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6.4 Ensemble forecasting: early studies 
 
 
 As we saw in previous sections, Lorenz (1963,1965) 
showed that the forecast skill of atmospheric models 
depends not only on the accuracy of the initial conditions 
and on the realism of the model, (as it was generally 
believed at the time), but also on the instabilities of the flow 
itself. He demonstrated that any nonlinear dynamical system 
with instabilities, like the atmosphere, has a finite limit of 
predictability. The growth of errors due to instabilities implies 
that the smallest imperfection in the forecast model or the 
tiniest error in the initial conditions, will inevitably lead to a 
total loss of skill in the weather forecasts after a finite 
forecast length. Lorenz estimated this period limiting weather 
predictability as about two weeks. With his simple model he 
also pointed out that predictability is strongly dependent on 
the evolution of the atmosphere itself: some days the 
forecasts can remain accurate for a week or longer, and on 
other days the forecast skill may break down after only 3 
days. This discovery made inevitable the realization that 
NWP needs to account for the stochastic nature of the 
evolution of the atmosphere (Fig. 6.9). As we saw in the 
previous section, Lorenz (1965) studied the error growth of a 
complete “ensemble” of perturbed forecasts, with the 
ensemble size equal to the dimension of the phase space 
(one perturbation for each of the 28 model variables). In this 
paper he introduced into the literature concepts related to 
singular vectors (SVs) and local Lyapunov vectors (LLVs) 
discussed in the previous section.  This was followed by 
several early approaches to the problem of accounting for 
the variable predictability of the atmosphere. 
 
Fig. 6.9: Schematic of ensemble prediction, with individual 
trajectories drawn for forecasts starting from a representative 
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set of perturbed initial conditions within a circle representing 
the uncertainty of the initial conditions (ideally the analysis 
error covariance) and ending within the range of possible 
solutions. For the shorter range, the forecasts are close to 
each other, and they may be considered deterministic, but 
beyond a certain time, the equally probable forecasts are so 
different that they must be considered stochastic. The 
transition time is of the order of 2-3 days for the prediction of 
large-scale flow, but can be as short as a few hours for 
mesoscale phenomena like the prediction of individual 
storms. The transition time is shorter for strongly nonlinear 
parameters: even for large-scale flow, precipitation forecasts 
show significant divergence faster than the 500 hPa fields. 
(Adapted from Tracton and Kalnay, 1993).   
 
 
 
 
 
 

time 

deterministic stochastic 
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6.4.1 Stochastic-dynamical forecasting (SDF) 
 
 Historically, the first forecasting method to explicitly 
acknowledge the uncertainty of atmospheric model 
predictions was developed by Epstein (1969), who 
introduced the idea of stochastic-dynamic forecasting 
(SDF). He derived a continuity equation for the probability 
density !( ; )X t of a model solution X of a dynamical model 
! ( ( ))X G X t= , where the model has dimension D: 

 

.( ) 0
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       (4.1) 

 
This equation indicates that in an ensemble of forecast 
solutions, "no member of the ensemble may be created or 
destroyed". An ensemble starting from an infinite number of 
perturbed integrations spanning the analysis uncertainty 
gives the "true" probability distribution (with all its moments), 
but even for a simple low order model, the integration of 
(4.1) is far too expensive. Therefore Epstein introduced an 
approximation to predict only the first and second moments 
of the probability distribution (expected means and 
covariances) rather than the full probability distribution. 
Epstein assumed that the model equations are of the form   
 

,

i ijk j k ij j i

j k j

x a x x b x c= ! +" "! ,     (4.2)

,  
 
The forecast equations for the expected first and second 
moments are given by  
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The covariances ij
!  are related to the second order 

moments by [( )( )]ij i i j jE x x! µ µ= " " . Replacing (4.2) into 
(4.3) gives rise to forecast equations for µ! and !!  that 
contain triple moments ( )i j kx x x . As done in turbulence 
models with a second order closure for the triple products 
(Chapter 4), Epstein introduced a closure assumption for the 
third order moments around the 
mean [( )( )( )]ijk i i j j k kE x x x! µ µ µ= " " " . He assumed 

that 0jkl ikl ikl jkl

kl

a a! !+ =" , which then gives a closed set of 

equations for the means and covariances: 
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 (4.4) 
 
Epstein tested these "approximate" stochastic equations for 
a Lorenz 3-variable model. The "true" probability distribution 
was computed from a Monte Carlo ensemble of 500 
members, and the comparison indicated good agreement, at 
least for several simulated days. Note that in his case, the 
number of ensemble members was much larger than the 
number of degrees of freedom of the model, a situation that 
would be impossible to replicate with current models with 
millions of degrees of freedom. In his paper, Epstein also 
introduced the idea of using stochastic-dynamical 
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forecasting in the analysis cycle, with the background 
forecast and error covariance provided by stochastic-
dynamical forecasts combined with observations that also 
contain errors (cf. Chapter 5, sections 3-5). 
 
 Unfortunately, although the SDF method was 
introduced as a shortcut to an "infinite" Monte Carlo 
ensemble, in a model with N degrees of freedom, it requires 
N(N+1)/2+N forecast equations, equivalent to making about 
(N+3)/2 model forecasts. Although this was practical with a 3 
variable model, it is completely unfeasible for a modern 
model, with millions of degrees of freedom. 
 
6.4.2 Monte Carlo forecasting (MCF) 
 
 In 1978, Leith proposed the idea of performing 
ensemble forecasting with a limited number m of ensemble 
members instead of the conventional single (deterministic) 
control forecast. He also proposed performing an "optimal 
estimation" of the verification using linear regression on the 
dynamical forecasts, with optimal weights determined from 
forecast error covariances (cf. Chapter 5, sections 3-5). 
Since forecasts lose their skill at longer lead times, and 
individual forecasts eventually are further away from the 
verification than the climatology (cf. eqs. (4.5) and (4.6)), 
optimal estimation of the verification is equivalent to 
tempering (i.e., hedging the forecast towards climatology). 
 
 He cast his analysis using, instead of model variables, 
their deviation  u  with respect to climatology (also known as 
forecast anomalies). The true state of the atmosphere is 
denoted uo, and û  denotes an unbiased estimate of 0

u , 
whose expected value (average over many forecasts, 
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represented by the square brackets) is equal to zero: 
< >=!u 0 .  
 

We can compute the expected error covariance of a 
climatological forecast (i.e., a forecast of zero anomaly): 
 

(0 )(0 )
TT

o o o o
< ! ! >=< >=u u u u U .   
 (4.5) 
 
 A single (deterministic) forecast û , on the other hand, 
has, on the average, an error covariance given by 
 

ˆ ˆ ˆ ˆ ˆ ˆ( )( ) 2
T TT T T

o o o o o o

t!"

< # # >=< + # # >!u u u u uu u u uu u u U

 (4.6) 
 

This limit occurs because the last two terms in the 
brackets go to zero as the forecasts become decorrelated 
with the true atmosphere at long lead times, and we assume 
that the model covariance is also unbiased. This indicates 
that for long lead times an individual deterministic forecast 
has twice the error covariance than a climatological forecast. 
Therefore, a "regressed" forecast, tempered towards 
climatology, must be better than a single deterministic 
forecast (in a least square error sense), with an error 

covariance that asymptotes to U , and not 2U .  
 
A regressed forecast ˆ ˆ

o
=u uA is obtained by linear 

regression, minimizing the square of the regressed error 
ˆ ˆ( ) ( )T T

o o
! ! =< " " >u uA u uA  with respect to the 
elements of the matrix of constant regression coefficients A.  
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As we did in the derivation of the optimal weight matrix for 
the observational increments in section 5.4, we make use of 
the linear regression formulas: if the linear prediction 

equation is ! =y xA , then the error is given by ! = "y xA . 
The matrix of the derivatives of the (scalar) squared error 
T

! !  with respect to each element of A  is given by 

2 ( ) 0
T

T! !"
= # # =

"
x y xA

A
, which gives the normal equation 

T T
=x y x xA , or 1( ) ( )T T!

=A x x x y . Applying this to the 

regressed forecast we obtain ˆ ˆ( ) 0T

o
< ! >=u u uA , or 

 
1

ˆ ˆ ˆ
T T

o

!
=< > < >A u u u u     (4.7) 

 
Estimating the required forecast statistics in (4.7) 

involves considerable work. The size of the regression 
matrix is usually large compared to the size of the sample 
available to estimate it, and in order to reduce the number of 
parameters to be estimated additional approximations are 
needed (e.g., by parameterizing error growth, Hoffman and 
Kalnay, 1983).  
 
 Now, let's consider instead of regression an ensemble 

of m forecasts computed from perturbations i
r  to the initial 

best estimate (analysis) !u . Ideally, the perturbations should 
be chosen so that their outer product is a good estimate of 
the initial error covariance (i.e., the analysis error 

covariance
T

a
< >=rr P , as suggested in the schematic Fig. 

6.9). In practice, however, the analysis error covariance can 
only be approximately estimated (e.g., Barkmeijer, 1998). 
 



Macintosh HD:Users:ekalnay:Documents:AOSC614-
DOCS:PPTClasses:ch6_4EnsembleEarly.docCreated on December 5, 2006 1:42 PM 

8 

 If 
1

1
m

i

im =

= !u u is the average of an ensemble of m 

forecasts, then its error covariance evolves like 
 

1
( )( ) ( (1 )

T TT T T
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  (4.8) 
 
since the last two terms in the brackets go to zero at long 
time leads, and the first one evolves like  

2

1 1

1 1
m m

TT

i j
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 Equation (4.8) shows that averaging a Monte Carlo 
ensemble of forecasts approximates the tempering of the 
forecasts towards climatology, without the need to perform 
regression. It suggests that such tempering may be 
substantially achieved with a relatively small number of 
ensemble members (compare (4.8) with (4.5) and (4.6)). 
Leith used an analytical turbulence model to test this 
hypothesis, and concluded that a Monte Carlo forecasting 
procedure represents a practical, computable approximation 
to the stochastic-dynamic forecasts proposed by Epstein 
(1969). He suggested that adequate accuracy would be 
obtained for the best estimate of the forecast (i.e., the 
ensemble mean) with sample sizes as small as 8, but that 
the estimation of forecast errors may require a larger number 
of ensemble members. MCF is thus a feasible approach for 
ensemble forecasting, requiring only a definition of the initial 
perturbations and m forecasts. 
 
6.4.3 Lagged Average Forecasting (LAF) 
 



Macintosh HD:Users:ekalnay:Documents:AOSC614-
DOCS:PPTClasses:ch6_4EnsembleEarly.docCreated on December 5, 2006 1:42 PM 

9 

 In 1983, Hoffman and Kalnay proposed Lagged 
Average Forecasting (LAF) as an alternative to Monte Carlo 
Forecasting (MCF), in which the forecasts initialized at the 
current initial time, t=0, as well as at previous times, 

, 2 ,... ( 1)t N! ! != " " " " are combined to form an 
ensemble (see schematic Fig. 6.10). In an operational set 
up, ! is typically 6, 12 or 24 hours, so that the forecasts are 
already available, and the perturbations are generated 
automatically from the forecast errors. Since the ensemble is 
comprised of forecasts of different "age", Hoffman and 
Kalnay (1983) weighted them according to their expected 
error, which they estimated by parameterizing the observed 
error covariance growth. They compared the LAF and MCF 
methods within a simulation system, using a primitive 
equations model as "nature", and a quasi-geostrophic model 
to perform the “forecasts”. In this way they allowed for model 
errors, unlike the previous "identical twin” experiments that 
assumed a perfect model.  They "observed" the required 
variables and introduced random "observation errors" every 
6 hours and performed many ensemble forecast 
experiments separated by 50 days of integration. They 
compared the results of single forecasts (ordinary dynamical 
forecasts, ODF), MCF, LAF and tempered ODF (tODF), as 
well as persistence-climatology forecast (the most skillful 
baseline forecast).  
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Fig. 6.10: Schematic time evolutions of Monte Carlo 
Forecasts (top) and Lagged Averaged Forecasts (bottom). 
The abscissa is forecast time t, and the ordinate is the value 
of a forecast variable X. The crosses represent analyses 
obtained at time intervals! , and the dots, randomly 
perturbed initial conditions; tf is a particular forecast time. 
The initial “perturbation” for the LAF is the previous 
forecasts’ error at the initial time. (Adapted from Hoffman 
and Kalnay, 1983). 
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 Hoffman and Kalnay looked at the error growth of 
individual forecasts (Fig. 6.11). Note in this figure that the 
individual forecast errors grow slowly and then at a certain 
time there is a rapid error growth until nonlinear saturation 
takes place (only the period of rapid growth is plotted). Note 
also that the forecast errors saturate around 2 of the 
climatological variability, as indicated by equation (4.6).  
 

In these simulated forecasts, like in real weather 
forecasts, the forecast skill exhibits a lot of day-to-day 
variability. The rapid growth takes place at a time that varies 
from a minimum of 5 days to a maximum of 20 days. 
Hoffman and Kalnay tested the ability of the ensemble to 
predict the time at which the forecast error crossed 50% of 
the climatological standard deviation. They used as predictor 
the spread of the ensembles (standard deviation with 
respect to their mean). They found that the LAF ensemble 
average forecast was only slightly better than the MCF, but 
the advantage of LAF in predicting forecast skill was much 
more apparent, with the correlation between predicted and 
observed time of crossing the 50% level being 0.68 for MCF 
and 0.79 for LAF. 
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Fig. 6.11: Time evolution of D, the individual forecast errors 
scaled by the climatological forecast error, plotted during the 
period the forecast error crossed D=0.5. Also forecasted are 
two measures of average forecast error. Adapted from 
Hoffman and Kalnay (1983).  
 

 
 
 
 
 
 
 
 The advantages of LAF with respect to MCF are 
probably due to the fact that LAF perturbations in the initial 
conditions were not randomly chosen errors like in MCF but 
included dynamical influences and therefore contained 
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"errors of the day". This is because the perturbations are 
generated from actual forecast errors and therefore they are 
influenced by the evolution of the underlying background 
large-scale flow. 
 
 LAF has been frequently used for experimental 
ensemble forecasting, both for medium range and climate 
prediction. However, the statistics required to estimate the 
weights of the members of the LAF ensemble according to 
their “age” are very hard to obtain, so that except for the 
study by Dalcher et al (1986), all the LAF members have 
been generally given equal weight. The advantages of LAF 
are a) some of the forecasts are already available in 
operational centers; b) it is very simple to perform and does 
not require special generation of perturbations; and c) the 
perturbations contain "errors of the day" (Lyapunov vectors). 
LAF has also major disadvantages: a) a large LAF ensemble 
would have to include excessively “old” forecasts; b) without 
the use of optimal weights, the LAF ensemble average may 
be tainted by the older forecasts. 
 
 Ebisuzaki and Kalnay (1991) introduced a variant of 
LAF denoted Scaled Lagged Average Forecasting (SLAF) 
which reduces these two disadvantages. The perturbations 
are obtained computing the forecast error of forecasts 
started at , 1,..., 1t j j N!= " = " , and multiplying these errors 
by 1/ j± .  This assumes that the errors grow approximately 
linearly with time during the first 2-3 days, and that the 
perturbations can be subtracted from and not just added to 
the analysis. The advantages of SLAF are a) the initial 
perturbations of the ensemble members are all of 
approximately the same size (this can be enforced using a 
more sophisticated rescaling than linear growth), and b) their 
number is doubled with respect to LAF, so that only shorter-
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range forecasts are needed to create SLAF. In practice, it 
has been observed that pairs of initial perturbations with 
opposite sign, as done in SLAF, yield better ensemble 
forecasts, presumably because the Lyapunov vectors within 
the analysis errors can have either sign, whereas LAF tends 
to maintain a single sign in the error. Experiments with the 
NCEP global model showed that SLAF ensembles were 
better than LAF ensembles (Ebisuzaki and Kalnay, 1991). 
This method is also easier to implement in regional 
ensemble forecasts, since it generates boundary condition 
perturbations consistent with the interior perturbations (Hou 
et al, 2001). 
 


