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Outline
• Background

– Uncertainty in NWP systems, Ensembles

• Ensemble forecast verification

– Performance metrics: Brier Score, CRPSS

• New concepts and developments

– Distribution fitters, Multi-model combination
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Background on Ensemble Forecasting

• Uncertainty in NWP systems

• Ensemble forecasts and probability forecasts

• Ensemble products

– Ensemble mean

– Spaghetti Plots

– Stamps and plumes
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Uncertainties in NWP

Sources: Instrument errors, bias in 

frequency of measurements, 
representativeness, reporting 
errors, random errors, precision 

errors, conversion errors, etc.

Observation errors ���� Uncertainty 
in initial conditions

Model errors ���� Uncertainty in 
modeling the evolution of 
weather

Sources: Insufficient spatial 

resolution, truncation errors in the 
dynamical equations, 
approximation errors to solve 
them, ad hoc parameterization, 
average errors, coding errors!, 
bias in frequency of initialization, 
etc.
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What is an ensemble forecast?
An approximation of the probability distribution reflecting the 

uncertainty associated with initial and model errors. 

Solutions of NWP systems are sensitive to initial conditions; each model run 
samples the initial unknown PDF; an evolving uncertainty PDF is determined 
by collecting forecasts verifying at a given (verifying) time 

Forecast timeInitial Verifying

PDFinitial

PDFverifying

nature Deterministic model forecast



6

Application: Ensemble Average
• Ensemble mean (=average when each ensemble member is equally 

likely to occur) can be used as single forecast.

• Average removes short-lived variations retaining slowly-varying 
patterns (Leith 1974).

Ensemble mean (green) more skillful than 
single forecasts after day 4

After lead 4 errors from ensemble mean 
(green) approach climatology and are 

smaller than errors from single forecasts.
Figs. from Yuejian Zhu (EMC/NCEP/NOAA)
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Spaghetti Diagrams

• Contours of ensemble forecasts at specific geopotential heights at 500hPa
• Visualizing the amount of uncertainty among ensemble members

• High confidence of the forecast in regions where members tend to 
coincide

• Advantages over mean-spread diagrams: keeps features sharp, allows 
identifying clustering of contours (e.g., bi-modal distributions)  

Large 
uncertainty
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Stamps
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Plumes

Hurricane tracks

El Nino 3.4 Index
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Quantitative description

• Assume each deterministic forecast in the ensemble is an independent 
realizations of the same random process

• Forecast probability of an event is estimated as the fraction of the 
forecasts predicting the event among all forecasts considered (relative 
frequency of occurrence)

t

x

n

n
xP ≈)(

If nt is the ensemble size, and nx is the number of members that 
predict the event x, the probability P(x) that the event will happen 
can be approximated as:

observation

3/81 11/81 67/81

Forecasts
Observed climate



11

Probability forecast

• Probability conveys level of uncertainty of 
a given forecast

Probabilistic forecast: assigns a 
probability value between 0 and 
100%

Categorical forecast: Yes/No. 

Only 100% or 0% probability

Example: There is a 30% chance of precipitation (referred to 
as PoP) for today in College Park

• Probabilistic forecasts cannot be verified with one single event
• Verification requires many cases in which the 30% PoP has been 
issued 
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Probabilistic forecast verification

• Comparison of a distribution of forecasts to a 
distribution of observations

• Characteristics of a forecast system:

– Reliability: How well the a priori predicted probability forecast of 
an event coincides with the a posteriori observed frequency of the 
event

– Resolution: How much the forecasts differ from the 
climatological mean probabilities of the event, and the systems 
gets it right?

– Sharpness: How much do the forecasts differ from the 
climatological mean probabilities of the event?

– Skill: How much better are the forecasts compared to a reference 
prediction system (chance, climatology, persistence,…)?
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Brier Skill Score (BSS)
Reliability Diagrams 
Relative Operating Characteristics (ROC)
Rank Probability Score (RPS)
Continuous RPS (CRPS)
CRP Skill Score (CRPSS)
Rank histogram (Talagrand diagram) 

Performance measures of probabilistic 

forecast
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The Brier Score

• Mean square error of a probability forecast
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• Measures accuracy. Range: 0 to 1. Perfect=0

• Weights larger errors more than smaller ones

where N is the number of realizations, pi is the probability forecast of 
realization i. Oi is equal to 1 or 0 depending on whether the event 
(of realization i) occurred or not. 
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Components of the Brier Score

Decomposed into 3 terms for K probability classes and 
a sample of size N:

kk po =

)1(    )(
1

    )(
1

    
2

1

2

1

oooon
N

opn
N

BS
K

k
kkk

K

k
kk

−+−−−= ∑∑
==

reliability                 resolution uncertainty
If for all occasions when 
forecast probability pk is 
predicted, the observed 
frequency of the event is

then the forecast is said to be 
reliable. Similar to bias for a 
continuous variable

The ability of the forecast to 
distinguish situations with 
distinctly different frequencies of 
occurrence.

The variability of the 
observations. Maximized when 
the climatological frequency 
(base rate) =0.5 

Has nothing to do with 
forecast quality! Use the Brier 
skill score to overcome this 
problem.

The presence of the uncertainty term means that 
Brier Scores should not be compared on different 
samples.
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Brier Skill Score

• Brier Skill Score

• If the sample climatology is used, BSS can be 
expressed as:

ref

ref

BS

BSBS −
−=BSS

ref

ref

Unc

RelRes
BSS

−
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Skill: Proportion of improvement of accuracy over the accuracy of a 

reference forecast (e.g., climatology or persistence)

• Range: -Inf to 1; No skill beyond reference=0; Perfect score =1
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Brier Score and Skill Score -
Summary

• Measures accuracy and skill respectively

• Cautions: 

– Cannot compare BS on different samples

– BSS – Take care about underlying climatology

– BSS – Take care about small samples
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Reliability

• A forecast system is reliable if:

– statistically the predicted probabilities agree with the 
observed frequencies, i.e. taking all cases in which the 
event is predicted to occur with a probability of x%, that 
event should occur exactly in x% of these cases; not 
more and not less.

– Example: Climatological forecast is reliable but does not provide any forecast 
information beyond climatology

• A reliability diagram displays whether a forecast system is 
reliable (unbiased) or produces over-confident / under-
confident probability forecasts

• A reliability diagram also gives information on the 
resolution (and sharpness) of a forecast system
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Reliability Diagram
Take a sample of probabilistic forecasts: 

e.g. 30 days x 2200 GP = 66000 forecasts

How often was event (T > 25) forecasted with X probability?

25

25

25

700 (10%)0 (   0%)70000%

800 (15%)550 ( 10%)550010%

….….….….

…. ….….….

….….….….

3000 (66%)3600 ( 80%)450080%

4000 (80%)4500 ( 90%)500090%

7200 (90%)8000 (100%)8000100%

OBS-Frequency

(imperfect model)

OBS-Frequency

(perfect model)

# FCFC Prob.

R. Hagedorn, 2007
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Reliability Diagram
Take a sample of probabilistic forecasts: 

e.g. 30 days x 2200 GP = 66000 forecasts

How often was event (T > 25) forecasted with X probability?
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R. Hagedorn, 2007
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over-confident model perfect model

R. Hagedorn, 2007

Reliability Diagram
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Reliability Diagram

under-confident model perfect model

R. Hagedorn, 2007
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Reliability Diagram
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Brier Skill Score & Reliability Diagram
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• How to construct the area of positive skill?
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R. Hagedorn, 2007
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Construction of Reliability diagram
1. Decide number of categories (bins) and their distribution: 

� Depends on sample size, discreteness of forecast probabilities

� Should be an integer fraction of ensemble size

� Don’t all have to be the same width – within bin sample should be large 
enough to get a stable estimate of the observed frequency.

2. Bin the data

3. Compute observed conditional frequency in each category (bin) k

� obs. relative frequencyk =  obs. occurrencesk /  num. forecastsk

4. Plot observed frequency vs forecast probability

5. Plot sample climatology ("no resolution" line) (The sample base 
rate)

� sample climatology =  obs. occurrences /  num. forecasts

6. Plot "no-skill" line halfway between climatology and perfect 
reliability (diagonal) lines

7. Plot forecast frequency histogram to show sharpness (or plot 
number of events next to each point on reliability graph)
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Reliability Diagram Examples

Atger, 1999

Typical reliability diagrams and sharpness histograms (showing the 
distribution of predicted probabilities). (a) Perfect resolution and reliability, 
perfect sharpness. (b) Perfect reliability but poor sharpness, lower resolution 
than (a). (c) Perfect sharpness but poor reliability, lower resolution than (a). 
(d) As in (c) but after calibration, perfect reliability, same resolution.

(a)

(c)

(b)

(d)
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Reliability Diagram Exercise

Identify diagram(s) with: 
1. Categorical forecast
2. Overconfident
3. Underconfident
4. Unskillful
5. Not sufficiently large 

sampling

From L. Wilson (EC)
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Comments on Reliability Diagrams

• Requires a fairly large dataset, because of the 
need to partition (bin) the sample into 
subsamples conditional on forecast probability

• Sometimes called “attributes” diagram.
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Reliability Diagrams - Summary

• Diagnostic tool

• Measures “reliability”, “resolution” and 
“sharpness”

• Requires “reasonably” large dataset to get 
useful results

• Try to ensure enough cases in each bin

• Graphical representation of Brier score 
components
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Discrimination and the Relative 
Operating Curve

• Reliability diagram – partitioning the data 
according to the forecast probability

• Suppose we partition according to observation 
– 2 categories, yes or no

• Look at distribution of forecasts separately for 
these two categories
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Discrimination
� Discrimination: The ability of the forecast system to clearly 

distinguish situations leading to the occurrence of an event of 
interest from those leading to the non-occurrence of the event.

� Depends on:

� Separation of means of conditional distributions

� Variance within conditional distributions

forecast

fr
e
q
u
e
n
c
y

observed

non-events
observed

events

forecast

fr
e
q
u
e
n
c
y

observed

non-events
observed

events

forecast

fr
e
q
u
e
n
c
y

observed

non-events
observed

events

(a) (b) (c)

Good discrimination Poor discrimination Good discrimination

From L. Wilson (EC)
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Contingency Table

Correct 
negatives

missesno

false alarmshitsyes

noyes

F
o
r
e
c
a
s
t

Observed

HR=

False Alarm Rate Hit Rate
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Construction of ROC curve

• From original dataset, determine bins 
– Can use binned data as for Reliability diagram BUT

– There must be enough occurrences of the event to 
determine the conditional distribution given 
occurrences – may be difficult for rare events.

– Generally need at least 5 bins.

• For each probability threshold, determine HR 
and FAR

• Plot HR vs FAR to give empirical ROC.

• Obtain ROC area



34

ROC - Interpretation

• Measures ability to discriminate 
between two possible outcomes

• Measures resolution; it says 
nothing about reliability (ROC is 
not sensitive to bias)

•Area under ROC curve (A) used 
as a single quantitative measure

• Area range: 0 to 1. Perfect =1. 
No Skill = 0.5

• ROC Skill Score (ROCSS)

ROCSS = 2A – 1

Line of no discrimination

Probability thresholds
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Comments on ROC

• Measures “discrimination”

• The ROC is conditioned on the observations 
(i.e., given that Y occurred, what was the 
corresponding forecast?)  It is therefore a good 
companion to the reliability diagram, which is 
conditioned on the forecasts. 

• Sensitive to sample climatology – careful about 
averaging over areas or time

• Related to the assessment of “value” of 
forecasts

• Can compare directly the performance of 
probability and deterministic forecast
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Rank Probability Score
• Measures the quadratic distance between forecast and verification

probabilities for several probability categories k. Range: 0 to 1. Perfect=0

∑
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kBS

K
RPS
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• It is the average Brier score across the range of the variable

• Ranked Probability Skill Score (RPSS) is a measure for skill relative to a

reference forecast

• Emphasizes accuracy by penalizing large errors more than “near misses”

• Rewards sharp forecast if it is accurate

referenceRPS

RPS
RPSS −=1
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category
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C
D
F

R. Hagedorn, 2007

Rank Probability Score
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Rank Probability Score

∑
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Rank Probability Score

category

f(y)

P
D
F

RPS=0.01
sharp & accurate

category

f(y)

P
D
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RPS=0.15
sharp, but biased
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f(y)

P
D
F

RPS=0.05
not very sharp, 
slightly biased

category

f(y)

P
D
F

RPS=0.08
accurate, 
but not sharp

climatology

R. Hagedorn, 2007
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Continuous Rank Probability Score
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CRPS

• Area difference between CDF observation and CDF forecast

• Defaults to MAE for deterministic forecast

• Flexible, can accommodate uncertain observations
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Continuous Rank Probability Skill Score

referencereference

reference

RPS

RPS

RPS

RPSRPS
RPSS −=

−

−
= 1

0

Example: 
500hPa CRPS of operational GFS (2009; black) and new implementation (red) 

Courtesy of Y. Zhu (EMC/NCEP)
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Rank Histogram

• Do the observations statistically belong to the 
distributions of the forecast ensembles? (consistent 
degree of ensemble dispersion)

• Diagnose the average spread of an ensemble 
compared to observations

• Computation: Identify rank of the observation 
compared to ranked ensemble forecasts

• Assumption: observation equally likely to occur in each 
of n+1 bins.
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Rank Histogram (Talagrand Diagram)
• Rank Histograms asses whether the ensemble spread is 

consistent with the assumption that the observations are 
statistically just another member of the forecast distribution

– Check whether observations are equally distributed among 
predicted ensemble

– Sort ensemble members in increasing order and determine 
where the observation lies with respect to the ensemble 

members

Temperature ->

Rank 1 case Rank 4 case

Temperature ->
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Rank Histograms

A uniform rank histogram is a necessary but not sufficient criterion for 
determining that the ensemble is reliable (see also: T. Hamill, 2001, MWR)

OBS is indistinguishable 
from any other ensemble 
member

OBS is too often below 
the ensemble members 
(biased forecast)

OBS is too often outside 
the ensemble spread
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Comments on Rank Histograms
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• Not a real verification measure
• Quantification of departure from flatness 

where RMSD is the root-mean-square difference from flatness, expressed as number of cases, M
is the total sample size on which the rank histogram is computed, N is the number of ensemble 
members, and sk is the number of occurrences in the kth interval of the histogram. 
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Definition of a proper score

• “Consistency” with your true belief is one of the characteristics 

of a good forecast

• Some scoring rules encourage forecasters to be inconsistent, 

e.g. some scores give better results when a forecast closer to 

climatology is issued rather than the actual forecast (e.g. 

reliability)

• Scoring rule is strictly proper when the best scores are 

obtained if and only if the forecasts correspond with the 

forecaster’s judgement (true belief)

• Examples of proper scores are the Brier Score or RPS
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Estimating Probabilities from 
ensembles

• PDFs and CDFs estimates are interpretations 
of the Ensemble Prediction System outputs

• Approaches

– Discrete

– Histograms

– Continuous (parametric and nonparametric)
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Ensemble Distribution

cdf cdf

10 Members (1/10 likelihood) Discrete Continuous (Logistic fit)
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Histogram

cdf

Non-parametric



49

Example of discrete and fitted cdf

From L. Wilson (EC)
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Continuous Density fitting uses

• For extreme event prediction, to estimate 
centile thresholds.

• Assists with the ROC computation

• Simple to compare ensembles with different 
numbers of members

• Several approaches to estimate “density” from 
observational data (e.g., Silverman, 1986) 

• One of those is the Kernel approach. 
Advantages: Non-parametric; amount of 
smoothing determined by the bandwidth; 
Gaussian kernels fine for unbounded variables; 
Gamma kernels for precipitation
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Definition of Kernel 
• Kernel is a weighting function satisfying the following two requirements:

• Very often, the kernel is taken to be a Gaussian function with mean zero and variance 

1. In this case, the density is controlled by one smoothing parameter h (bandwidth)
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Calibration

• Forecasts of Ensemble Prediction System are subject to 
forecast bias and dispersion errors

• Calibration aims at removing such known forecast 
deficiencies, i.e. to make statistical properties of the raw 
EPS forecasts similar to those from observations 

• Calibration is based on the behaviour of past EPS forecast 
distributions, therefore needs a record of historical 
prediction-observation pairs

• Calibration is particularly successful at station locations 
with long historical data records 

• A growing number of calibration methods exist and are 
becoming necessary to process multi-model ensembles
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Calibration methods for EPS’s

• Systematic error correction

• Multiple implementation of deterministic 

MOS

• Ensemble dressing

• Bayesian model averaging

• Non-homogenous Gaussian regression

• Logistic regression

• Analog method
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present

Lag ensemble

Examples of systematic errors
)()(),( ttttSE odfdofd −=

Note “Warm” tendency of the model
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Example of Bias
Station:  ULAN-UDE  (# 30823, Height: 515m) Lead: 120h
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R. Hagedorn, 2007
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Bias correction

• As a simple first order calibration a bias correction can be 
applied using:

• This correction factor is applied to each ensemble member, 
i.e. spread is not affected 

• Particularly useful/successful at locations with features not  
resolved by model and causing significant bias
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N = number of observation-forecast pairs
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Illustration of first and second 
moment correction
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Multiple implementation of det. MOS

• A possible approach for calibrating ensemble 
predictions is to simply correct each individual 
ensemble member according to its deterministic model 
output statistic (MOS)

• BUT: this approach is conceptually inappropriate since 
for longer lead-times the MOS tends to correct towards 
climatology
– all ensemble members tend towards climatology with longer 
lead-times 

– decreased spread with longer lead-times 

– in contradiction to increasing uncertainty with increasing lead-
times

(Further reading on this problem: Vannitsem (2009), QJRMS)
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• Define a probability distribution around each ensemble 

member (“dressing”)

• A number of methods exist to find appropriate dressing 

kernel (“best-member” dressing, “error” dressing, “second 

moment constraint” dressing, etc.)

• Average the resulting nens distributions to obtain final pdf

Ensemble dressing

R. Hagedorn, 2007
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Training datasets

• All calibration methods need a training 
dataset (hindcast), containing a large 
number historical pairs of forecast-
observation fields
– A long training dataset is preferred to more 
accurately determine systematic errors and to 
include past extreme events

– Common approaches: a) generate a sufficiently 
long hindcast and freeze the model; b) compute 
a systematic error but the model is not frozen.

• For research applications often only one 
dataset is used to develop and test the 
calibration method. In this case it is crucial 
to carry out cross-validation to prevent 
“artificial” skill.



61
3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

D 1 D 2 D 3 D 4 D 5 D 6 D 7 C F S C A M M A C O R F R E R ID R I2 R IM R IW U R

C
o

rr
e

la
ti

o
n

D e p e nd e nt C V -3 R E

Effect of cross-validation on multi-model combination methods 

A
rtific

ia
l s
k
ill



62

References
Atger, F., 1999: The skill of Ensemble Prediction Systems. Mon. Wea. Rev. 127, 1941-1953.

Hamill, T., 2001: Interpretation of Rank Histograms for Verifying Ensemble Forecasts. Mon. Wea. 

Rev., 129, 550-560. 

Silverman, B.W., 1986: Density Estimation for Statistical and Data Analysis, Chapman and Hall Ltd. 

175

Toth, Z., O. Talagrand, G. Candille, and Y. Zhu, 2002: Probability and ensemble forecasts. In: 

Environmental Forecast Verification: A practitioner's guide in atmospheric science. Ed.: I. T. Jolliffe

and D. B. Stephenson. Wiley, pp.137-164.

Vannitsem, S., 2009: A unified linear Model Output Statistics scheme for both deterministic and 

ensemble forecasts. Quarterly Journal of the Royal Meteorological Society, vol. 135, issue 644, pp. 

1801-1815.

Wilks, D., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 464pp.

Internet sites with more information:

http://wwwt.emc.ncep.noaa.gov/gmb/ens/index.html

http://www.cawcr.gov.au/projects/verification/#Methods_for_probabilistic_forecasts

http://www.ecmwf.int/newsevents/training/meteorological_presentations/MET_PR.html


