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EOF
Both Q and Qa Diagonalized

(1) satisfied – 
Both αm and em orthogonal
αm (em) is eigenvector of Qa(Q)

EOT-normal
Q is diagonalized

Qa is not diagonalized
(1) is satisfied with αm orthogonal

EOT-alternative
Q is not diagonalized

Qa is diagonalized
(1) is satisfied with em orthogonal

Rotation

Laudable goal:
f(s,t)=∑ αm(t)em(s)   (1)

m            

iterationRotation

Matrix Q with elements:
qij=∑ f(si,t)f(sj,t)

t          

Matrix Qa with elements:
qij

a=∑f(s,ti)f(s,tj)
s         

Qa tells about Analogues

Q tells about Teleconnections

Fig.5.6: Summary of EOT/F procedures.
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Discrete Data set f(s,t)
1 ≤ t ≤ nt ; 1 ≤ s ≤ ns Arbitrary

state



EOF
Both Q and Qa Diagonalized

(1) satisfied – 
Both αm and em orthogonal
αm (em) is eigenvector of Qa(Q)

EOT-normal
Q is diagonalized

Qa is not diagonalized
(1) is satisfied with αm orthogonal

EOT-alternative
Q is not diagonalized

Qa is diagonalized
(1) is satisfied with em orthogonal

Rotation

Arbitrary
state

Laudable goal:
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Matrix Q with elements:
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Q tells about Teleconnections

Fig.5.6: Summary of EOT/F procedures.

Discrete Data set f(s,t)
1 ≤ t ≤ nt ; 1 ≤ s ≤ ns

Iteration (as per power method)

iteration



Fig. 4.3 EV(i),the variance
explained by single gridpoints
in % of the total variance,
using equation 4.3. In the
upper left for raw data, in the
upper right after removal of
the first EOT mode, lower left
after removal of the first two
modes. Contours every 4%.
The timeseries shown are the
residual height anomaly at the
gridpoint that explains the
most of the remaining domain
integrated variance.



Fig.4.4 Display of  four leading EOT
for seasonal (JFM) mean 500 mb
height. Shown are the regression
coefficient between the height at the
basepoint and the height at all other
gridpoints (maps) and the timeseries of
residual 500mb height anomaly
(geopotential meters) at the basepoints.
In the upper left for raw data, in the
upper right after removal of the first
EOT mode, lower left after removal of
the first two modes. Contours every
0.2, starting contours +/- 0.1. Data
source: NCEP Global Reanalysis.
Period 1948-2005. Domain 20N-90N



Fig.5.4 Display of  four leading
alternative EOT for seasonal
(JFM) mean 500 mb height.

Shown are the regression
coefficient between the basepoint

in time (1989 etc) and all other
years (timeseries) and the maps

of 500mb height anomaly
(geopotential meters) observed in
1989, 1955 etc . In the upper left
for raw data, in the upper right
after removal of the first EOT

mode, lower left after removal of
the first two modes. A

postprocessing is applied, see
Appendix I, such that the

physical units (gpm) are in the
time series, and the maps have
norm=1. Contours every 0.2,
starting contours +/- 0.1. Data

source: NCEP Global Reanalysis.
Period 1948-2005. Domain 20N-

90N
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Fig 5.7. Explained Variance (EV) as a function of mode (m=1,25) for seasonal mean (JFM)
Z500, 20N-90N, 1948-2005. Shown are both EV(m) (scale on the left, triangles) and

cumulative EV(m) (scale on the right, squares). Red lines are for EOF, and blue and green
for EOT and alternative EOT respectively.



Laudable goals:
f(s,t) = ∑ αm(t)em(s)   (1)

m            
g(s,t +τ) =  ∑ βm(t +τ)dm(s)   (2)

m
constrained by a connection between 

α and β and/or e and d.

Cross Cov Matrix Cfgwith elements:
cij=    ∑ f(si,t)g(sj,t+ τ)/nt

t          

Fig.x.y: Summary of EOT2 procedures.

Discrete Data set f(s,t)
1 ≤ t ≤ nt ; 1 ≤ s ≤ ns

Discrete Data set g(s,t +τ)
1 ≤ t ≤ nt ; 1 ≤ s ≤ n’s

Alt Cross Cov Matrix Ca
fgwith elements:

ca
ij=    ∑ f(s,ti)g(s,tj+ τ)/ns

s          

EOT2-alternative
(1) and (2) satisfied

em and dm orthogonal
αm and βm heterogeneously orthogonal 

Ca
ff (τ=0), Ca

gg(τ=0) and Ca
fg diagonalized

Two time series, one map. 

EOT2
(1) and (2) satisfied

αm and βm orthogonal (homo-and-heterogeneous
Cff (τ=0), Cgg(τ=0) and Cfg diagonalized

One time series, two maps. 

CCA
Very close to EOT2, but

two, maximally correlated, time series.

SVD
Somewhat like EOT2a, but

two maps, and 
(heterogeneously) orthogonal time series.



Laudable goals:
f(s,t) = ∑ αm(t)em(s)   (1)

m            
g(s,t +τ) =  ∑ βm(t +τ)dm(s)   (2)

m
Constrained by a connection between 

α and β and/or e and d.

Cross Cov Matrix Cfgwith elements:
cij=    ∑ f(si,t)g(sj,t+ τ)/nt

t          

Fig.x.y: Summary of EOT2 procedures.

Discrete Data set f(s,t)
1 ≤ t ≤ nt ; 1 ≤ s ≤ ns

Discrete Data set g(s,t +τ)
1 ≤ t ≤ nt ; 1 ≤ s ≤ n’s

Alt Cross Cov Matrix Ca
fgwith elements:

ca
ij=    ∑ f(s,ti)g(s,tj+ τ)/ns

s          

EOT2-alternative
(1) and (2) satisfied

em and dm orthogonal
Ca

ff (τ=0), Ca
gg(τ=0) and Ca

fg diagonalized
Two time series, one map. 

EOT2
(1) and (2) satisfied
αm and βm orthogonal

Cff (τ=0), Cgg(τ=0) and Cfg diagonalized
One time series, two maps. 

CCA
Very close to EOT2, but

two, maximally correlated, time series.

SVD
Somewhat like EOT2a, but

two maps, and 
(heterogeneously) orthogonal time series.

M = Qf
-1 Cfg Qg

-1 Cfg
T 



CCA:

1) Make a square M = Qf
-1 Cfg Qg

-1 Cfg
T

2) E-1 M E =diag ( λ1 , λ2, λ3,… λM)

 cor(m)=sqrt (λm)

SVD:

1) UT Cfg V =diag (σ1 , σ2, …  , σm)

Explained Squared Covariance = σ2
m

Assorted issues:

1) Prefiltering f and g , before calculating Cfg

2) Alternative approach complicated when domains for f and g don’t match

3) Iteration and rotation: CCA > EOT2-normal; SVD > EOT2-alternative ???



Keep in mind

• EV  (EOF/EOT) and EOT2
• Squared covariance (SC) in SVD
• SVD singular vectors of C
• CCA eigenvectors of M
• LIM complex eigenvectors of L (close to C)
• MRK no modes are calculated (of L)


