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ABSTRACT

A series of seasonally varying linear Markov models are constructed in a reduced multivariate empirical
orthogonal function (MEOF) space of observed sea surface temperature, surface wind stress, and sea level
analysis. The Markov models are trained in the 1980–95 period and are verified in the 1964–79 period. It is
found that the Markov models that include seasonality fit to the data better in the training period and have a
substantially higher skill in the independent period than the models without seasonality. The authors conclude
that seasonality is an important component of ENSO and should be included in Markov models. This conclusion
is consistent with that of statistical models that take seasonality into account using different methods.
The impact of each variable on the prediction skill of Markov models is investigated by varying the weightings

among the three variables in the MEOF space. For the training period the Markov models that include sea level
information fit the data better than the models without sea level information. For the independent 1964–79
period, the Markov models that include sea level information have a much higher skill than the Markov models
without sea level information. The authors conclude that sea level contains the most essential information for
ENSO since it contains the filtered response of the ocean to noisy wind forcing.
The prediction skill of the Markov model with three MEOFs is competitive for both the training and independent

periods. This Markov model successfully predicted the 1997/98 El Niño and the 1998/99 La Niña.

1. Introduction

The El Niño–Southern Oscillation (ENSO) phenom-
enon has been extensively studied in the past two de-
cades. Significant progress in both understanding ENSO
and achieving useful prediction skill for the sea surface
temperature (SST) anomaly in the tropical Pacific has
been achieved during the Tropical Oceans Global At-
mosphere decade (1985–94; see review papers by
McCreary and Anderson 1991; Latif et al. 1994). Both
statistical and dynamical models are now used to make
experimental ENSO forecasts in real time (see the ‘‘Ex-
perimental Long Lead Forecast Bulletin’’ issued quar-
terly by the Center for Ocean–Land–Atmosphere Stud-
ies). The forecast SSTs have been used as boundary
forcings for atmospheric general circulation models in
producing seasonal climate outlooks (Barnett et al.
1994; Ji et al. 1994). Accurate prediction of the SST in
the tropical Pacific several seasons in advance is be-
coming increasingly important because significant so-
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cio-economic benefits can be achieved from improved
prediction of large-scale temperature and precipitation
on seasonal timescales.
The prediction skill of ENSO is often measured by

temporal correlation of large-scale indices, such as area-
averaged SST anomalies. Barnston et al. (1994) con-
cluded that the 6-month lead prediction skill of ENSO
during 1982–93 was modest (0.6 correlation) and that
the skill of statistical and dynamical models was com-
parable. Recently, Barnston et al. (1998) compared the
performance of statistical and dynamical models during
the 1997/98 El Niño episode and the 1998 La Niña
onset. They concluded that although many models fore-
casted some degree of warming prior to the onset of the
El Niño in boreal spring 1997, none predicted its
strength until the event was already quite strong in late
spring. Neither the dynamical nor the statistical models,
as groups, performed significantly better than the other
during this episode. This study suggests that both sta-
tistical and dynamical models have significant errors and
more work is needed to improve the models. Since sta-
tistical models are much easier to construct than dy-
namical models are, they will continue to serve as useful
references with which more sophisticated dynamical
models can be compared.
Statistical models are often based on observed surface

winds, sea surface temperature, and near-global sea level
pressure fields (Graham et al. 1987a,b; Barnston and
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FIG. 1. The variance distributions of (a) observed SST anomalies,
(b) sea level analysis anomalies, and (c) wind stress anomalies among
the EOF (solid) and MEOF (dashed) modes.

Ropelewski 1992; Penland and Magorian 1993). Since
oceanic heat content is an important component of
ENSO (Wyrtki 1985; Zebiak and Cane 1987; Zebiak
1989), subsurface ocean data are also valuable for sta-
tistical models. However, until recently there was no
ocean analysis in the tropical Pacific that covered a suf-
ficiently long period for this purpose. The ocean data
assimilation system at the National Centers for Envi-
ronmental Prediction (NCEP) began to produce an
ocean analysis in 1992 (Ji et al. 1995). Recently this
analysis system has been improved significantly (Beh-
ringer et al. 1998) and a retrospective analysis that cov-
ered about 18 yr has been produced.
We choose to use the sea level field from the NCEP

ocean analysis in addition to observed SST and surface
winds to construct Markov models. Sea level is chosen
because the tide gauge network [the Integrated Global
Ocean Services System sea level program in the Pacific
available online at http://uhslc.soest.hawaii.edu] pro-
vides an independent dataset for validation of the sea
level analysis. The accuracy of the sea level analysis at
NCEP is about 3–4 cm in the equatorial belt (Behringer
et al. 1998). These three variables were also used by
Blumenthal (1991) and Xue et al. (1994) to construct

Markov models that were best fit to the outputs from
the Zebiak–Cane (ZC) model (Zebiak and Cane 1987).
Xue et al. (1994) found that the Markov model con-
structed with these three variables fits the ZC model
quite well up to a year, and the prediction skill of the
Markov model was comparable to that by the ZC model.
The Markov model in Xue et al. (1994) was con-

structed in a multivariate EOF (MEOF) space in which
SST, surface winds, and sea level were equally weight-
ed. An interesting question is how the prediction skill
of Markov models varies with the weightings among
the three variables. When one variable is heavily weight-
ed and other variables are much less weighted, the im-
pact of that variable on the prediction skill of Markov
models can be investigated. Smith et al. (1995) showed
that using the subsurface temperature data from a earlier
version of the NCEP ocean analysis, in addition to using
sea level pressure and SST data, improved the ENSO
forecast skill of the canonical correlation analysis model
(Barnston and Ropelewski 1992). Johnson et al. (2000)
used observed SST anomalies and oceanic heat content
anomalies of the upper ocean to construct Markov mod-
els. They concluded that the skill of the Markov models
was improved by including oceanic heat content, but
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FIG. 2. The cumulative variance percentages of (a) observed SST
anomalies, (b) sea level analysis anomalies, and (c) wind stress anom-
alies by the first MEOF (solid), the first two MEOFs (dashed), and
the first three MEOFs (dotted) as functions of calendar months.

the improvement was not significant with high certainty.
They suggested that the usefulness of including sub-
surface temperature data in Markov models for ENSO
prediction was underestimated due to the limitation of
their data. In this paper we will use the latest sea level
analysis data to study the impact of sea level on the
prediction skill of Markov models. We will attempt to
demonstrate that the prediction skill of Markov models
can be improved significantly by including sea level
information.
Since El Niño is phase locked with the annual cycle

(Philander 1983; Zebiak and Cane 1987), the statistics
of the anomalies fields associated with ENSO have a
strong seasonal dependency. Because of this seasonal
nonstationarity, Hasselmann and Barnett (1981) sug-
gested that the normal statistical analysis techniques
based on time-invariant models are inappropriate for
ENSO prediction. In the problem of predicting El Niño
off South America they developed phase-averagedmod-
els and concluded that El Niño is predicted with con-
siderably more confidence and accuracy using phase-
averaged models than with time-invariant models. In a
similar approach to that of Hasselmann and Barnett
(1981), Blumenthal (1991) developed seasonally vary-

ing Markov models to best fit the outputs from the Ze-
biak–Cane model (Zebiak and Cane 1987). More re-
cently, Kim (2000) developed a unique prediction
scheme based on cyclostationary EOFs (Kim and North
1997). Since cyclostationary EOFs are specifically de-
signed for describing periodic statistics, they are pre-
sumably better basis functions than standard EOFs
based on which statistical models can be constructed.
However, cyclostationary EOFs are much more expen-
sive to compute than standard EOFs are. We choose to
use the method of Blumenthal (1991). We will argue
that MEOFs are useful basis functions based on which
seasonally varying Markov models are constructed to
account for the seasonal nonstationarity of ENSO.
The paper is organized into five sections. Section 2

describes the space reduction by MEOFs. Section 3 de-
scribes the construction of Markov models and the im-
portance of including seasonality in Markov models. In
section 4 we discuss how the prediction skill of Markov
models varies with the weightings among SST, wind
stress, and sea level. The prediction skill of the Markov
models is estimated using a cross-validation scheme and
an independent period. The Markov model’s predictions
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FIG. 3. The (a) first, (b) second, and (c) third MEOF patterns and PCs. Note that the PC of the second MEOF (dash) is shown in (a) as
well.

for the 1997/98 warm event and the 1998/99 cold event
are also discussed. Section 5 summarizes the paper.

2. Space reduction
a. Data
The SST data consist of two parts: from January 1964

to December 1981 it is the reconstruction of historical
SST by Smith et al. (1996); from January 1982 to Jan-
uary 1999 it is the SST analysis by Reynolds and Smith
(1994). The wind stress data are The Florida State Uni-
versity (FSU) pseudo–wind stress product from January
1964 to January 1999 (Goldenberg and O’Brien 1981).
Two sea level datasets are used. One is the sea level
dataset from the ocean analysis at NCEP, which covers
the period from January 1980 to January 1999 (Beh-
ringer et al. 1998). The second sea level dataset is ob-
tained from a ocean model simulation that uses the Geo-
physical Fluid Dynamics Laboratory MOM1 model
forced by the FSU wind stress analysis. This sea level
dataset covers the period from January 1964 to Decem-
ber 1995. The model configuration for this simulation

is similar to that of Ji and Smith (1995) except that the
total FSU wind stress (converted from the FSU pseudo–
wind stress with a drag coefficient of 1.3 ! 10"3) are
used instead of a combination of the Hellerman and
Rosenstein (1983) climatology and the FSU wind stress
anomalies. All the datasets are monthly values and have
been interpolated onto a common grid 1# lat! 1.5# long
with approximately 4600 grid points covering the trop-
ical Pacific region 20#S–20#N.
The Markov models are trained in the 1980–95 period

using the anomalous fields of observed SST, wind stress,
and sea level analysis obtained by removing the annual
cycles for 1980–95. The prediction skill of the Markov
models is estimated using the independent 1964–79 pe-
riod during which the anomalous fields of observed SST,
wind stress, and model simulated sea level data are used
as initial conditions. These anomalous fields are ob-
tained by removing the annual cycles for 1980–95.

b. Space reduction
As in Xue et al. (1994), two-step EOF analyses are

used to calculate MEOF modes based on which Markov
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FIG. 3. (Continued )

models are constructed. In the first step, the SST, wind
stress, and sea level anomaly fields are subject to EOF
analysis separately. Each field is represented by the first
few EOFs, which maximize the variance representation.
For example, a physical field represented by vector v(t)
is decomposed into EOFs e and principal components
(PCs) aj(t) and filtered by truncating at the Jth EOF:

J

v(t) $ a (t)e . (1)! j j
j$1

In the present context, 91, 154, and 85 EOFs account
for 99% of the variance in the observed SST, wind stress,
and sea level anomaly fields, respectively. The variance
distributions of the EOFs of SST, wind stress, and sea
level are shown in Fig. 1. It is seen that the first two
EOFs of SST account for 52% and 13% of the total
variance and each of the higher-order EOFs account for
less than 5% (Fig. 1a); the first three EOFs of sea level
account for 36%, 21%, and 9% of the total variance,
and each of the higher-order EOFs account for less than
5% (Fig. 1b). It is interesting that the variance per-
centage of the second EOF of SST is much smaller than
that of the first EOF, while the variance percentages of

the first two EOFs of sea level are comparable. The
variance distribution of wind stress is relatively flat
among the EOFs (Fig. 1c), indicating that the signal and
noise in the wind stress field are not well separated.
In order to reduce the space further and to have a

consistent multivariate basis, a second EOF analysis is
conducted. A vector b is constructed from the PCs of
SST, wind stress, and sea level:

1 2 31 2 3a a aa a aJ J J1 1 11 2 3b $ % , . . . , % , % , . . . , % , % , . . . , % .1 1 2 2 3 3" #& & & & & &1 1 2 2 3 3

(2)
Here, , , and are the PCs of SST, wind stress,1 2 3a a aj j j
and sea level with dimensions J1 $ 91, J2 $ 154, and
J3 $ 85; %1, %2, %3 are the weights assigned to SST, wind
stress, and sea level, respectively; , , and are2 2 2& & &1 2 3
the total variance described by each set of PCs:

J'

2 ' 2& $ [a (t)] , ' $ 1, 2, 3. (3)! !' j
j$1 t

The vector b is then decomposed into EOFs fj and PCs
dj(t) and filtered by truncating at the Kth MEOF,
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FIG. 3. (Continued )

K

b(t) $ d (t)f . (4)! j j
j$1

The PCs dj(t) represent the three physical fields in the
phase space spanned by the MEOFs and will be used
to construct Markov models in next section. The cor-
responding spatial pattern gj, containing three physical
fields, can be derived from the EOF patterns of each
variable e j, the MEOF functions f j, and the weights %1,
%2, %3. So the combined fields of SST, wind stress, and
sea level are decomposed into spatial patterns gj and
PCs dj(t).
We now examine the variance distribution among the

MEOFs where SST, wind stress, and sea level are equal-
ly weighted, for example, %1 $ 1, %2 $ 1, %3 $ 1. Figure
1 shows that the variance distributions of SST and sea
level among the MEOFs are very similar to those among
the EOFs, while the variance distribution of wind stress
among the EOFs and MEOFs are somewhat different.
This result indicates that the dominant EOFs of SST
vary coherently with those of sea level, but the dominant
EOFs of wind stress do not. This is understood since
SST and sea level contain mainly low-frequency vari-

abilities associated with ENSO, while wind stress con-
tains a significant amount of high-frequency variabilities
not associated with ENSO. Figure 1 also shows that the
variance distributions of SST and sea level become flat
when the order of MEOFs is greater than 3. This sug-
gests that the appropriate number of MEOFs for the
construction of Markov models is 3.
The MEOF modes calculated for the whole time se-

ries do not necessarily maximize the variance represen-
tation for the time series at a specific calendar month.
Since the PC time series at a specific calendar month
are not orthogonal to each other, the variances among
the MEOFs are not separable. So we used cumulative
variance percentages, defined as ( $ 1 " "Z " Z)"2/
"Z"2, to describe how well each physical field is rep-
resented by the first few MEOFs. Here Z represents the
original physical field, Z) is the field represented by the
first few MEOFs, and " · "2 is the sum of the variance.
Figure 2 shows that the cumulative variance percentages
of SST, wind stress, and sea level all vary with seasons,
and the seasonal variations are most prominent in sea
level. For sea level, the first MEOF accounts for 49%
of the variance in winter, but only 17% in summer, for
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FIG. 4. Hovmoeller plots of (a) SST anomalies, (b) zonal wind stress anomalies, and (c) sea level anomalies averaged in the equatorial
belt 2#S–2#N. For each variable the total field; the first, second, and third MEOF; and the residual field are shown in the first, second, third,
fourth, and fifth columns, respectively. In (a) the contour interval is 0.5; in (b) the contour interval is 0.1 except it is 0.05 for the third
MEOF; in (c) the contour interval is 3.

example, a change of 65% (Fig. 2b). However, when
the second MEOF is included, the seasonal variation is
much less. This suggests that the second MEOF con-
tributes to the variance more in summer than in winter,
which is opposite to what the first MEOF does. Includ-
ing the third MEOF increases the cumulative variance
percentage about 10% evenly for all the seasons. The
three MEOFs together account for about 63% of the
variance of sea level relatively evenly through the year.
For SST the cumulative variance percentage of the

first MEOF varies about 33% in a year, which is much
less than that of sea level (Fig. 2a). The three MEOFs
together explain about 60% of the variance of SST rel-
atively evenly through the year. In contrast, the three
MEOFs do not represent wind stress well, especially in
early summer (Fig. 2c). If we assume that the unrep-
resented variability of wind stress is not critical for
ENSO development, the three MEOFs span a useful
reduced space in which Markov models can be built.

c. Spatial and time variability of MEOFs

Figure 3 shows the spatial patterns and the normalized
PCs of the first three MEOFs discussed above. The first
MEOF pattern resembles a mature phase of ENSO
where the SST in the eastern and central Pacific is ab-
normally warm (Fig. 3a). Associated with the positive
SST anomalies are convergent winds on the equator
where the wind stress anomaly maximum is located to
the west of the SST anomaly maximum. In addition, the
sea level is anomalously high in the eastern Pacific and
low in the western Pacific. The PC shows maxima for
all the warm and cold events.
The second MEOF describes an onset phase of ENSO

because the PC of the second MEOF leads that of the
first MEOF by 9–12 months (Figs. 3a,b). Here the sea
level has a maximum on the equator east of the date
line. Associated with the sea level maximum are positive
SST anomalies near the date line. It is noted that the
negative SST anomalies along the west coast of South
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FIG. 4. (Continued )

America are mainly due to the 1982/83 event. The wind
stress anomalies on the equator are convergent toward
the positive SST anomalies; off the equator an anom-
alous cyclonic flow in the northwest Pacific is associated
with the SST anomalies in the subtropics. These cy-
clonic winds contribute to the sea level minimum in the
northwest Pacific.
The third MEOF pattern is characterized by a narrow

belt of positive SST anomalies on the equator in the
eastern Pacific surrounded by negative SST anomalies
off the equator (Fig. 3c). In this case the wind stress is
generally weak on the equator, while the sea level is
anomalously high in the whole equatorial belt. The PC
of the third MEOF indicates that this MEOF accounts
for the changes of structures from event to event.
The contribution of each MEOF to the variabilities

of SST, wind stress, and sea level on the equator are
shown in Fig. 4. For comparison, the total and residual
fields (defined as the differences between the total fields
and the fields spanned by the three MEOFs) are also
shown. For better displaying the signals, a 3-month run-
ning mean has been applied to the total and residual
fields of SST and sea level, and a 5-month running mean

has been applied to the total and residual fields of wind
stress. It is seen in Fig. 4a that the first MEOF accounts
for most of the variability of SST on the equator and
the second MEOF is usually weak except during the
1982/83 and 1997/98 events. The third MEOF has some
weak variability in the far eastern Pacific. The amplitude
of the residual field is typically 0.5#C except it is much
larger during the 1982/83 and 1997/98 events.
The variations of the first two MEOFs in zonal wind

stress are important while the variations of the third
MEOF is negligible (Fig. 4b). The amplitude of the
residual wind stress is as large as 0.4 dyn cm"2. Since
this is the 5-month running mean of the residual field,
the amplitude of the actual residual field can be even
larger.
Blanke et al. (1997) derived a residual wind stress

similar to that discussed above and suggested that such
residual wind stress anomalies can have a significant
impact on the predictability of ENSO. Similar results
are also obtained by Eckert and Latif (1997) and Moore
and Kleeman (1999). When a Markov model is con-
structed in the MEOF space spanned by the three
MEOFs, the potential impact of the residual wind stress
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FIG. 4. (Continued )

on predictability of ENSO is ignored. This is also true
in most of dynamical coupled models in which atmo-
spheric components do not simulate such high-frequen-
cy winds well.
Figure 4c shows that all the three MEOFs contribute

to the equatorial sea level variabilities significantly. The
first MEOF describes an east–west oscillation of sea
level, and the second MEOF describes a buildup of sea
level in the central equatorial Pacific. The third MEOF
describes an uniform sea level change across the equa-
torial belt. The amplitude of the residual sea level is
typically 3 cm, except it is much larger during the 1997/
98 event.

3. Markov models and seasonality
a. Markov models
Two kinds of Markov models are constructed, re-

ferred as nonseasonal and seasonal Markov models. The
deviations of the Markov models are provided in ap-
pendix. The nonseasonal Markov model contains one
monthly transition matrix, which is a first-order linear
regression based on the monthly PC time series. The

nonseasonal Markov model is very similar to the linear
inverse model by Penland and Magorian (1993). Xue
et al. (1994) constructed seasonal Markov models that
contain 12 monthly transition matrixes for month to
month evolution. Since the sample size for training each
of the 12 monthly transition matrixes is one-twelfth of
that for training the monthly transition matrix for the
nonseasonal Markov model, the statistical significance
of the seasonal Markov model is lower than that of the
nonseasonal Markov model. In order to increase the
statistical significance, we sacrificed some of the annual
cycle resolution by developing phase-averaged Markov
models (see the appendix for details). This approach is
similar to that of Hasselmann and Barnett (1981), who
used three harmonics to approximate the annual cycle.

b. Seasonality

The importance of seasonality in the ENSO system
has been discussed extensively using simple and inter-
mediate couple models (Philander 1983; Zebiak and
Cane 1987; Battisti 1988). It is also considered impor-
tant in statistical modeling for ENSO (Hasselmann and
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FIG. 5. Seasonality in the seasonal Markov model with 3 retained MEOFs. (a) A schematic plot of the elements of the monthly transition
matrices. The elements in the (b) first, (c) second, and (d) third columns of the monthly transition matrices are shown as functions of calendar
months.

Barnett 1981; Barnston and Ropelewski 1992). How-
ever, there is a debate on whether seasonality should be
included in Markov models. The linear inverse model
by Penland and Magorian (1993) did not include sea-
sonality. Blumenthal (1991) and Xue et al. (1994), how-
ever, included seasonality in their Markov models,
which are best fits to the ZC model. Recently, Johnson
(2000) revisited some of the analyses in Penland and
Magorian (1993), and concluded that seasonality is an
important component of the deterministic dynamics of
ENSO. In a subsequent study, Johnson et al. (2000)
found that including seasonality in Markov models did
not significantly improve prediction skill because there
is a trade-off between the improvement of prediction by
including seasonality and the reduction in significance
of the model due to the reduction of sample size.
The seasonal variations of the model parameters of

the seasonal Markov models are shown in Fig. 5. It is
seen that the monthly transition matrices of the seasonal
Markov models are largely diagonal. This suggests that

persistence is dominant in monthly timescales. The sea-
sonal variations of the diagonal elements are small,
while the seasonal variations of the off-diagonal ele-
ments are substantial. In the 6-month transition matrix-
es, the off-diagonal elements are as large as the diagonal
elements, indicating energy exchanges between the
MEOF modes (Fig. 6). Most of the matrix elements have
substantial seasonal variations. These results indicate
that seasonality is generally small in monthly timescales
but is large in 6-month timescales. So including sea-
sonality in Markov models should improve prediction
skill more at long lead times than at short lead times.
Next we will compare the skill of the nonseasonal and
seasonal Markov models.

c. Skill comparison

A series of nonseasonal and seasonal Markov models
are constructed with different number of retained
MEOFs. The skill of the Markov models is measured
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FIG. 6. Same as Fig. 5 except for the 6-month transition matrixes.

by model–observation correlation of the averaged SST
anomaly in the Niño-3.4 region (5#S–5#N, 170#–
120#W). Figure 7 shows a comparison between the skills
of the nonseasonal and seasonal Markov models for
1980–95. Since the data used for verification are also
used for constructing the models, this skill is referred
as noncross-validated skill later. When three MEOFs are
retained, the noncross-validated skill of the seasonal
Markov model is better than that of the nonseasonal
Markov model (Fig. 7a). As expected, the improvement
of skill at long lead times is larger than that at short
lead times. However, this improvement of skill might
not be statistically significant since the number of the
model parameters in the seasonal Markov models are
12 times that in the nonseasonal Markov model. With
10 retained MEOFs, the number of the model param-
eters in the nonseasonal Markov model is about the same
as that in the seasonal Markov model with three retained
MEOFs. Figure 7a shows that the skill of the nonsea-
sonal Markov model with 10 retained MEOFs is still
lower than that of the seasonal Markov model with three
retained MEOFs. The above results suggest that sea-

sonal Markov models generally fit the data better than
nonseasonal Markov models.
The hindcast skill of the Markov models for the in-

dependent 1964–79 period is expected to be lower than
the noncross-validated skill for 1980–95 (Fig. 7b). Be-
sides, the hindcast skill is hurt due to the inaccuracy of
the sea level simulation that is used as initial conditions
for Markov models in this period. Behringer et al. (1998)
showed that the inaccuracy of the sea level simulation
is 4–5 cm in the equatorial belt, which is 1–2 cm larger
than that of the sea level analysis. In addition, inter-
decadal changes of predictability of ENSO also con-
tribute to the lower skill in the pre-1980 period than in
the post-1980 period (Balmaseda et al. 1995).
The hindcast skill of the seasonal Markov model with

three retained MEOFs is significantly better than that
of the nonseasonal Markov model with three retained
MEOFs (Fig. 7b). Including more MEOFs does not help
the hindcast skill of the nonseasonal Markov models
much (Fig. 7b).
The above results suggest that seasonality is an im-

portant component of ENSO and should be included in
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FIG. 7. Model–observation correlation of Niño-3.4 SST anomalies
for (a) 1980–95 and (b) 1964–79 as functions of lead months for the
seasonal (solid) and nonseasonal (dashed) Markov models with 3
retained MEOFs, and the nonseasonal Markov models with 10 re-
tained MEOFs (dotted).

Markov models. From now on only seasonal Markov
models are discussed.

4. Impact of sea level on prediction skill

a. Noncross-validated skill

The Markov models discussed above are built in an
MEOF space in which SST, wind stress, and sea level
are equally weighted. An interesting question is how
the prediction skill of Markov models changes when the
weightings among the three variables are changed. In
particular, we study the impact of sea level on the pre-
diction skill of Markov models.
Four sets of Markov models are built in which the

weightings among SST, wind stress, and sea level are
different. MK(SST) stands for a model built in anMEOF
space in which wind stress and sea level are weighted
substantially less than SST, specifically %1 $ 1, %2 $
10"20, %3 $ 10"20. So the MEOFs are essentially de-
termined by SST. MK(SST, TAU) stands for a model
built in an MEOF space in which the weights of SST,
wind stress, and sea level are %1 $ 1, %2 $ 1, %3 $
10"20, respectively. MK(SST, TAU, SL) stands for a
model built in an MEOF space where %1 $ 1, %2 $ 1,
%3 $ 1. MK(SL) stands for a model built in an MEOF
space where %1 $ 10"20, %2 $ 10"20, %3 $ 1.
For each of the model sets a series of Markov models

are constructed with different number of retained
MEOFs. The noncross-validated skill of the Markov
models with 2, 3, 5, and 7 retained MEOFs for 1980–
95 is shown in Fig. 8. Although this skill is expected
to increase with the number of retained MEOFs, it is
not always true because the Markov models are best fits
for monthly evolutions only. For example, the skill of
the model MK(SST) with 3 retained MEOFs is higher
than that with 2 retained MEOFs (Fig. 8a). However,
when 5 MEOFs are retained the skill of MK(SST) is
slightly lower than that with 3 retained MEOFs. When
7 MEOFs are retained the skill of the model is improved
further. The overall skill of MK(SST, TAU) is compa-
rable to that of MK(SST) (Fig. 8b). This is understood
since wind stress anomalies are well correlated with SST
anomalies and they do not add much new information.
The skill of the model MK(SST, TAU, SL) with 3 re-
tained MEOFs is substantially higher than that with 2
retained MEOFs (Fig. 8c). When more than 3 MEOFs
are retained the skill changes little. The overall skill of
MK(SL) is comparable to that of MK(SST, TAU, SL)
(Fig. 8d).
Figure 8 shows that the Markov models that include

sea level information generally fit the data better than
the Markov models without sea level information. For
example, with 2 retained MEOFs the skill of the model
MK(SL) is as high as that of the model MK(SST) with
7 retained MEOFs (cf. Figs. 8a and 8d). This can be
explained by referring to the results in section 2. There
the first EOF of SST accounts for about 52% of the

total variance and the higher-order EOFs (*1st) contain
much less variance (Fig. 1a). So the signal to noise ratio
for the higher-order EOFs of SST is low. However, the
variance of sea level is more evenly distributed among
the EOFs (Fig. 1b). The signal to noise ratio for the first
few EOFs of sea level is relatively high. With the same
number of retained MEOFs the model based on sea level
contains less noise than the model based on SST. The
fact that the overall skill of MK(SST, TAU, SL) is com-
parable to that of MK(SL) suggests that when SST, wind
stress, and sea level are equally weighted the skill of
the Markov models is mostly controlled by sea level.
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FIG. 8. Model–observation Niño-3.4 correlation for 1980–95 (not cross validated) as functions
of lead months for (a) MK(SST), (b) MK(SST, TAU), (c) MK(SST, TAU, SL), and (d) MK(SL).
The different curves are for models with 2 (solid), 3 (short dashed), 5 (dot-dashed), and 7 (long
dashed) retained MEOFs.

The skill of the Markov models has a seasonal de-
pendency. It is seen in Fig. 9a that the skill is highest
when models start from the boreal spring, and it is low-
est when models start from the boreal winter. The skill
appears drop substantially when forecasts pass through
the spring season. This sharp drop of skill in spring is
common in various prediction schemes (Latif et al.
1993; Barnston and Ropelewski 1992) and is often re-
ferred as ‘‘spring barrier.’’ A similar characteristic is
seen in the autocorrelation of observed Niño-3.4 anom-
alies (Fig. 9b). Xue et al. (1994) proposed that the rapid
drop of skill in spring is due to the small variance at
that time and thus is characteristic of the ENSO cycle.

It is noticed that the decline of the skill in spring is
not as sharp as that in the autocorrelation, and it is often
followed by a substantial recovery. Balmaseda et al.
(1995) suggested that the correlation skill decline and
recovery are due to seasonal changes in variance, be-
cause low variance tends to decrease correlations. In
addition, skill recovery is assisted by a physical mech-
anism, that sea level and SST information are not lost
simultaneously and the coupled system can keep part
of its memory. A comparison between Figs. 9a and 9b
shows that the skill is improved most by knowing sea
level information for spring starts when SST persistence
is the weakest.
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FIG. 9. Model–observation Niño-3.4 correlation for 1980–95 (not cross validated) as functions
of start months and lead months by (a) MK(SST, TAU, SL) with three retained MEOFs. (b)
Autocorrelation of the monthly observed Niño-3.4 for 1980–95 as functions of starting months
and lead months. Notice there is a rapid decline of correlation around Apr in (a) and (b).

b. Hindcast skill
The hindcast skill of the Markov models is estimated

using the independent 1964–79 period. Figure 10 shows
that the hindcast skill of MK(SST) does not vary much
with the number of retained MEOFs and is slightly high-
er than the skill of the persistence forecasts. The hind-
cast skill of MK(SST, TAU) is not sensitive to the num-
ber of retained MEOFs either and is also slightly better
than the skill of the persistence forecasts. The hindcast
skill of MK(SST, TAU, SL) with 3 retained MEOFs is
substantially higher than that with 2 retained MEOFs
and keeping more MEOFs (*3) does not help the skill

much. The hindcast skill of MK(SL) is similar to that
of MK(SST, TAU, SL) and both models have a signif-
icantly higher skill than that of the persistence forecasts.
Generally speaking, the models that include sea level

information have a higher skill than the models without
sea level information. For example, at 6-month lead
the model MK(SST, TAU, SL) with 5 retained MEOFs
has a skill of 0.7; the model MK(SL) with 5 retained
MEOFs has a skill of 0.8; while the skills of the models
MK(SST) and MK(SST, TAU) are only 0.5.
We wonder whether the poor skill of MK(SST) was

due to the use of monthly SST anomalies, which are
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FIG. 10. Same as Fig. 8 except for the independent 1964–79 period. The skill of the
persistence forecasts is also shown (dot).

often considered too noisy for Markov models (Penland
and Magorian 1993; Johnson et al. 2000). We recon-
structed Markov models using the 3-month running
mean of SST anomalies and found that the new Markov
models fit the data slightly better for the training period,
but the skill for the independent 1964–79 period is about
the same as before.
The hindcast skill of the Markov models has a strong

seasonal dependency, similar to that of the autocor-
relation of observed Niño-3.4 anomaly (Fig. 11). As
for the 1980–95 period, the hindcast skill is improved
most by knowing sea level information for spring starts
when SST persistence is the weakest. A comparison
between Figs. 9 and 11 suggests that the spring barrier

for 1964–79 is stronger than that for 1980–95. This
result is consistent with that of Balmaseda et al. (1995),
who studied the seasonal dependency of prediction
skill of an intermediated coupled model in the pre- and
post-1980 periods. They suggested that this difference
depends substantially on the degree of phase locking
of El Niño to the annual cycle, as well as on stability
conditions associated with the background seasonal cy-
cle.

c. Cross-validated skill

The hindcast skill of the Markov models for 1980–
95 can be estimated using a cross-validation scheme
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FIG. 11. Same as Fig. 9 except it is the hindcast skill for 1964–79.

(Barnston and Ropelewski 1992). In a cross-validation
scenario, one year of data is removed, and a Markov
model is trained upon the remaining years (15 yr) and
verified at the removed year. The 1-yr window is
moved forward month by month until the end of the
time series is reached. So there are totally 192 $ 16
! 12 multiple analyses with different years removed.
Only MK(SST, TAU, SL) and MK(SL) are cross-val-
idated because they have a modest skill for 1964–79.
Figure 12 shows that the skill of MK(SST, TAU, SL)
with 3 retained MEOFs is slightly higher than that of
the models with 2, 5, and 7 retained MEOFs at long
lead times. Although the cross-validated skills are low-

er than the noncross-validated skills at all the four
MEOF truncations (cf. Figs. 12a and 8c), they all out-
perform the persistence forecasts at lead times longer
than 4 months. The skill of MK(SL) with 2 retained
MEOFs is the highest and keeping more MEOFs de-
creases the skill. But all the models with different
MEOF truncations outperform the persistence forecasts
at lead times longer than 5 months.
The correlation skills in Figs. 8c, 10c, and 12a suggest

that the appropriate number of retained MEOFs for
MK(SST, TAU, SL) is 3. The correlation skills in Figs.
8d, 10d, and 12b suggest that no more than 3 MEOFs
are needed for MK(SL). Since the skill of MK(SST,
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FIG. 12. Model–observation Niño-3.4 correlation for 1980–95 (cross validated) as functions of
lead months for (a) MK(SST, TAU, SL) and (b) MK(SL). The different curves are for models
with 2 (solid), 3 (short dashed), 5 (dot-dashed), and 7 (long dashed) retained MEOFs.

TAU, SL) and MK(SL) is modest for both the training
and independent periods, we propose that ENSO can be
approximately described as a low-order linear system
with a dimension of 3.
The cross-validated skill of the Markov models is

hampered by the small sample size. This can be seen
from the comparison between the Niño-3.4 SST anom-
alies forecast by MK(SST, TAU, SL) with 3 retained
MEOFs with and without cross validation (Fig. 13). It
is seen that the Niño-3.4 SST anomalies forecasts are
very similar in both cases, except during the 1982/83
event. There the fast growth and decay phases were
seriously underestimated. Despite our short record, the
model has a useful skill for up to a 6-month lead in
forecasting moderate events such as those of 1984/85,
1986/87, 1988/89, and 1991/92. The lead time with
usable skill for forecasting the short warm episode in
1994 and the 1995/96 weak cold event is only about
3 months.

d. ‘‘Real time’’ forecast skill
The model MK(SST, TAU, SL) with 3 retained

MEOFs is used to predict the 1997/98 warm and the
1998/99 cold events. Figure 14 shows the individual 12-
month forecasts of Niño-3.4 SST anomalies. The thin
lines in each panel of the figure depict forecasts starting
from three consecutive months for each year. For ex-
ample, the top left panel depicts all the forecasts initiated
in December–February (DJF) of each year. The phase
transition from a mild cold to warm anomaly in the early

1997 is delayed by the model by 1–2 months (Fig. 14a).
The fast growth in the spring and early summer of 1997
is seriously underestimated by the model (Fig. 14b). The
predictions initiated from the late 1996 and early 1997
underestimated the peak phase of the event, but the
predictions initiated later improve with shorter lead
times. This is also the case for most of ENSO prediction
models (Barnston et al. 1999). The decay phase of the
warm event was predicted quite well except the tran-
sition to the cold phase was delayed by two months.
The amplitude of the 1998/99 La Niña event was fore-
cast well. The overall performance of the Markov model
is competitive among the best performers of various
dynamical and statistical models documented by Barns-
ton et al. (1999).
The spatial patterns of the observed and forecast SST

initiated from March 1997 are shown in Fig. 15. The
warming in the eastern Pacific is seriously underesti-
mated by the model but the warming in the central Pa-
cific is simulated well. The spatial patterns of the fore-
cast SST by the Markov model initiated from March
1998 are shown in Fig. 16. A negative anomaly starts
on the equator in the central Pacific in summer 1998
and amplifies quickly in fall, and at the same time the
positive anomaly in the southeastern Pacific retreats
quickly. This evolution of the 1998/99 cold event is well
simulated by the Markov model.
The model MK(SL) was also used to forecast the

1997/98 El Niño and the 1998/99 La Niña events. The
forecast NINO3.4 anomalies are actually indistinguish-
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FIG. 13. A comparison of the forecast Niño-3.4 SST an anomalies by MK(SST, TAU, SL) with three retained
MEOFs with (solid) and without (dashed) cross validation at 3-, 6-, 9-, and 12-month leads. The observed Niño-
3.4 SST anomalies are shown by the light lines.

able to those by the model MK(SST, TAU, SL) (not
shown). This suggests that the forecast skill of the Mar-
kov models is determined by sea level, which contains
the critical information for the development of these
two major events.

5. Summary and discussions
Markov models are constructed in a multivariate

EOF space of observed SST, wind stress, and sea level
analysis in 1980–95. Two types of Markov models,
which include and exclude seasonality, are discussed.
It is found that seasonality is small in monthly time-
scales but large in 6-month timescales. So including

seasonality in Markov models improves prediction
skill more at long lead times than at short lead times.
This result is consistent with the conclusions of Has-
selmann and Barnett (1981) and Johnson (2000) that
seasonality is an important component of the ENSO
system and should be included in statistical modeling
for ENSO.
Four sets of Markov models are constructed in MEOF

spaces where the weightings among SST, wind stress,
and sea level are varied. It is found that the models
MK(SST, TAU, SL) and MK(SL), which include sea
level information, generally fit the data better than the
models MK(SST) and MK(SST, TAU), which do not
include sea level information. This is because the signal
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FIG. 14. Evolution of Niño-3.4 SST anomalies (#C) from all forecasts initiated monthly using MK(SST, TAU, SL) with three retained
MEOFs from Oct 1996 to Jan 1999. Shown in each panel are the forecasts grouped by three consecutive starting months: (a) DJF, (b) MAM,
(c) JJA, and (d) SON. The observed Niño-3.4 SST anomalies are shown by the heavy-dashed lines.

to noise ratio for the first few EOFs of sea level is higher
than that for SST and wind stress. With the same number
of retained MEOFs, the models that include sea level
information contain less noise than the models without
sea level information.
The impact of sea level on the prediction skill of

Markov models can be seen from two aspects. For the
training period the models that include sea level infor-
mation fit the data better than the models without sea
level information; for the independent 1964–79 period
the models that include sea level information have a
much higher hindcast skill than the models without sea
level information. Those results suggest that sea level
carries the most critical information for ENSO. This is
consistent with the fact that prediction skill of numerical
models has been significantly improved by assimilating
subsurface temperature data into ocean initial condi-
tions, assuming sea level is equivalent to subsurface
temperature (Kleeman et al. 1995; Ji and Smith 1995;
Rosati et al. 1996).
Many studies suggest that oceanic heat content,

which is equivalent to sea level, in the equatorial Pa-

cific is critical for the timing and strength of ENSO
events (Wyrtki 1985; Zebiak and Cane 1987; Zebiak
1989). The oceanic heat content information can be
obtained by either forcing ocean models with observed
wind stress or directly assimilating subsurface tem-
perature data into ocean models. Since Markov models
can only use information in the last time step, they
cannot simulate the integrated response of the ocean
to wind forcings. So they rely on sea level data for
oceanic heat content information. This is similar to the
situation where ocean data assimilation systems are
used to provide the most accurate oceanic heat content
information.
The model MK(SST, TAU, SL) with 3 retained

MEOFs successfully predicted the 1997/98 El Niño and
the 1998/99 La Niña, and its performance is competitive
among the best performers of various dynamic and sta-
tistical models documented by Barnston et al. (1999).
Like many other models the Markov model predicted a
warming for 1997/98 a year in advance, but the fast
warming in spring and summer was significantly un-
derestimated. An outstanding question is whether the
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FIG. 15. A comparison of the seasonal mean SST anomalies forecast (left column) by
MK(SST, TAU, SL) with three retained MEOFs initiated from Mar 1997 and the observation
(right column).

amplitude of the event was predictable starting from late
1996 and early 1997. Moore and Kleeman (1999) sug-
gest that the two strong Madden–Julian oscillations ini-
tiated in January and March of 1997 caused optimal
perturbation growth that significantly increased the in-
tensity of this event. If this is indeed the cause, then
ENSO prediction models will need to simulate the in-
fluences of atmospheric high-frequency variability on
ENSO development.
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FIG. 16. A comparison of the seasonal mean SST anomalies forecast (left column) by
MK(SST, TAU, SL) with three retained MEOFs initiated from Mar 1998 and the observation
(right column).

APPENDIX
Construction of Markhov Models

The formula for nonseasonal Markov models is
bi+1 $ Abi + e i, (A1)

where bi is the PC of the MEOFs at the ith month, A
is the monthly transition matrix and e i is the residue.
Multiplying by the transpose of vector bi on both sides
of (A1), then averaging on all samples gives

,bi+1 - $ A,bi - + ,e i -,T T Tb b bi i i (A2)
where , · · · - means the average over all samples. For
the best fit model A, e i does not correlate with bi, so

A $ ,bi+1 -,bi -"1 $ Ci ;T T "1b b Di i i (A3)
here Ci is the lag-1 covariance matrix, while Di the
autocovariance matrix. Equation (A3) is often described
as a Yule–Walker equation in the literature (Brockwell
and Davis 1991).
For the construction of seasonal Markov models, the

monthly PCs bi are grouped into 12 subsets, one for
each calendar month. In Xue et al. (1994), the data in
subset m and m + 1 were used to calculate the monthly
transition matrix A (m) from month m to m + 1, and in
total 12 monthly transition matrixes were constructed.
Since the data sample for training each of the 12 month-
ly transition matrixes is one-twelfth of that for training
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the monthly transition matrix of the nonseasonal Mar-
kov model, the statistical significance of seasonal Mar-
kov models is lower than that of nonseasonal Markov
models. One way to increase the statistical significance
of the model is to sacrifice the annual cycle resolution
(Hasselamann and Barnett 1981). We tripled the sample
size by including the data samples one month before
and after the month m in subset m. So A (m) is a phase-
averaged monthly transition matrix for the three months
centered at m.
Denoting the data in subset m by bm, the formula is

bm+1 $ A (m)bm + em, (A4)

where A (m) is the monthly transition matrix and em is the
residue. Multiplying by the transpose of vector bm on
both sides of (A4), then averaging on all the samples
in subset m (16 ! 3 data points) gives

,bm+1 - $ A (m),bm - + ,em -.T T Tb b bm m m (A5)

For the best fit model A (m) , em does not correlate with
bm, so

A (m) $ ,bm+1 -,bm -"1 $ Cm ;T T "1b b Dm m m (A6)

here Cm is the lag-1 covariance matrix, while Dm is the
autocovariance matrix for subset m.
When a prediction is made for leads longer than one

month, the monthly transition matrices are used se-
quentially through the forecast lead time. For example,
a prediction starts from vector bm and lasts for six
months, the final vector bm+6 is

bm+6 $ A (m+6) · · · Am+1A (m)bm. (A7)
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