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Lorenz (1965) introduced (without using their current
names) all the concepts of: Tangent linear model,
Adjoint model, Singular vectors, and Lyapunov
vectors for a low order atmospheric model, and their
consequences for ensemble forecasting.

He also introduced the concept of “errors of the day”:
predictability is not constant: It depends on the
stability of the evolving atmospheric flow (the basic
trajectory or reference state).



When there is an instability, all perturbations converge
towards the fastest growing perturbation (leading

Lyapunov Vector). The LLV is computed applying the
linear tangent model L on each perturbation of the

nonlinear trajectory
 
Fig. 6.7: Schematic of how all perturbations will converge 
towards the leading Local Lyapunov Vector 
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Bred Vectors: nonlinear generalizations ofBred Vectors: nonlinear generalizations of
Lyapunov Lyapunov vectors, finite amplitude, finite timevectors, finite amplitude, finite time
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Breeding: integrate
the model twice,
rescale the
differences
periodically and add
them to the control.



Lv i = ! iui

SV: Apply the linear tangent model
forward in time to a ball of size 1

vi are the initial singular vectors
ui are the final singular vectors
    are the singular values! i

• The ball becomes an ellipsoid, with each final SV ui
multiplied by the corresponding singular value        .
• Both the initial and final SVs are orthogonal.

! i



If we apply the adjoint model
backwards in time

vi are the initial singular vectors
ui are the final singular vectors
    are the singular values! i

LTui = ! iv i

• The final SVs get transformed into initial SVs, and are also
multiplied by the corresponding singular value        .! i



Apply both the linear and the adjoint
models

So that vi are the eigenvectors
of             and           are the
eigenvalues

! i
2LTLv i = ! iL

Tui = ! i
2v i LTL



Conversely, apply the adjoint model
first and then the TLM

LLTui = ! i
2ui



More generally,
yn+1 = Lyn

Find the final size with a final norm P:

yn+1
2 = (Pyn+1)

T (Pyn+1) = yn
TLTPTPLyn

This is subject to the constraint that all the initial
perturbations being of size 1 (with some norm W that
measures the initial size):

yn
TWTWyn = 1

A perturbation is advanced from tn to tn+1

The initial leading SVs depend strongly on the initial
norm W and on the optimization period T = tn+1-tn



QG model: Singular vectors using either 
enstrophy/streamfunction initial norms (12hr)

Initial SVs are
very sensitive
to the norm

Final SVs look
like bred vectors
(or Lyapunov
vectors)

Initial SV with enstrophy norm Initial SV with streamfunction norm

Final SV with enstrophy norm Final SV with streamfunction norm

(Shu-Chih Yang)



Two initial and final SV (24hr, vorticity2 norm)
contours: 3D-Var forecast errors, colors: SVs

With an enstrophy norm, the initial SVs have large scales,
by the end of the”optimization” interval, the final SVs look
like BVs (and LVs)



Two initial and final BV (24hr)
contours: 3D-Var forecast errors, colors: BVs

The BV (colors) have shapes similar to the forecast
errors (contours)



Example of nonlinear, tangent linear and adjoint codes:

Nonlinear model, forward in time

x 3(t + !t) = x3(t) + [x1(t)x 2 (t) " bx3(t)]!t

Lorenz (1963) third equation:  !x3 = x1x 2!bx3

M



Tangent linear model, forward in time

Example of nonlinear, tangent linear and adjoint codes:

!x 3(t + "t) = !x3(t) + [x2 (t)!x 1(t) + x1(t)!x2 (t) # b!x3(t)]"t

Nonlinear model, forward in time

x 3(t + !t) = x3(t) + [x1(t)x 2 (t) " bx3(t)]!t

Lorenz (1963) third equation:  !x3 = x1x 2!bx3

M

L



Tangent linear model, forward in time

In the adjoint model the above line becomes

                                                                                    

                                                                            backward in time

Example of nonlinear, tangent linear and adjoint codes:

!x 3(t + "t) = !x3(t) + [x2 (t)!x 1(t) + x1(t)!x2 (t) # b!x3(t)]"t

!x3
*(t) = !x3

*(t) + (1" b#t)!x3
*(t + #t)

!x2
*(t) = !x2

*(t) + (x1(t)#t)!x3
*(t + #t)

!x1
*(t) = !x1

*(t) + (x2 (t)#t)!x3
*(t + #t)

!x3
*(t + #t) = 0

Nonlinear model, forward in time

x 3(t + !t) = x3(t) + [x1(t)x 2 (t) " bx3(t)]!t

Lorenz (1963) third equation:  !x3 = x1x 2!bx3

M

L

LT



SVs SVs summary and extra propertiessummary and extra properties
• To obtain the SVs we need the TLM and the ADJ

models.
• The leading SVs are obtained by the Lanczos

algorithm.
• One can define an initial and a final norm (size), this

gives flexibility (and arbitrariness, Ahlquist, 2000).
• The leading initial SV is the vector that will grow

fastest (starting with a very small initial norm and
ending with the largest final norm).

• The leading SVs grow initially faster than the
Lyapunov vectors, but at the end of the period, they
look like LVs (and bred vectors~LVs).

• The initial SVs are very sensitive to the norm used.
The final SVs look like LVs~BVs



4D-Var

J(x(t0))=   [x(t0)-xb(t0)]
TB0

-1[x(t0)-xb(t0)]+      [yo
i-H(xi)]

TRi
-1[yo

i-H(xi)]

 

1
2

 

1
2 i= 0

i=N

!

Find the initial condition such that its
forecast best fits the observations
within the assimilation interval

previous forecast

xb

assimilation window
t0 tnti
yo

yo

yo


yo

corrected forecast
xa

J(x) is generalized to include observations at different times.

Minimize the 4D-Var cost function:

              Distance to the background at t0           Distance to the observations, t0 - tn 



4D-Var

J(x(t0))=   [x(t0)-xb(t0)]
TB0

-1[x(t0)-xb(t0)]+      [yo
i-H(xi)]

TRi
-1[yo

i-H(xi)]

 

1
2

 

1
2 i= 0

i=N

!

Find the initial condition such that its
forecast best fits the observations
within the assimilation interval

previous forecast

xb

assimilation window
t0 tnti
yo

yo

yo


yo

corrected forecast
xa

J(x) is generalized to include observations at different times.

The form of the cost function suggests that the analysis
increments in 4D-Var will be dominated by leading SVs.



4D-Var is a smoother4D-Var is a smoother

What about LETKF, a sequential method?

previous forecast

xb

assimilation window
t0 tnti
yo

yo

yo


yo

corrected forecast
xa

The corrected forecast
is the 4D-Var analysis
throughout the
assimilation window



Local Ensemble Transform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)

(a square root filter)

• Model independent
(black box)
• Obs. assimilated
simultaneously at each
grid point
• Parallel analysis: each
grid point is independent
• 4D LETKF extension

(Start with initial ensemble)

LETKFObservation
operator

Model

ensemble  analyses

ensemble forecasts

ensemble
“observations”

Observations



Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

Localization based on observations



Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

Localization based on observations

The LETKF algorithm can be described in a single slide…



Local Ensemble Transform Kalman Filter (Local Ensemble Transform Kalman Filter (LETKFLETKF))

Forecast step:
Analysis step: construct

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

Analysis mean in ensemble space:
and add to     to get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of
                 . Gathering the grid point analyses forms the new

global analyses. Note that the the output of the LETKF are analysis
weights         and perturbation analysis matrices of weights        . These
weights multiply the ensemble forecasts.

   
xn,k

b = Mn xn!1,k
a( )

Xb = x1
b ! xb | ... | xK

b ! xb"# $%;

yi
b = H (xi

b ); Yn
b = y1

b ! yb | ... | yK
b ! yb"# $%

 
!Pa = K !1( )I + YbTR!1Yb"# $%

!1
;Wa = [(K !1) !Pa ]1/2

Xn
a = Xn

bWa + xb

    w
a = !PaYbT R!1(yo ! yb )

Wa

Globally:

  w
a Wa



The weights are determined at the end of the window…

But the weights are valid throughout the assimilation window!



No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF



No-cost LETKF smoother
tested on a QG model: it works…

“Smoother” reanalysis

LETKF Analysisxn
a = xn

f + Xn
fwn

a
LETKF analysis 

at time n

Smoother analysis 
at time n-1  !xn!1

a = xn!1
f + Xn!1

f wn
a

This very simple smoother allows us to go back
and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis



No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
 Outer loop (like in 4D-Var)
 “Running in place” (faster spin-up)
 Use of future data in reanalysis
 Ability to use longer windows: dealing with nonlinearity/non-Gaussianity



Nonlinearities and the Nonlinearities and the ““outer loopouter loop””

• A disadvantage of EnKF is that it cannot handle well
nonlinear (non-Gaussian) perturbations and therefore needs
short assimilation windows.

•• It doesnIt doesn’’t have the t have the outer loopouter loop  so important in 3D-Var andso important in 3D-Var and
4D-Var (DaSilva, pers. 4D-Var (DaSilva, pers. commcomm. 2006). 2006)

Lorenz -3 variable model (Kalnay et al. 2007a Tellus), RMS
analysis error

4D-Var  LETKF
Window=8 steps 0.31    0.30 (linear window)
Window=25 steps 0.53    0.66 (nonlinear window)

With long windows + Pires et al. => 4D-Var clearly wins!



Nonlinearities: Nonlinearities: ““Outer LoopOuter Loop””

Outer loop: similar to 4D-Var: use the final weights to
correct only the mean initial analysis, keeping the initial
perturbations. Repeat the analysis once or twice.
It re-centers the ensemble on a more accurate nonlinear
solution.

Lorenz -3 variable model RMS analysis error

4D-Var   LETKF LETKF LETKF
        +outer loop       +RIP

Window=8 steps 0.31     0.30 0.27
Window=25 steps 0.53     0.66 0.48



Nonlinearities,Nonlinearities,  ““Outer LoopOuter Loop”” and  and ““Running in PlaceRunning in Place””

“Running in place”: like the outer loop but smoothing both the
analysis and the analysis error covariance and iterating a
few times…

Lorenz -3 variable model RMS analysis error

4D-Var   LETKF LETKF LETKF
        +outer loop       +RIP

Window=8 steps 0.31     0.30 0.27  0.27
Window=25 steps 0.53     0.66 0.48  0.39



Running in Place: Accelerates spin-upRunning in Place: Accelerates spin-up

Spin-up depends on initial perturbations, but RIP works well even with random perturbations. It
becomes as fast as 4D-Var (blue). RIP takes only 2-6 iterations, and it turns off after spin-up.

LETKF

LETKF
With
RIP

4D-Var

3D-Var



Comparison of LETKF with 3D-Var: use PLETKF
instead of P3D-Var

 

LETKF is clearly better than 3D-Var



LETKF with P3D-Var diverges

 



Comparison of 3D-Var,
4D-Var and LETKF

 

4D-Var, 12hr window
LETKF, 12hr window
4D-Var, 24hr window

3D-Var, 12hr window



Consistent results: 3D-Var much worse,
LETKF slightly better than 4D-Var-12hr

and slightly worse than 4D-Var-24hr

 

 



Forecast/analysis errors (colors) and analysis correction
(contours) at the end of the assimilation window

 

3D-Var

LETKF

4D-Var-12hr

misses correcting the
“errors of the day”

very similar corrections of
the “errors of the day”



At the end of the assimilation window, the 4D-Var and LETKF
corrections are clearly very similar.

 

LETKF

4D-Var-12hr



At the end of the assimilation window, the 4D-Var and LETKF
corrections are clearly very similar.

What about at the beginning of the assimilation window?

 

LETKF

4D-Var-12hr

4D-Var is already a smoother, we know the initial corrections.
We can use the “no-cost” LETKF smoother to also obtain the
“initial” EnKF corrections.



Initial and final analysis corrections
(colors), with one BV (contours)

LETKF

4D-Var-12hr

Initial increments

Initial increments

Final increments

Final increments

LETKF

4D-Var-12hr



Summary
• Bred Vectors, like leading Lyapunov vectors are norm-

independent.
• Initial Singular Vectors depend on the norm.
• 4D-Var is a smoother: it provides an analysis throughout the

assimilation window.
• We can define a “No-cost” smoother for the LETKF.
• Applications: Outer Loop and “Running in Place”.
• Comparisons:4D-Var and LETKF better than 3D-Var.
• Analysis corrections in 3D-Var: missing errors of the day
• Analysis corrections in 4D-Var and LETKF are very similar at

the end of the assimilation window.
• Analysis corrections at the beginning of the assimilation

window look like bred vectors for the LETKF and like norm-
dependent leading singular vectors for 4D-Var.
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