduction



Deterministic Chaos (what!?)
In 1951 Charney indicated that forecast

skill would break down, but he attributed
it to model errors and errors in the initial
conditions…

In the 1960’s the forecasts were skillful for
only one day or so.

Statistical prediction was equal or better
than dynamical predictions,

Like it was until now for ENSO
predictions!



Lorenz wanted to show that statistical prediction could
not match prediction with a nonlinear model for the
Tokyo (1960) NWP conference

So, he tried to find a model that was not periodic
(otherwise stats would win!)

He programmed in machine language on a 4K memory,
60 ops/sec Royal McBee computer

He developed a low-order model (12 d.o.f) and
changed the parameters and eventually found a
nonperiodic solution

Printed results with 3 significant digits (plenty!)
Tried to reproduce results, went for a coffee and

OOPS!



Lorenz (1963) discovered that even with a
perfect model and almost  perfect initial
conditions the forecast loses all skill in a
finite time interval: “A butterfly in Brazil can
change the forecast in Texas after one or
two weeks”.

In the 1960’s this was only of academic
interest: forecasts were useless in two days

Now, we are getting closer to the 2 week
limit of predictability, and we have to
extract the maximum information



Central theorem of chaos (Lorenz, 1960s):Central theorem of chaos (Lorenz, 1960s):
a) Unstable systems have finite predictability (chaos)
b) Stable systems are infinitely predictable

TRUTH TRUTH

FORECAST

FORECAST

a) Unstable dynamical system b) Stable dynamical system



A simple chaotic model:
Lorenz (1963) 3-variable model

Has two regimes and the transition between them is
chaotic
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Example: Lorenz (1963) model, y(t)

Time steps

warm

cold



We introduce an infinitesimal perturbation
in the initial conditions and soon the

forecast loses all skill



Definition of Deterministic Chaos
(Lorenz, March 2006, 89)

WHEN THE PRESENT DETERMINES

THE FUTURE

BUT

THE APPROXIMATE PRESENT DOES NOT

APPROXIMATELY DETERMINE THE FUTURE



We introduce an infinitesimal perturbation
in the initial conditions and soon the

forecast loses all skill



A “ball” of perturbed initial conditions is followed with time. Errors
in the initial conditions that are unstable (with “errors of the day”)

grow much faster than if they are stable

Predictability depends on the initial conditions (Palmer, 2002):

stable unstableless stable



Fig. 6.2: Schematic of the evolution of a small spherical volume in
phase space in a bounded dissipative system.

a) Initial volume: a small
hypersphere

b) Linear phase: a hyper
ellipsoid

c) Nonlinear phase: folding
needs to take place in order for
the solution to stay within the
bounds

d) Asymptotic evolution to a
strange attractor of zero
volume and fractal structure.
All predictability is lost



• We gave a team of 4 RISE intern undergraduates a
problem: Play with the famous Lorenz (1963) model,
and explore its predictability using “breeding” (Toth
and Kalnay 1997), a very simple method to grow
errors.

• We told them: “Imagine that you are forecasters that
live in the Lorenz “attractor”. Everybody living in the
attractor knows that there are two weather regimes,
the ‘Warm’ and ‘Cold’ regimes. But what the public
needs to know is when will the change of regimes
take place, and how long are they going to last!!”.

• “Can you find a forecasting rule to alert the public that
there is an imminent change of regime?”

An 8 week RISE project for undergraduate womenAn 8 week RISE project for undergraduate women



Example: Lorenz (1963) model, y(t)

Time steps

warm

cold



When there is an instability, all perturbations converge
towards the fastest growing perturbation (leading

Lyapunov Vector). The LLV is computed applying the
linear tangent model on each perturbation of the

nonlinear trajectory
 
Fig. 6.7: Schematic of how all perturbations will converge 
towards the leading Local Lyapunov Vector 
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“Breeding”: Grow naturally unstable
perturbations, similar to Lyapunov vectors

but using the nonlinear model twice
• Breeding is simply running the nonlinear model a second time,

starting from perturbed initial conditions, rescaling the
perturbation periodically
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In the 3-variable Lorenz (1963) model we used ‘breeding’
the local growth of the perturbations:

With a simple breeding cycle we were able to estimate
the stability of the attractor (Evans et al, 2003)

Growth of the bred vectors: red: large; yellow,
medium; green, low; blue: negative (decay)

We “painted”
the trajectory
with the
growth rate



Initial conditions that are unstable (with “errors of the day”)
grow much faster

Predictability depends on the initial conditions (Palmer, 2002):

stable unstableless stable



Rules for a forecaster living in the Lorenz model:

“warm”

“cold”

1) Change of Regime: The presence of red stars indicates that the
next orbit will be the last orbit in the present regime.

2) Duration of the New Regime: Few red stars, the next regime
will be short. Many red stars: the next regime will be long
lasting.

Growth rate of
bred vectors:

A * indicates
fast growth
(>1.8 in 8 steps)

X



These are very robust rules, with skill scores > 95%



Summary for this partSummary for this part
• Breeding is a simple generalization of Lyapunov

vectors, for finite time, finite amplitude: simply run
the model twice…

• The only parameters are the amplitude and the
frequency of the renormalization (it does not
depend on the norm)

• Breeding in the Lorenz (1963) model gives
forecasting rules for change of regime and
duration of the next regime that surprised Lorenz
himself…



EnsembleEnsemble ForecastingForecasting

• It used to be that a single control forecast was
integrated from the analysis (initial conditions)

• In ensemble forecasting several forecasts are
run from slightly perturbed initial conditions
(or with different models)

• The spread among ensemble members gives
information about the forecast errors



8-day forecast and verification: for a “spaghetti” plot, we draw only
one contour for each ensemble member forecast, showing where

the centers of high and low pressure are



Example of a very predictable 6-day forecast, with “errors of the day”

Errors of the day tend to be localized and have simple shapes 
(Patil et al, 2001)

L



The errors of the day are The errors of the day are instabilities of theinstabilities of the
background flow.background flow. At the same verification time, At the same verification time,
the forecast uncertainties have the forecast uncertainties have the same shapethe same shape

4-day forecast 
verifying on 
the same day



2.5 day forecast verifying
on 95/10/21.

Note that the bred vectors 
(difference between the 
forecasts) lie on a 1-D space

It makes sense to assume that the errors in the analysis It makes sense to assume that the errors in the analysis 
(initial conditions) have the same shape as well: (initial conditions) have the same shape as well: 

the errors lie in the subspace of the bred vectorsthe errors lie in the subspace of the bred vectors

Strong instabilities of the background tend to haveStrong instabilities of the background tend to have
simple shapes (perturbations lie in a low-dimensionalsimple shapes (perturbations lie in a low-dimensional

subspace)subspace)



An ensemble forecast starts from initial perturbations to the analysis…
In a good ensemble “truth” looks like a member of the ensemble
The initial perturbations should reflect the analysis “errors of the day”
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Data assimilation and ensembleData assimilation and ensemble
forecasting in a coupled ocean-forecasting in a coupled ocean-

atmosphere systematmosphere system
• A coupled ocean-atmosphere system contains growing

instabilities with many different time scales
– The problem is to isolate the slow, coupled instability related to the

ENSO variability.
• Results from breeding in the Zebiak and Cane model (Cai et al.,

2002) demonstrated that
– The dominant bred mode is the slow growing instability associated

with ENSO
– The breeding method has potential impact on ENSO forecast skill,

including postponing the error growth in the “spring barrier”.
• Results from breeding in a coupled Lorenz model show that

using amplitude and rescaling intervals chosen based on time
scales, breeding can be used to separate slow and fast
solutions in a coupled system.



AMPLITUDE
(% of climate
variance)

1%

10%

100%

1hour 1 day 1 week

BAROCLINIC (WEATHER)
MODES

CONVECTIVE MODES

ANALYSIS ERRORS

Nonlinear saturation allows filtering unwanted fast, small
amplitude, growing instabilities like convection (Toth and
Kalnay, 1993)



Atmospheric
perturbation
amplitude

time1 month

Weather “noise”

ENSO

In the case of coupled ocean-atmosphere modes, we cannot 
take advantage of the small amplitude of the “weather noise”! 
We can only use the fact that the coupled ocean modes are slower…
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We coupled a slow and a fast
Lorenz (1963) 3-variable model



Now we test the fully coupled “ENSO-like” system,
with similar amplitudes between “slow signal” and “fast noise”

“slow ocean” “tropical atmosphere”

Then we added an extratropical atmosphere coupled with the tropics



Depending on how we do the rescaling in the coupled model breeding, 
we can get the BVs for slow “weather waves” or fast “convection”

Rescaled with slow variables, slow frequency

slow
!

total
!

fast!



If we rescale with fast variable, at high frequency, 
we get the “convection” bred vectors

total
!

fast!

slow
!



Coupled fast and slow Lorenz 3-variable models
(Peña and Kalnay, 2004)

Tropical ocean

Tropical atmosphere

Extratropical atmosphere

slow

fast

Coupling strength



Breeding in a coupled Lorenz model

Short rescaling interval (5 steps)
and small amplitude: fast modes

Long rescaling interval (50 steps)
and large amplitude: ENSO modes

The linear approaches (LV, SV) cannot capture the slow ENSO signal



From Lorenz coupled models:

• In coupled fast/slow models, we can do breeding to
isolate the slow modes

• We have to choose a slow variable and a long
interval for the rescaling

• This is true for nonlinear approaches (e.g., EnKF) but
not for linear approaches (e.g., SVs, LVs)

• We apply this to ENSO coupled instabilities:
– Cane-Zebiak model (Cai et al, 2003)
– NASA and NCEP fully coupled GCMs (Yang et al, 2006)
– NASA operational system with real observations


