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•   How to Apply NNs 
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Evolution in Statistics 

•  Problems for Classical 
Paradigm: 
–  Nonlinearity & Complexity 
–  High Dimensionality - 

Curse of Dimensionality   

•  New Paradigm under 
Construction: 
–  Is still quite fragmentary 
–  Has many different names and 

gurus 
–  NNs are one of the tools 

developed inside this paradigm  

T (years) 1900 – 1949 1950 – 1999 2000 – … 

Simple, linear or quasi-linear, single  
disciplinary, low-dimensional systems    

Complex, nonlinear, multi-disciplinary,  
high-dimensional systems    

Simple, linear or quasi-linear,  
low-dimensional framework of classical 

statistics (Fischer, about 1930)    
Complex, nonlinear, high-dimensional  

framework… (NNs) 
Under Construction!     

Objects 
Studied: 

Tools 
Used: 

Teach at the 
University! 
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Problem:  
Information exists in the form of finite sets of values of 

several related variables (sample or training set) – a 
part of the population:                                

              =  {(x1, x2, ..., xn)p, zp}p=1,2,...,N 

–  x1, x2, ..., xn - independent variables (accurate), 
–  z - response variable (may contain observation 

errors ε)  
We want to find responses z’q for another set of 

independent variables      = {(x’1, x’2, ..., x’n)q}q=1,..,M  

Statistical Inference: 
 A Generic Problem 

ℵ′

ℵ

ℵ∉ℵ′
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Regression Analysis (1): 
General Solution and Its Limitations 

Find mathematical function f which describes this relationship: 
1.  Identify the unknown function f  
2.  Imitate or emulate the unknown function f  

DATA: Training Set 
{(x1, x2, ..., xn)p, zp}p=1,2,...,N 

DATA: Another Set 
(x’1, x’2, ..., x’n)q=1,2,...,M 

zq  = f(Xq) 

 
REGRESSION FUNCTION 

z = f(X), for all X  
INDUCTION 

Ill-posed problem DEDUCTION 
Well-posed problem 

TRANSDUCTION 
SVM 

Sir Ronald A. Fisher ~ 1930 
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Regression Analysis (2): 
A Generic Solution 

•  The effect of independent variables on the response 
is expressed mathematically by the regression or 
response function f: 

        y = f( x1, x2, ..., xn; a1, a2, ..., aq) 
•   y - dependent variable 
•   a1, a2, ..., aq - regression parameters (unknown!) 
•   f - the form is usually assumed to be known 
•   Regression model for observed response variable: 
        z = y + ε = f(x1, x2, ..., xn; a1, a2, ..., aq) + ε 
•   ε - error in observed value z 
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Regression Models (1): 
Maximum Likelihood 

•  Fischer suggested to determine unknown regression 
parameters {ai}i=1,..,q maximizing the functional: 

    
 here ρ(ε) is the probability density function of errors εi  

•  In a case when ρ(ε) is a normal distribution  

 the maximum likelihood => least squares 
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Regression Models (2): 
Method of Least Squares 

•  To find unknown regression parameters  {ai}i=1,2,...,q , 
the method of least squares can be applied: 

  
  
•  E(a1,...,aq) - error function = the sum of squared 

deviations. 
•  To estimate {ai}i=1,2,...,q  => minimize E => solve the 

system of equations: 
 
  
•  Linear and nonlinear cases. 

E a a a z y z f x x a a aq p p
p

N

p n p q
p
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Regression Models (3): 
Examples of Linear Regressions 

•  Simple Linear Regression: 
  z = a0 + a1 x1 + ε 

•   Multiple Linear Regression: 
  z = a0 + a1 x1 + a2 x2 + ... + ε =   

•   Generalized Linear Regression: 
  z = a0 + a1 f1(x1)+ a2 f2(x2) + ... + ε =  

–   Polynomial regression, fi(x) = xi, 
  z = a0 + a1 x+ a2 x2 + a3 x3 + ... + ε 

–   Trigonometric regression, fi(x) = cos(ix)  
  z = a0 + a1 cos(x) + a1 cos(2 x) + ... + ε 

a a xi i
i

n

0
1

+ +
=
∑ ε

a a f xi i i
i

n

0
1

+ +
=
∑ ( ) ε

No free 
parameters 
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•  Response Transformation Regression: 
  G(z) = a0 + a1 x1 + ε 

•  Example: 
  z = exp(a0 + a1 x1) 
  G(z) = ln(z) = a0 + a1 x1 

•   Projection-Pursuit Regression: 
                         
•  Example: 

Regression Models (4): 
Examples of Nonlinear Regressions 

y a a f xj ji i
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NN Tutorial: 
Introduction to Artificial NNs 

•  NNs as Continuous Input/Output Mappings 
–  Continuous Mappings: definition and some 

examples 
–  NN Building Blocks: neurons, activation 

functions, layers 
–  Some Important Theorems 

•   NN Training 
•   Major Advantages of NNs 
•   Some Problems of Nonlinear Approaches 
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•  Mapping: A rule of correspondence 
established between vectors in vector 
spaces       and       that associates each 
vector X of a vector space      with a 
vector Y in another vector space      . 

Mapping 
Generalization of Function 
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Mapping  Y = F(X): examples 

•  Time series prediction: 
 X = {xt, xt-1, xt-2, ..., xt-n}, - Lag vector 

     Y = {xt+1, xt+2, ..., xt+m} - Prediction vector 
          (Weigend & Gershenfeld, “Time series prediction”, 1994) 

•  Calculation of precipitation climatology: 
     X = {Cloud parameters, Atmospheric parameters} 
     Y = {Precipitation climatology} 

   (Kondragunta & Gruber, 1998) 
•  Retrieving surface wind speed over the ocean from satellite data (SSM/I): 

 X = {SSM/I brightness temperatures} 
 Y = {W, V, L, SST}   
   (Krasnopolsky, et al., 1999; operational since 1998) 

•   Calculation of long wave atmospheric radiation:  
 X = {Temperature, moisture, O3, CO2, cloud parameters profiles, surface fluxes, 
etc.}         
 Y = {Heating rates profile, radiation fluxes} 
   (Krasnopolsky et al., 2005)  
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NN - Continuous Input to Output Mapping 
Multilayer Perceptron: Feed Forward, Fully Connected 

1x

2x

3x

4x

nx

1y

2y

3y

my

1t

2t

kt

Nonlinear
Neurons

Linear
Neurons

X Y 

Input  
Layer 

Output  
Layer 

Hidden  
Layer 

Y = FNN(X) 
Jacobian ! 

x1 
x2 

x3 

xn 

tj Linear Part 
bj · X + b0 = sj 

Nonlinear Part 
 (sj) = tj 

Neuron 

)tanh(

)(

1
0

1
0

∑

∑

=

=

⋅+=

=⋅+=

n

i
ijij

n

i
ijijj

xbb

xbbt φ

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=⋅+⋅+=

=⋅+⋅+=⋅+=

∑ ∑

∑ ∑∑

= =

= ==

mqxbbaa

xbbaataay

k

j

n

i
ijijqjq

k

j

n

i
ijijqjq

k

j
jqjqq

,...,2,1);tanh(

)(

1 1
00

1 1
00

1
0 φ



3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs" 15 

Some Popular Activation Functions 
tanh(x) Sigmoid, (1 + exp(-x))-1

Hard Limiter Ramp Function

X X 

X X 
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NN as a Universal Tool for Approximation of 
Continuous & Almost Continuous Mappings 

Some Basic Theorems: 
" Any function or mapping Z = F (X), continuous on 

a compact subset, can be approximately 
represented by a p (p  3) layer NN in the sense 
of uniform convergence (e.g., Chen & Chen, 1995; 
Blum and Li, 1991, Hornik, 1991; Funahashi, 1989, 
etc.)  

"  The error bounds for the uniform approximation 
on compact sets (Attali & Pagès, 1997):                         

                ||Z -Y|| = ||F (X) - FNN (X)|| ~ C/k                     
k -number of neurons in the hidden layer              
C – does not depend on n (avoiding Curse of 
Dimensionality!)   
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NN training (1) 

•  For the mapping Z = F (X) create a training set - set 
of matchups {Xi, Zi}i=1,...,N, where Xi is input vector 
and Zi  - desired output vector 

•  Introduce an error or cost function E: 

          E(a,b) = ||Z - Y|| =                              , 

    where Y = FNN(X) is neural network 

•  Minimize the cost function:  min{E(a,b)} and find 
optimal weights (a0, b0)  

•  Notation: W = {a, b} - all weights. 

2

1
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NN Training (2) 
One Training Iteration 

W 

E ≤  
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Backpropagation (BP) Training Algorithm 

•  BP is a simplified steepest descent:                                     

 
  where W - any weight, E - error function, 
  η - learning rate, and  ΔW - weight increment 
•   Derivative can be calculated analytically: 

•   Weight adjustment after r-th iteration: 
                  Wr+1 = Wr + ΔW 
•   BP training algorithm is robust but slow 

E

W
W r+1 W r

W 

.0>
∂
∂
W
E

W
EW

∂
∂−=Δ η

∑
= ∂

∂⋅−−=
∂
∂ N

i

iNN
iNNi W

XFXFZ
W
E

1

)()]([2



3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs" 20 

Generic Neural Network 
FORTRAN Code: 

DATA W1/.../, W2/.../, B1/.../, B2/.../, A/.../, B/.../ !  Task specific part
!===================================================
DO K = 1,OUT
!
      DO I = 1, HID
           X1(I) = tanh(sum(X * W1(:,I) + B1(I))
      ENDDO !  I
!
      X2(K) = tanh(sum(W2(:,K)*X1) + B2(K)) 
      Y(K) = A(K) * X2(K) + B(K) 
! ---                 
      XY = A(K) * (1. -X2(K) * X2(K))
      DO J = 1, IN 
           DUM = sum((1. -X1 * X1) * W1(J,:) * W2(:,K))
           DYDX(K,J) = DUM * XY
      ENDDO !  J    
!      
ENDDO !  K

NN Output 

Jacobian 
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Major Advantages of NNs : 

" NNs are very generic, accurate and convenient 
mathematical (statistical) models which are able to emulate 
numerical model components, which are complicated 
nonlinear input/output relationships (continuous or almost 
continuous mappings ). 

" NNs avoid Curse of Dimensionality   
" NNs are robust with respect to random noise and fault- 

tolerant. 
" NNs are analytically differentiable (training, error and 

sensitivity analyses): almost free Jacobian! 
" NNs emulations are accurate and fast but NO FREE LUNCH! 
" Training is complicated and time consuming nonlinear 

optimization task; however, training should be done only 
once for a particular application! 

" Possibility of online adjustment 
" NNs are well-suited for parallel and vector processing 
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NNs & Nonlinear Regressions: Limitations (1) 

•  Flexibility and Interpolation: 

•  Overfitting, Extrapolation: 
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NNs & Nonlinear Regressions: Limitations (2) 

•  Consistency of estimators: α is a consistent 
estimator of parameter A, if α → A as the size 
of the sample n → N, where N is the size of 
the population. 

•  For NNs and Nonlinear Regressions 
consistency can be usually “proven” only 
numerically. 

•  Additional independent data sets are 
required for test (demonstrating consistency 
of estimates). 
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ARTIFICIAL  NEURAL  NETWORKS: 
BRIEF  HISTORY 

•  1943 - McCulloch and Pitts introduced a model of the neuron 

•  1962 - Rosenblat introduced the one layer "perceptrons", the 
model neurons, connected up in a simple fashion. 

•  1969 - Minsky and Papert published the book which practically 
“closed the field” 
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ARTIFICIAL  NEURAL  NETWORKS: 
BRIEF  HISTORY 

•  1986 - Rumelhart and McClelland proposed the 
"multilayer perceptron" (MLP) and showed that it is a 
perfect application for parallel distributed processing. 

•   From the end of the 80's there has been explosive 
growth in applying NNs to various problems in 
different fields of science and technology  
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Atmospheric and Oceanic NN Applications 

•  Satellite Meteorology and Oceanography 
–  Classification Algorithms 
–  Pattern Recognition, Feature Extraction Algorithms 
–  Change Detection & Feature Tracking Algorithms 
–  Fast Forward Models for Direct Assimilation 
–  Accurate Transfer Functions (Retrieval Algorithms) 

•  Predictions 
–  Geophysical time series 
–  Regional climate 
–  Time dependent processes 

•  NN Ensembles 
–  Fast NN ensemble 
–  Multi-model NN ensemble 
–  NN Stochastic Physics  

•  Fast NN Model Physics 
•  Data Fusion & Data Mining 
•  Interpolation, Extrapolation & Downscaling 
•  Nonlinear Multivariate Statistical Analysis 
•  Hydrological Applications 
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Developing Fast NN Emulations for 
Parameterizations of Model Physics 

Atmospheric Long & Short Wave Radiations 
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General Circulation Model 
The set of conservation laws (mass, energy, momentum, water vapor, 

ozone, etc.) 
•  First Priciples/Prediction 3-D Equations on the Sphere: 

 
–    - a 3-D prognostic/dependent variable, e.g., temperature  
–  x - a 3-D independent variable: x, y, z & t 
–  D  - dynamics (spectral or gridpoint) 
–  P  - physics or parameterization of physical processes (1-D 

vertical r.h.s. forcing) 

•  Continuity Equation 
•  Thermodynamic Equation 
•  Momentum Equations 

( , ) ( , )D x P x
t
ψ ψ ψ∂ + =
∂

Lon 
Lat 

Height 
3-D Grid 
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General Circulation Model 
Physics – P, represented by 1-D (vertical) parameterizations  

•  Major components of P = {R, W, C, T, S}: 
–  R - radiation (long & short wave processes) 
–  W – convection, and large scale precipitation processes 
–  C - clouds 
–  T – turbulence  
–  S – surface model (land, ocean, ice – air interaction) 

•  Each component of P is a 1-D parameterization of 
complicated set of multi-scale theoretical and 
empirical physical process models simplified for 
computational reasons  

•  P is the most time consuming part of GCMs! 
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Distribution of Total Climate Model Calculation Time 
12%

66%

22%

Dynamics
Physics
Other

Current NCAR Climate Model  
(T42 x L26):  3 x 3.5  

6%

89%

5%

Near-Term Upcoming Climate 
Models (estimated) :  1 x 

1  
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Generic Situation in Numerical Models 
 Parameterizations of Physics are Mappings 

GCM 
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Generic Solution – “NeuroPhysics”  
 Accurate and Fast NN Emulation for Physics Parameterizations  

Learning from Data 

GCM 

X Y 

Original Parameterization 

F 

X Y 

NN Emulation 

FNN 

Training 
Set …, {Xi, Yi}, …  Xi 

Dphys 

NN Emulation 

FNN 
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NN for NCAR CAM Physics  
CAM Long Wave Radiation 

•  Long Wave Radiative Transfer: 

 
•  Absorptivity & Emissivity (optical properties): 
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NN Emulation of Input/Output Dependency: 
 Input/Output Dependency:  

The Magic of NN Performance 

Xi 
Original 

Parameterization Yi 

Y = F(X) 

Xi 
NN Emulation 

Yi 

YNN = FNN(X) 

Mathematical Representation of Physical Processes 
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Numerical Scheme for Solving Equations Input/Output Dependency:  {Xi,Yi}I = 1,..N 
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Neural Networks for NCAR (NCEP) LW Radiation  
NN characteristics 

•  220 (612 for NCEP) Inputs: 
–  10 Profiles: temperature; humidity; ozone, methane, cfc11, cfc12, & N2O mixing 

ratios, pressure, cloudiness, emissivity   
–  Relevant surface characteristics: surface pressure, upward LW flux on a 

surface - flwupcgs 
•  33 (69 for NCEP) Outputs: 

–  Profile of heating rates (26) 

–  7 LW radiation fluxes: flns, flnt, flut, flnsc, flntc, flutc, flwds  
•  Hidden Layer: One layer with 50 to 300 neurons  
•  Training: nonlinear optimization in the space with 

dimensionality of 15,000 to 100,000 
–  Training Data Set: Subset of about 200,000 instantaneous profiles simulated by 

CAM for the 1-st year 
–  Training time: about 1 to several days (SGI workstation) 
–  Training iterations: 1,500 to 8,000 

•  Validation on Independent Data: 
–  Validation Data Set (independent data): about 200,000 instantaneous profiles 

simulated by CAM for the 2-nd year 



3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs" 36 

Neural Networks for NCAR (NCEP) SW Radiation  
NN characteristics 

•  451 (650 NCEP) Inputs: 
–  21 Profiles: specific humidity, ozone concentration, pressure, cloudiness, 

aerosol mass mixing ratios, etc 
–  7 Relevant surface characteristics 

•  33 (73 NCEP) Outputs: 
–  Profile of heating rates (26) 
–  7 LW radiation fluxes: fsns, fsnt, fsdc, sols, soll, solsd, solld  

•  Hidden Layer: One layer with 50 to 200 neurons  
•  Training: nonlinear optimization in the space with 

dimensionality of 25,000 to 130,000 
–  Training Data Set: Subset of about 200,000 instantaneous profiles simulated by 

CAM for the 1-st year 
–  Training time: about 1 to several days (SGI workstation) 
–  Training iterations: 1,500 to 8,000 

•  Validation on Independent Data: 
–  Validation Data Set (independent data): about 100,000 instantaneous profiles 

simulated by CAM for the 2-nd year 
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NN Approximation Accuracy and Performance vs. Original 
Parameterization (on an independent data set) 

Parameter Model Bias RMSE Mean  Performance 

LWR 
(K/day) 

NASA 
M-D. Chou 

1. 10-4 0.32 -1.52 1.46 

NCEP 
AER rrtm2 

7. 10-5 
 0.40 -1.88 2.28  100  

times faster 

NCAR 
W.D. Collins  

3. 10-5 0.28 -1.40 1.98  150  
times faster  

SWR 
(K/day) 

NCAR 
W.D. Collins  

6. 10-4 0.19 1.47 1.89  20  
times faster 

NCEP 
AER rrtm2 

 
1. 10-3 0.21 1.45 1.96  40  

times faster 
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Individual Profiles 

PRMSE = 0.11 & 0.06 K/day PRMSE = 0.05 & 0.04 K/day 

Black – Original  
Parameterization 
Red – NN with 100 neurons 
Blue – NN with 150 neurons 

PRMSE = 0.18 & 0.10 K/day 
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NCAR CAM-2: 50 YEAR EXPERIMENTS 
NCEP CFS: 17 YEAR EXPERIMENTS 

•  CONTROL RUN: the standard NCAR CAM or 
NCEP CFS versions with the original 
Radiation (LWR and SWR)  

•  NN RUN: the hybrid version of NCAR CAM or 
NCEP CFS with NN emulation of the LWR & 
SWR 
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NCAR CAM-2 Zonal Mean U 
50 Year Average  

(a) – Original LWR 
Parameterization 

(b)  - NN Approximation 
(c) -  Difference (a) – (b), 

contour 0.2 m/sec 
 

all in m/sec 
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NCAR CAM-2 Zonal Mean 
Temperature 

50 Year Average  

(a) – Original LWR 
Parameterization 

(b)  - NN Approximation 
(c) -  Difference (a) – (b), 

contour 0.1K 
 

all in K 
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CTL 
NN FR 

NN - CTL CTL_O – 
CTL_N 

DJF NCEP CFS SST – 17 year climate 
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CTL 
NN Rad 

NN - CTL 
CTL_O – 
CTL_N 

JJA 
NCEP CFS PRATE – 17 year climate 
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Application of the Neural Network Technique 
to Develop a Nonlinear Multi-Model 

Ensemble for Precipitations over ConUS 



Calculating Ensemble Mean 

•  Conservative ensemble 
𝑬𝑴=   𝟏/𝑵 ∑𝒊=𝟏↑𝑵▒𝒑↓𝒊   
•  Weighted ensemble 
𝑾𝑬𝑴=  ∑𝒊=𝟏↑𝑵▒𝑾↓𝒊 𝒑 /∑𝒊=𝟏↑𝑵▒𝑾↓𝒊   

 Wi  from a priori information 
 or from past data => linear regression 

•  If data are available, we can relax assumption 
of linearity 

𝑵𝑬𝑴=𝒇  (𝑷)≅𝑵𝑵(𝑷) 
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Available data for precipitations over ConUS 

•  Precipitation forecasts available from 8 
operational models: 
–  NCEP's mesoscale & global models (NAM & GFS) 
–  the Canadian Meteorological Center regional & global 

models (CMC & CMCGLB) 
–  global models from the Deutscher Wetterdienst 

(DWD)  
–  the European Centre for Medium-Range Weather 

Forecasts (ECMWF) global model 
–  the Japan Meteorological Agency (JMA) global model 
–  the UK Met Office (UKMO) global model 

•  Also NCEP Climate Prediction Center (CPC) 
precipitation analysis is available over ConUS.  
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Data & Products for Comparisons 

•  Forecasts: 
–  MEDLEY multi-model ensemble: simple average 

of 8 models (24 hr forecasts) 
–  NN multi-model ensemble (experimental, 24 hr 

forecast) 
–  Hydrometeorological Prediction Center (HPC) 

human 24 hr forecast, produced by human 
forecaster using models, satellite images, and 
other available data 

•  Validation: CPC analysis over ConUS  
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Advantages: better placement of precipitation 
areas 

Disadvantages (because of simple linear 
averaging) Motivation for NN developments: 

•  Smoothes, diffuse features, reduces 
gradients  
–  High bias for low level precip – large areas of false 

low precip  
–  Low bias in high level precip – highs smoothed 

out and reduced 

MEDLAY 
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Verifying CPC analysis 

MEDLEY 

NAM 

GFS 

24h Forecast Ending 07/24/2010 at 12Z 
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A NN Multi-Model Ensemble 

•  Use past data (model forecasts and verifying 
analysis data) to train NN 
–  For NN Inputs: precip amounts (8 model 24 hr 

forecasts), lat, lon, and day of the year 
–  For NN output: CPC verification analysis for the 

corresponding time    
•  Data for 2009 have been used for training 
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Verifying CPC analysis GFS 

NAM ECMWF 

Sample NN forecast: example 1 (1) 
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Verifying CPC analysis MEDLEY 

NN HPC  

Sample NN forecast: example 1 (2) 
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Verifying CPC analysis MEDLEY 

NN HPC  

Sample NN forecast: example 2 
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Verifying analysis 

HPC NN 

MEDLEY 

Sample NN forecast: example 3 
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Application of the Neural Network Technique 
to Develop New NN Convection 

Parameterization 
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NN Parameterizations 

•  New NN parameterizations of model physics 
can be developed based on: 
–  Observations 
–  Data simulated by first principle process models 

(like cloud resolving models).  
•  Here NN serves as an interface transferring 

information about sub-grid scale processes 
from fine scale data or models (CRM) into 
GCM (upscaling) 
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NN convection parameterizations for climate models 
based on learning from data. 

Proof of Concept (POC) -1.  

D
ata 

CRM 
1 x 1 km 
96 levels 

T & Q Reduce Resolution 
to ~250 x 250 km 

26 levels 

Prec., Tendencies, etc. Reduce Resolution 
to ~250 x 250 km 

26 levels 

NN 

Training Set 

Initialization 
Forcing 

“Pseudo- 
Observations” 
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Proof of Concept - 2 
•  Data (forcing and initialization): TOGA COARE 

meteorological conditions 
•  CRM: the SAM CRM (Khairoutdinov  and Randall, 2003).   

–  Data from the archive provided by C. Bretherton and P. Rasch 
(Blossey et al, 2006).   

–  Hourly data over 90 days 
–  Resolution 1 km over the domain of 256 x 256 km 
–  96 vertical layers (0 – 28 km)  

•  Resolution of “pseudo-observations” (averaged CRM data):  
–  Horizontal 256 x 256 km  
–  26 vertical layers 

•  NN inputs: only temperature and water vapor fields; a 
limited training data set used for POC 

•  NN outputs: precipitation & the tendencies T and q, i.e. 
“apparent heat source” (Q1), “apparent moist 
sink” (Q2), and cloud fractions (CLD)  
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Time averaged water vapor tendency 
 (expressed as the equivalent heating) 
 for the validation dataset.  

Q2 profiles (red) with the corresponding NN  
generated profiles (blue).  The profile rmse 
increases from the left to the right.  

Proof of Concept - 4 



3/6/2013 Meto 630; V.Krasnopolsky, "Nonlinear Statistics and NNs" 60 

Proof of Concept - 3 

Precipitation rates for the validation dataset. Red – data, blue - NN  
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How to Develop NNs: 
An Outline of the Approach (1) 

•   Problem Analysis: 
–   Are traditional approaches unable to solve your problem? 

•   At all 
•   With desired accuracy 
•   With desired speed, etc. 

–   Are NNs well-suited for solving your problem? 
•   Nonlinear mapping 
•   Classification 
•   Clusterization, etc. 

–   Do you have a first guess for NN architecture? 
•   Number of inputs and outputs 
•   Number of hidden neurons 
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How to Develop NNs: 
An Outline of the Approach (2) 

•  Data Analysis 
–  How noisy are your data?  

•  May change architecture  
   or even technique 

–  Do you have enough data? 
–  For selected architecture:  

•  1) Statistics => N1
A  >  nW               

•  2) Geometry => N2
A > 2n                                                             

•  N1
A < NA < N2

A 
•  To represent all possible patterns => NR                                    

NTR = max(NA, NR) 
–  Add for test set: N = NTR × (1 +τ ); τ > 0.5 
–  Add for validation: N =  NTR × (1 + τ + ν); ν > 0.5 

Y

X
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How to Develop NNs: 
An Outline of the Approach (3) 

•  Training 
–  Try different initializations 
–  If results are not satisfactory, then goto Data 

Analysis or Problem Analysis  
•  Validation (must for any nonlinear tool!) 

–  Apply trained NN to independent validation data 
–  If statistics are not consistent with those for 

training and test sets, go back to Training or Data 
Analysis 
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Conclusions 
•  There is an obvious trend in scientific studies: 

–  From simple, linear, single-disciplinary, low dimensional 
systems 

–  To complex, nonlinear, multi-disciplinary, high dimensional 
systems  

•  There is a corresponding trend in math & statistical 
tools: 
–  From simple, linear, single-disciplinary, low dimensional 

tools and models 
–  To complex, nonlinear, multi-disciplinary, high dimensional 

tools and models 
•  Complex, nonlinear tools have advantages & 

limitations: learn how to use advantages & avoid 
limitations!  

•  Check your toolbox and follow the trend, otherwise 
you may miss the train! 
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