Model Output Statistics (MOS) - Objective Interpretation of NWP Model Output

University of Maryland – March 13, 2013

Mark S. Antolik
Meteorological Development Laboratory
Statistical Modeling Branch
NOAA/National Weather Service
Silver Spring, MD

MOS Operational System "Fun Facts"

With apologies to David Letterman, of course!

- 9 million regression equations
- 75 million forecasts per day
- 1200 products sent daily
- 400,000 lines of code mostly FORTRAN
- 180 min. supercomputer time daily
- All developed and maintained by ~
 MDL / SMB meteorologists!

OUTLINE

- 1. Why objective statistical guidance?
- 2. What is MOS?

Definition and characteristics
The "traditional" MOS product suite (GFS, NAM)
Other additions to the lineup

- 3. Simple regression examples / REEP
- 4. Development strategy MOS in the "real world"
- 5. Verification
- 6. Dealing with NWP model changes
- 7. Where we're going GMOS and the future

WHY STATISTICAL GUIDANCE?

- Add value to direct NWP model output
 Objectively interpret model
 - remove systematic biases
 - quantify uncertainty
 Predict what the model does not
 Produce site-specific forecasts
 (i.e. a "downscaling" technique)
- Assist forecasters
 "First Guess" for expected local conditions
 "Built-in" model/climo memory for new staff

A SIMPLE STATISTICAL MODEL

Relative Frequency of Precipitation as a Function of 12-24 Hour Model-Forecast Mean RH

MOS Max Temp vs. Direct Model Output

What is MOS?

Relates observed weather elements (PREDICTANDS) to appropriate variables (PREDICTORS) via a statistical approach

Predictors are obtained from:

- 1. Numerical Weather Prediction (NWP) Model Forecasts
- 2. Prior Surface Weather Observations
- 3. Geoclimatic Information

Current Statistical Method:

MULTIPLE LINEAR REGRESSION (Forward Selection)

Properties

- Mathematically simple, yet powerful
- Need historical record of observations at forecast points (Hopefully a long, stable one!)
- Equations are applied to future run of similar forecast model

Properties (cont.)

- Non-linearity can be modeled by using NWP variables and transformations
- Probability forecasts possible from a single run of NWP model
- Other statistical methods can be used e.g. Polynomial or logistic regression; Neural networks

ADVANTAGES

Recognition of model predictability
Removal of some systematic model bias
Optimal predictor selection
Reliable probabilities
Specific element and site forecasts

DISADVANTAGES

Short samples
Changing NWP models
Availability & quality of observations

MAJOR CHALLENGE TO MOS DEVELOPMENT:

RAPIDLY EVOLVING NWP MODELS AND OBSERVATION PLATFORMS

Can make for:

- 1. SHORT, UNREPRESENTATIVE DATA SAMPLES
- 2. DIFFICULT COLLECTION OF APPROPRIATE PREDICTAND DATA

New observing systems: (ASOS, WSR-88D, Satellite)

(Co-Op, Mesonets)

Same "old" predictands: The elements don't change!

"Traditional" MOS text products

GFS MOS GUIDANCE MESSAGE FOUS21-26 (MAV)

KLNS GFS MOS GUIDANCE							11/29/2004				1200 UTC										
DT /NOV 29/NOV 3					30			/D				EC	1						/DE	2	
HR	18	21	00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21	00	06	12
N/X							28				48				35				49		33
TMP	43	44	39	36	33	32	31	39	46	45	41	38	37	39	41	44	45	44	40	40	35
DPT	27	27	28	29	29	29	29	33	35	35	36	35	36	39	41	42	37	34	30	30	28
CLD	CL	BK	ВK	вĸ	ov	ov	ov	ov	ov	ov	ov	ov	ov	ov	ov	ov	ov	BK	CL	CL	CL
WDR	34	36	00	00	00	00	00	00	00	14	12	12	10	11	12	19	28	29	29	29	28
WSP	06	02	00	00	00	00	00	00	00	01	02	04	04	06	07	08	15	17	18	09	05
P06			0		0		4		3		11		65		94		96		7	0	0
P12							6				19				94				96		0
Q06			0		0		0		0		0		3		4		4		0	0	0
Q12							0				0				4				2		0
T 06		0/	0	0,	18	0/	3	0/	0	0/	0	0,	18	2,	/ 1	10,	/ 4	0/	3	1,	0
T12				0,	0/26			0/17				0,	/27			10,	/25		1/38		
POZ	2	0	0	1	2	4	4	0	1	1	2	3	3	1	1	0	2	1	2	3	1
POS	13	2	1	2	1	0	0	0	0	0	0	0	0	2	0	0	0	3	0	9	28
TYP	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
SNW							0								0						0
CIG	8	8	8	8	7	7	7	8	8	7	7	7	4	2	3	3	6	7	8	8	8
VIS	7	7	7	7	7	7	7	7	7	7	7	7	5	5	4	2	6	7	7	7	7
OBV	N	N	N	N	N	N	N	N	N	N	N	N	BR	BR	BR	BR	N	N	N	N	N

NAM MOS GUIDANCE MESSAGE FOUS44-49 (MET)

KBWI	KBWI NAM MOS GUIDANCE							2/27/2009				1200 UTC									
DT /FEB 27/FEB 28								/M2				AR 1							/M2	2	
HR	18	21	00	03	06	09	12	15	18	21	00	03	06	09	12	15	18	21	00	06	12
N/X							38				46				32				41		24
TMP	59	58	55	54	49	43	38	38	43	45	40	38	37	35	33	34	37	38	33	29	25
DPT	46	47	48	46	37	30	24	22	22	22	24	27	28	26	25	24	24	21	17	12	10
CLD	ov	ov	ov	ov	OV	sc	sc	SC	CL	BK	OV	ov	OV	ov	ov	ov	OV	ov	OV	ov	BK
WDR	21	20	22	25	31	32	34	36	01	03	05	04	01	36	35	35	35	34	35	33	34
WSP	15	09	80	06	10	11	10	12	10	09	80	10	12	13	14	16	11	13	15	16	17
P06			89		10		3		2		2		76		73		13		17	27	19
P12							10				3				81				17		30
Q06			1		0		0		0		0		4		1		0		0	0	0
Q12							0				0				4				0		0
T 06		2/	9	0,	/ 5	0	/0	0/	5	3/	1	5,	/ 3	0,	0	0/	2	2/	['] 5	0/	0
T12				2,	9			0/	5			5,	/ 3			1/	2		7/	5	
SNW							0								0						0
CIG	6	6	4	5	7	8	8	8	8	8	7	6	4	3	4	3	4	4	7	6	7
VIS	7	7	6	7	7	7	7	7	7	7	7	7	3	6	5	7	7	7	7	7	7
OBV	N	N	N	N	N	N	N	N	N	N	N	N	BR	N	BR	N	N	N	N	N	N

Short-range (GFS / NAM) MOS

STATIONS:

Now at approx. 1990 Forecast Sites (CONUS, AK, HI, PR, Canada)

Short-range (GFS / NAM) MOS

STATIONS:

Now at approx. 1990 Forecast Sites (CONUS, AK, HI, PR)

• FORECASTS:

Available at projections of 6-84 hours GFS available for 0600 and 1800 UTC cycles

RESOLUTION:

GFS predictors on 95.25 km grid; NAM on 32 km Predictor fields available at 3-h timesteps

DEPENDENT SAMPLE NOT "IDEAL":

Fewer seasons than older MOS systems Non-static underlying NWP model

GFSX MOS GUIDANCE MESSAGE FEUS21-26 (MEX)

```
KCXY
        GFSX MOS GUIDANCE 11/26/2004
                                            0000 UTC
                        721 84
                                  96|108 120|132 144|156 168|180 192
               481
                    60
FHR
                    SUN 28 | MON 29 | TUE 30 | WED 01 | THU 02 | FRI 03 CLIMO
FRI
                                                              42| 30
X/N
      43| 29
               471
                    40
                        551 35
                                  51 | 29
                                           451 32
                                                     401 36
                                                                        45 31 46
      371 32
               431
                        461
                             37
                                  41 | 32
                                           391 35
                                                    361
                                                         38
                                                              371 33
                                                                        37
                   43
TMP
                        321 28
                                  281 26
                                                                        25
      241 27
               371 40
                                           31 | 32
                                                     301
                                                         32
                                                              271 24
DPT
      PCI OV
                       PC| CL
                                 PC | PC
                                                              CLI CL
CLD
               OVI OV
                                           OVI OV
                                                     OV | PC
                                                                        CL
                        161 10
                                  101
                                            91
                                                     10 | 12
                                                              14 | 12
                                                                        12
WND
      101
           5
               11 | 11
                                       5
P12
               13| 91
                                           24 | 52
       01
           5
                        13 I
                             3
                                  9| 14
                                                     541
                                                         48
                                                              21 | 12
                                                                        25 20
                                                                              18
P24
               161
                       1001
                                   91
                                           261
                                                     62 I
                                                              721
                                                                        25
                                                                               29
012
      01
           0
                01
                     3
                          01
                              0
                                   01
                                             01
                                                 2
                                                      21
                                                           2
                                        0
024
                01
                          31
                                   01
                                             01
                                                      4 |
T12
       01
                01
                     3
                          01
                              0
                                   01
                                             41
                                                      41
                                                           3
                                                               11
                                                                         1
           0
                                        0
                                                 6
T24
                     3
                              0
                                        0
                                                 6
                                                           4
     12|
PZP
           9
               121
                     4
                          31
                              5
                                   61
                                      10
                                             81
                                                 8
                                                      31
                                                         16
                                                              101
                                                                   12
                                                                         8
PSN
      62 | 15
                31
                     0
                          01 10
                                   91 15
                                           24|
                                                 1
                                                      01
                                                           9
                                                              321 27
                                                                        18
PRS
      261 24
                71
                        171 18
                                  201 13
                                           15I
                                                 1
                                                      21 18
                                                               91 11
                                                                        11
TYP
       S| RS
                RI
                         RI
                              R
                                   RI
                                        R
                                           RS |
                                                              RSI RS
                                                      RI
                     R
                                                 \mathbf{R}
                                                           \mathbf{R}
                                                                         \mathbf{R}
SNW
                01
                          01
                                   01
                                             01
```

MOS station-oriented products: Other additions

Marine MOS

```
GFS MOS GUIDANCE 11/22/2005 1200 UTC
44004
\mathbf{DT}
    /NOV 22/NOV 23
                                    /NOV 24
                                                             /NOV 25
     18 21 00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00 03 06
HR
     58 53 49 49 50 48 46 44 44 45 47 48 51 54 56 60 62 61 59 51 47
TMP
     23 25 27 28 28 29 29 28 28 27 27 25 22 22 22 23 23 23 24 27 28
WD
     33 31 29 25 23 22 24 25 23 18 14 12 14 19 26 29 30 29 29 28 24
WS
WS10 36 34 31 26 25 24 26 27 25 19 15 13 15 21 28 31 32 31 31 30 26
    /NOV 25
DT
     09 12 15 18 21 00
HR
    45 45 45 47 47 47
TMP
     29 29 28 30 29 34
WD
     18 15 10 10 13 12
WS
WS10 20 16 11 11 14 13
                                                    Marine MOS sites
                                                  Standard MOS sites
```

Max/Min Guidance for Co-op Sites

```
GFS-BASED MOS COOP MAX/MIN GUIDANCE
                                      3/01/05 1800 UTC
              021
                  THU 03| FRI 04
         WED
         26
              461
                  24
                      451
ANNM2
                          25
                               46
                      39| 25
                               43
BERM2
         28
              411
                  25
                                           Beltsville, MD
BTVM2
         23
             391
                  21
                      381 20
                               43
              401
                      39 | 20 | 46
CBLM2
         20
                  18
             421
                               44
CHEM2
         25
                  21
                      39| 21
         21
             421
                  21
                      40 | 20
                               45
CNWM2
DMAM2
         20
                      37 | 20
                               42
             37 | 18
ELCM2
              41|
                  21
                      41 | 18
                               45
         25
EMMM2
         23
             42|
                  20
                      41 | 20
                               43
             46| 21
                               44
FREM2
         23
                      42 | 23
FRSM2
         17
             27 | 13
                      271 13
                               36
                                           Glenn Dale, MD
GLDM2
         21
             37| 18
                      39| 18
                               43
HAGM2
         23
              43| 18
                      43| 19
                               45
KAPG
         27
              411
                  23
                      371 22
                               43
LRLM2
                      42 | 22
                               46
         23
              44|
                  21
                                           Laurel 3 W
MECM2
             471 20
                      421 20
                               45
         24
MILM2
         25
              481 22
                      41 | 20
                               39
MLLM2
         22
              39| 18
                      371 18
                               41
OLDM2
         18
              31 | 13
                      28 | 12
                               35
OXNM2
         23
                      40 | 23
                               48
              42 | 22
PRAM2
         22
              49 | 22
                               45
                      45 | 18
```

Western Pacific MOS Guidance

Application of Linear Regression to MOS Development

JANUARY 1 - JANUARY 30, 1994 0000 UTC

18-H NWP MODEL 850-1000 MB THICKNESS (M)

JANUARY 1 - JANUARY 30, 1994 0000 UTC KCMH

18-H NWP MODEL 850-1000 MB THICKNESS (M)

REDUCTION OF VARIANCE

A measure of the "goodness" of fit and Predictor / Predictand correlation

JANUARY 1 - JANUARY 30, 1994 0000 UTC

18-H NWP MODEL 850-1000 MB THICKNESS (M)

DECEMBER 1 1993 - MARCH 5 1994 0000 UTC KCMH

DECEMBER 1 1993 - MARCH 5 1994 0000 UTC KCMH

DECEMBER 1 1993 - MARCH 5 1994 0000 UTC KCMH

DECEMBER 1 1993 - MARCH 5 1994 0000 UTC

EXAMPLE REGRESSION EQUATIONS

$$Y = a + bX$$

CMH MAX TEMPERATURE EQUATION

MAX T = $-352 + (0.3 \times 850 - 1000 \text{ mb THICKNESS})$

CMH PROBABILITY OF PRECIPITATION EQUATION

POP = -0.234 + (0.007 x MEAN RH) + (0.478 x BINARY MEAN RH CUTOFF AT 70%)*

*(IF MRH ≥ 70% BINARY MRH = 1; else BINARY MRH = 0)

If the predictand is BINARY, MOS regression equations produce estimates of event PROBABILITIES...

Making a PROBABILISTIC statement...

Quantifies the uncertainty!

DEFINITION of PROBABILITY

(Wilks, 2006)

The degree of belief, or *quantified judgment*, about the occurrence of an uncertain event.

OR

The long-term relative frequency of an event.

PROBABILITY FORECASTS

Some things to keep in mind

Assessment of probability is **EXTREMELY** dependent upon how predictand "event" is defined:

- -Time period of consideration
- -Area of occurrence
- -Dependent upon another event?

MOS forecasts can be:

- POINT PROBABILITIES
- AREAL PROBABILITIES
- CONDITIONAL PROBABILITIES

AREAL PROBABILITIES

3H Eta MOS thunderstorm probability forecasts valid 0000 UTC 8/27/2002 (21-24h proj)

40-km gridbox 10% contour interval

20-km gridbox 10% contour interval

PROPERTIES OF MOS PROBABILITY FORECASTS

- Unbiased
 Average forecast probability equals long-term relative frequency of event
- Reliable
 Conditionally or "Piecewise" unbiased
 over entire range of forecast probabilities
- Reflect predictability of event
 Range narrows and approaches event RF as NWP model skill declines
 - extreme forecast projection
 - rare events

Reliable Probabilities...

Even for rare events

Designing an Operational MOS System:

Putting theory into practice...

DEVELOPMENTAL CONSIDERATIONS

MOS in the real world

Selection (and QC!) of Suitable
 Observational Datasets
 ASOS? Remote sensor? Which mesonet?

Suitable observations?

Good siting?

Real or Memorex?

MOS Snowfall Guidance

Uses Observations from Cooperative Observer Network

36-hr forecast 12Z 12/05/03 – 12Z 12/06/03

Verification

DEVELOPMENTAL CONSIDERATIONS

MOS in the real world

- Selection (and QC!) of Suitable
 Observational Datasets
 ASOS? Remote sensor? Which mesonet?
- Predictand Definition Must be precise !!

PREDICTAND DEFINITION

Max/Min and PoP

Daytime Maximum Temperature "Daytime" is 0700 AM - 0700 PM LST *

Nighttime Minimum Temperature
"Nighttime" is 0700 PM - 0800 AM LST *

* CONUS – differs in AK

Probability of Precipitation

Precipitation occurrence is accumulation of ≥ 0.01 inches of liquid-equivalent at a gauge location within a specified period

PREDICTAND DEFINITION

GFSX 12-h Average Cloud Amount

- Determined from 13 consecutive hourly ASOS observations, satellite augmented
- Assign value to each METAR report:

```
CLR; FEW; SCT; BKN; OVC 0; 0.15; 0.38; 0.69; 1
```

- Take weighted average of above
- Categorize:
 CL < .3125 ≤ PC ≤ .6875 < OV

Creating a Gridded Predictand

Lightning strikes are summed over the "appropriate" time period and assigned to the center of "appropriate" grid boxes

A thunderstorm is deemed to have occurred when one or more lightning strikes are observed within a given gridbox:

= thunderstorm

= no thunderstorm

DEVELOPMENTAL CONSIDERATIONS

MOS in the real world

- Selection (and QC!) of Suitable
 Observational Datasets
 ASOS? Remote sensor? Which mesonet?
- Predictand Definition Must be precise !!
- Choice of Predictors
 "Appropriate" formulation
 Binary or other transform?

"APPROPRIATE" PREDICTORS

DESCRIBE PHYSICAL PROCESSES ASSOCIATED WITH OCCURRENCE OF PREDICTAND

i.e. for POP:

PRECIPITABLE WATER
VERTICAL VELOCITY
MOISTURE DIVERGENCE
MODEL PRECIPITATION

"MIMIC" FORECASTER THOUGHT PROCESS (VERTICAL VELOCITY) X (MEAN RH)

POINT BINARY PREDICTOR

24-H MEAN RH CUTOFF = 70%

INTERPOLATE; STATION RH ≥ 70%, BINARY = 1

BINARY = 0 OTHERWISE

96 86 89 94

 87
 73
 76
 90

(71%) KCMF

 76
 60
 69
 92

64 54 68 <mark>93</mark>

RH ≥70%; BINARY AT KCMH = 1

GRID BINARY PREDICTOR

24 H MEAN RH CUTOFF = 70% WHERE RH ≥ 70%; GRIDPOINT = 1; INTERPOLATE

0 0 1

0 ≤ VALUE AT KCMH ≤ 1

Logit Transform Example

KPIA (Peoria, IL) 0000 UTC; 18-h projection

DEVELOPMENTAL CONSIDERATIONS

(cont.)

Terms in Equations; Selection Criteria

"REAL" REGRESSION EQUATIONS

MOS regression equations are MULTIVARIATE, of form:

$$Y = a_0 + a_1 X_1 + a_2 X_2 + ... + a_N X_N$$

Where,

the "a's" represent COEFFICIENTS the "X's" represent PREDICTOR variables

The maximum number of terms, N, can be **QUITE** large:

For GFS QPF, N = 15 For GFS VIS, N = 20

The **FORWARD SELECTION** procedure determines the predictors and the order in which they appear.

FORWARD SELECTION

- METHOD OF PREDICTOR SELECTION

 ACCORDING TO CORRELATION WITH

 PREDICTAND
- "BEST" OR STATISTICALLY MOST IMPORTANT PREDICTORS CHOSEN FIRST
- FIRST predictor selected accounts for greatest reduction of variance (RV)
- Subsequent predictors chosen that give greatest RV in conjunction with predictors already selected
- STOP selection when desired maximum number of terms is reached or new predictors provide less than a user-specified minimum RV

DEVELOPMENTAL CONSIDERATIONS

(cont.)

- Terms in Equations; Selection Criteria
- Dependent Data
 Sample Size, Stability, Representativeness
 AVOID OVERFIT !!

Stratification - Seasons Pooling - Regions

MOS LINEAR REGRESSION

OCTOBER 1 1993 - MARCH 31 1994 0000 UTC

12-24 H NWP MODEL PRECIPITATION AMOUNT (IN.)

GFS MOS Cool Season PoP/QPF Regions

With GFS MOS forecast sites (1720) + PRISM

DEVELOPMENTAL CONSIDERATIONS

(cont.)

- Terms in Equations; Selection Criteria
- Dependent Data
 Sample Size, Stability, Representativeness
 AVOID OVERFIT !!

Stratification - Seasons Pooling - Regions

Categorical Forecasts?

MOS BEST CATEGORY SELECTION

KDCA 12-Hour QPF Probabilities

48-Hour Projection valid 1200 UTC 10/31/93

How well do we do?

MOS Verification

Temperature Verification - 0000 UTC GFS MOS vs. GFS DMO (10/2011 - 3/2012)

MOS Temperature Verification - 0000 UTC 2010 Warm Season (4/2010 – 9/2010)

MOS Temperature Verification - 0000 UTC 2012 Warm Season (4/2010 – 9/2010)

MOS Temperature Bias - 0000 UTC 2012 warm season (4/2012 – 9/2012)

MOS Temperature Bias - 0000 UTC 10/06; 01/07; 03/08

6h PoP Verification - 0000 UTC 2012-13 Cool Season (10/12 – 01/13)

GFSX 12-h Forecast Skill - 0000 UTC Max Temperatures and PoP

% Improvement over Climate Cool Season 1997 - 2003

Max T PoP

45-yr Max Temperature Verification

Guidance / WFO; Cool Season 1966 - 2010

Dealing with NWP model changes

Mitigating the effects on development

To help reduce the impact of model changes and small sample size, we rely upon...

- 1. Improved model realism better model = better statistical system
- 2. Coarse, consistent archive grid smoothing of fine-scale detail constant mesh length for grid-sensitive calculations
- 3. Enlarged geographic regions larger data pools help to stabilize equations
- 4. Use of "robust" predictor variables fewer boundary layer variables variables likely immune to known model changes; (e.g. combinations of state variables only)

Parallel evaluation
Run MOS...new vs. old NWP model
Assess impacts on MOS skill

GFS: Hybrid EnKF parallel evaluation

Parallel evaluation
Run MOS...new vs. old NWP model
Assess impacts on MOS skill

OK if impacts are minimal
But, often they aren't! (GFS wind / temps)

2009 - 2011 GFS MOS Wind Bias

Wind Speed Bias for KABQ July - Sept. 2010 (00Z Cycle)

Forecast Projection

Parallel evaluation
Run MOS...new vs. old NWP model
Assess impacts on MOS skill

OK if impacts are minimal
But, often they aren't! (GFS wind / temps)

OK, now what?

- Model changes may be recent

 i.e. limited sample available from newest version
- Error characteristics significantly different
- Undesirable effects on MOS performance

Bias Correction for MOS?

Daily Bias Correction

based on past N (7, 10, 20 or 30)- day forecast errors

F = Forecasts; O = Observations N = Days in training sample (typically, N = 7, 10, 20, or 30)

Daily biases can be treated equally or weighted to favor most recent days, etc.

Raw / Corrected GFS MOS Wind MAE

KABQ – 00UTC, 96-h Projection

Raw / Corrected GFS MOS Temp MAE

Southwest U.S. - 00UTC, 48-h Projection

- Bias Correction for MOS?

 Apply to Temps? Winds?

 Run continuously in background?

 Satisfactory in rapidly-varying conditions?
- Redevelop?

Short sample from new model or "mixed"? Full System, selected elements?

Biggest impacts on single-station equations (Temp, Wind)

GFS MOS Wind Verification Results* 5/10/2011 – 9/30/2011

MAE

Bias

- Bias Correction for MOS?

 Apply to Temps? Winds?

 Run continuously in background?

 Satisfactory in rapidly-varying conditions?
- Redevelop?
 Short sample from new model or "mixed"?
 Full System, selected elements?
 Biggest impacts on single-station equations (Temp, Wind)
- Reforecasts?
 1-2 year sample probably sufficient for T, Wind Rare elements need longer or "mixed" sample? Requires additional supercomputer resources

Four recent examples

- GFS/GFSX MOS Wind replacement (6/2012)
 Fix errors introduced by 5/2011 GFS roughness
 length change (2-season sample)
- NAM MOS T/T_d /Max-Min refresh (pending)
 NMM-b implementation (12/2011); SW US cool bias fix
- GFS MOS full-system update (3/2010)
 Correct accumulated drift from several minor model changes
- *NAM MOS (12/2008)

 Respond to Eta/NMM transition

 "Mixed" samples except for sky, snow (Eta-based)

MOS: Today and Beyond

The Future of MOS

"Traditional" Station-oriented Products

GFS / GFSX MOS:

Update GFSX Sky Cover equations
(Completes 1200 UTC text message)
Make Day 10 GFSX elements available to public Update climate normals (1981-2010 NCDC)
Bias-corrected T, Td, Max/Min?

NAM MOS:

Add precipitation type suite (TYP, POZ, POS) Add 0600 and 1800 UTC cycles? Update remaining eta-based elements Update temperature suite with NMM-b data

The Future of MOS

"Traditional" Station-oriented Products (contd.)

- Western Pacific MOS Add new elements (Sky Cover, CIG)
- "Consensus" MOS:
 Weights based on recent performance
 Blends GFS, NAM, ECMWF, Ensemble MOS
 Use Bayesian Model Averaging (BMA)
- General:

Evaluate impacts of NWP model changes Periodic addition of new CONUS sites New products utilizing station probabilities

End of an era?

WANTED! High-resolution, gridded guidance for NDFD

Gridded MOS

GFS-based CONUS-wide @ 2.5km

Max / Min PoP Temp / Td RH **Tstm** Winds **QPF Snowfall** Gusts **Sky Cover**

http://www.weather.gov/mdl/synop/ gridded/sectors/index.php

2.5-km vs. 5-km

2.5-km CONUS GMOS introduced Feb. 27, 2012

Alaska / Hawaii Gridded MOS

AK: GFS-based, 3-km grid

HI: GFS-based, 2.5-km grid

All CONUS elements

Max / Min PoP Temp / Td RH Winds Gusts

The Future of MOS

"Enhanced-Resolution" Gridded MOS Systems

"MOS at any point" (e.g. GMOS)
Support NWS digital forecast database
2.5 km - 5 km resolution
Equations valid away from observing sites
Emphasis on high-density surface networks
Use high-resolution geophysical data

Surface observation systems used in GMOS

- METAR
- Buoys/C-MAN
- Mesonet (RAWS/SNOTEL/Other)
- NOAA cooperative observer network
- RFC-supplied sites

Gridded MOS – Central CA

Geophysical Datasets

5-km Terrain

5-km Land Cover

Gridded MOS Concept - Step 1

"Blending" first guess and high-density station forecasts

First guess field from Generalized Operator Equation or other source

First guess + guidance at all available sites

Developing the "First Guess" Field

Some options

- Generalized operator equation (GOE)
 Pool observations regionally
 Develop equations for all elements, projections
 Apply equations at all grid points within region
- Use average field value at all stations
- Use other user-specified constant
- Use NWP model forecast

Gridded MOS Concept - Step 2

Add further detail to analysis with high-resolution geophysical data and "smart" interpolation

First guess + guidance at all available sites

First guess + station forecasts + terrain

GMOS Analysis

Basic Methodology (Glahn, et al. 2009, WaF)

- Method of successive corrections ("BCDG")
 Bergthorssen and Doos (1955); Cressman (1959);
 Glahn (1985, LAMP vertical adjustment)
- Elevation ("lapse rate") adjustment
 Inferred from forecasts at different elevations
 Calculations done "on the fly" from station data
 Can vary by specific element, synoptic situation
- Land/water gridpoints treated differently

GMOS Analysis

Other Features

- Special, terrain-following smoother
- ROI can be adjusted to account for variations in density of observed data
- Nudging can be performed to help preserve nearby station data
- Parameters can be adjusted individually for each weather element

GMOS Analysis

Some Issues

Not optimized for all weather elements and synoptic situations

Need situation specific, dynamic models?

May not capture localized variations in vertical structure

Vertical adjustment uses several station "neighbors"

May have problems in data-sparse regions over flat terrain

Defaults to pure Cressman analysis with small ROI Can result in some "bulls-eye" features

NDGD vs. NDFD

Which is "better"?

NDGD Max T NDFD Max T

NDGD vs. NDFD

Which is "better"?

NDGD RH NDFD RH

Fewer obs available to analysis = less detail in GMOS Forecasters adding detail: Which is "better"? More accurate?

AK GMOS Temps & Observing Sites

Even fewer obs available – Yikes!

"Enhanced-Resolution", Gridded MOS Systems

- "MOS at any point" (e.g. GMOS)
 Support NWS digital forecast database
 2.5 km 5 km resolution
 Equations valid away from observing sites
 Emphasis on high-density surface networks
 Use high-resolution geophysical data
- "True" gridded MOS
 Observations and forecasts valid on fine grid
 Use remotely-sensed predictand data
 e.g. WSR-88D QPE, Satellite clouds, NLDN

Gridded MOS: Where do we go from here?

Additions to current CONUS GMOS system
"Predominant" weather grid
NAM-based companion system (short-range)
Probabilistic and/or ensemble-based products

NAM gridded snow amount probability

NAM gridded snow amount probability

GFS/NAM MOS 24-h snow amount probabilities

KIAD 00 UTC, 3/06/13

Gridded MOS: Where do we go from here?

- Additions to current CONUS GMOS system "Predominant" weather grid NAM-based companion system (short-range) Probabilistic and/or ensemble-based products
- Expand GMOS for AK / HI; add other OCONUS AK: Increase grid extent; improve marine winds Hawaii: add QPF, Sky Cover Puerto Rico
- Improve GMOS interpolation procedures

Gridded MOS: Where do we go from here?

Increase utilization of mesonet data Investigate MADIS archive (NCO/TOC/ESRL) ~20,000 additional sites?

Incorporate remotely-sensed data where possible SCP augmented clouds / WSR-88D QPF (in use) NSSL MRMS (Multi-radar, Multi-sensor) dataset? New lightning datasets: Global, "Total" (CC & CG)

REFERENCES...the "classics"

Wilks, D.: Statistical Methods in the Atmospheric Sciences, 2nd Ed., Chap. 6, p. 179 - 254.

Draper, N.R., and H. Smith: Applied Regression Analysis, Chap. 6, p. 307 - 308.

Glahn, H.R., and D. Lowry, 1972: The use of model output statistics in objective weather forecasting, <u>JAM</u>, 11, 1203 - 1211.

Carter, G.M., et al., 1989: Statistical forecasts based on the NMC's NWP System, Wea. & Forecasting, 4, 401 - 412.

REFERENCES (GMOS)

Glahn, H.R., et al., 2009: The Gridding of MOS., Wea. & Forecasting, 24, 520 – 529.