
 A pair of analogues are two states in a geophysical system, widely separated in time, that are very close.1
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5. Empirical Orthogonal FunctionsThe purpose of this chapter is to discuss Empirical Orthogonal Functions (EOF), both inmethod and application. When dealing with teleconnections in the previous chapter we came veryclose to EOF, so it will be a natural extension of that theme. However, EOF opens the way to analternative point of view about space-time relationships, especially correlation across distant timesas in analogues . EOFs have been treated in book size texts, most recently in Jolliffe (2002), a1principal older reference being Preisendorfer(1988). The subject is extremely interdisciplinary, andeach field has its own nomenclature, habits and notation. Jolliffe’s book is probably the bestattempt to unify various fields. The term EOF appeared first in meteorology in Lorenz(1956).Zwiers and von Storch(1999) and Wilks(1995) devote lengthy single chapters to the topic. Here we will only briefly treat EOF or PCA (Principal Component Analysis) as it is calledin most fields. Specifically we discuss how to set up the covariance matrix, how to calculate theEOF, what are their properties, advantages, disadvantages etc. We will do this in both space-timeset-ups already alluded to in Eqs (2.14) and (2.14a). There are no concrete rules as to how oneconstructs the covariance matrix. Hence there are in the literature matrices based on correlation,based on covariance etc. Here we follow the conventions laid out in Chapter 2. Thepostprocessing and display conventions of EOFs can also be quite confusing. Examples will beshown, for both daily and seasonal mean data, for both the Northern and Southern Hemisphere.EOF may or may not look like teleconnections. Therefore, as a diagnostic tool, EOFs may notalways allow the interpretation some would wish. This has led to many proposed ‘simplifications’of the EOFs, which hopefully are more like teleconnections.However, regardless of physical interpretation, since EOFs are maximally efficient inretaining as much of the data set’s information as possible for as few degrees of freedom aspossible they are ideally suited for empirical modeling.
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5.1 Methods and definitions5.1.1 Working definition:Here we cite Jolliffe (2002, p 1). “The central idea of principal component analysis (PCA) is toreduce the dimensionality of a data set consisting of a large number of interrelated variables, whileretaining as much as possible of the variation present in the data set. This is achieved bytransforming to a new set of variables, the principle components, which are uncorrelated, andwhich are ordered so that the first few retain most of the variation present in all of the originalvariables.”  The italics are Jolliffe’s. PCA and EOF analysis is the same.
5.1.2 The Covariance MatrixOne might say we traditionally looked upon a data set f(s,t) as a collection of  time series of

t slength n  at each of n  gridpoints. In Chapter 2 we described that after taking out a suitable mean {} from a data set f(s,t), usually the space dependent time-mean (or ‘climatology’), the covariancematrix Q can be formed with elements as given by (2.14):
ij i j tq  = ! f (s , t) f (s  , t) / n         ti jwhere s  and  s  are the ith and jth point (gridpoint or station) in space. The matrix Q is square, has

s iidimension n , is symmetric and consists of real numbers. The average of all q  (the main diagonal)equals the space time variance (STV) as given in (2.16). The elements of Q have great appeal to ameteorological audience. Fig.4.1 featured two columns of the correlation version of Q in mapform, the NAO and PNA spatial patterns, while Namias(1981) published all columns of Q (forseasonal mean 700 mb height data) in map form in an atlas.
5.1.3. The Alternative Covariance Matrix



3

tOne might say with equal justification that we look upon f(s,t) alternatively as a collection of  n
smaps of size n . The alternative covariance matrix Q  contains the covariance in space betweena

i jtwo times t  and t   given as in (2.14a):
ij i j sq  = ! f (s, t  ) f (s, t  ) /  na          swhere the superscript a stands for alternative. Q  is square, symmetric and consists of reala

t t s s numbers, but the dimension is  n  by  n  , which frequently is much less than n  by n , the dimension
iiof Q. As long as the same reference {f} is removed from f(s,t) the average of the q  over all i, i.e.athe average of main diagonal elements of Q , equals the space-time variance given in (2.16). Theaaverage of the main diagonal elements of Q  and Q are thus the same.aThe elements of Q  have apparently less appeal than those of Q (seen as PNA and NAO inaFig.4.1). It is only in such contexts as in ‘analogues’, see Chapter 7, that the elements of Q  have aa

ij i jclear interpretation. The q  describe how (dis)similar two maps at times t  and t  are.aWhen we talk throughout this text about reversing the role of time and space we meanusing Q  instead of Q. The use of Q is more standard for explanatory purposes in most textbooks,awhile the use of Q  is more implicit, or altogether invisible. For understanding it is important toasee the EOF process both ways.
5.1.4 The covariance matrix:  context   The covariance matrix typically occurs in a multiple linear regression problem where f( t,

ts) are the predictors, and any dummy predictand y (t), 1 <= t <=  n   , will do. Here we firstfollow Wilks(1995; p368-369). A ‘forecast’ of y (denoted as y*) is sought as follows:y*(t)   = ! f (s, t) b (s) + constant, (5.1)swhere b(s) is the set of weights to be determined. As long as the time mean of  f was removed, theconstant is zero.
The residual U  =  ! { y (t) - y*(t) }    needs to be minimized.2
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 t" U / " b(s) = 0 leads to the “normal” equations, see Eq 9.23 in Wilks(1995), given by:  Q   b  =   a, where Q is the covariance matrix and a and b are vectors. The elements of vector a consist 
i tof ! f (t , s ) y(t) / n . Since Q and a are known, b can be solved for, in principle.  tNote that  Q  is the same for any y. (Hence y is a ‘dummy’.)The above can be repeated alternatively for a dummy y(s) y*(s)  =  ! f(s, t) b(t)   (5.1a)where the elements of b are a function of time. This leads straightforwardly to matrix Q . (5.1a)awill be the formal approach to constructed analogue, see chapter 7.Q and Q  occur in a wide range of linear prediction problems and Q and Q  depend onlya aon f(s,t), here designated as the predictor data set. In the context of linear regression it is an advantage to have orthogonal predictors,because one can add one predictor after another and add information (variance) without overlap,i.e. new information not accounted for by other predictors. In such cases there is no need forbackward/forward regression and one can reduce the total number of predictors in some rationalway. We are thus interested in diagonalized versions of Q and Q  (and the linear transforms ofaf(s,t) underlying the diagonalized Qs).

5.1.5 EOF through eigen-analysis 
i j t iIn general a set of observed f(s,t) are not orthogonal, i.e. ! f (s , t) f (s  , t) / n  and ! f (s, t  ) f (s,

j st  ) /  n  are not zero for i#j. Put another way: neither Q nor Q  are diagonal. Here some basicalinear algebra can be called upon to diagonalize these matrices and transform the f (s,t) to becomea set of uncorrelated or orthogonal predictors. For a square, symmetric and real matrix, like Q orQ , this can be done easily, an important property of such matrices being that all eigenvalues area
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positive and the eigenvectors are orthogonal. The classical eigenproblem for matrix B can bestated:
m m mB e  = "  e    (5.2)where e is the eigenvector and " is the eigenvalue, and for this discussion B is either Q or Q . Theaindex m indicates there is a set of eigenvalues and vectors. Notice the non-uniqueness of (5.2) -

many multiplication of e  by a positive or negative constant still satisfies (5.2). Often it will beconvenient to assume that the norm |e| is 1 for each m. Any symmetric real matrix B has these properties:
m1)  The e ’s are orthogonal

m m2) E  B E, where matrix E contains all e  , results in a matrix # with the elements "  at the main-1diagonal, and all other elements zero. This is one obvious recipe to diagonalize B (but not theonly recipe!).
m3) all "  > 0, m=1, ...M.

mBecause of property 1 the e (s) are a basis, orthogonal in space, which can be used to express: 
m mf ( s, t) = $ % (t)e (s) (5.3)  

mwhere the % (t) are calculated, or thought of, as projection coefficients, see Eq (2.6). But the
m% (t) are orthogonal by virtue of property #2. It is actually only the 2  step/property that isndneeded to construct orthogonal predictors. (In the case of Q, execution of step 2 implies that the

mtime series % (t) (linear combinations of original f (s,t) ) become orthogonal and E  Q E-1diagonal.) Here we thus have the very remarkable property of bi-orthogonality of EOFs - both
m m m% (t) and e (s) are an orthogonal set. With justification the % (t) can be looked upon as basis

mfunctions also, and (5.3) is satisfied when the e (s) are calculated by projecting the data onto
m% (t). We can diagonalize Q  in the same way, by calculating its eigenvectors. Now theatransformed maps (linear combinations of original maps) become orthogonal due to step 2, andthe transformed time series are a basis because of property 1. (Notation may be a bit confusing
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here, since, except for constants, the e’s will be %’s and vice versa, when using Q  instead of Q.) aOne may write:
m m mQ e  = "  e    (5.2)
m m mQ  e  = "  e    (5.2a)a a a asuch that the e’s are calculated as eigenvectors of Q  or Q. We then havea

m mf ( s, t) = $ % (t)e (s) (5.3) 
m mf ( s, t) = $ e (t)& (s) (5.3a)awhere the %’s and &’s are obtained by projection, and the e’s are obtained as eignevector.

m m m mWhen ordered by EV,  "  = "  , and except for multiplicative constants  & (s)=e (s) and a
m m% (t)=e (t), so (5.3) alone suffices for EOF.a

m mNote that % (t) and e (s) cannot both be normed at the same time while satisfying (5.3).This causes considerably confusion. In fact all one can reasonably expect is:
m mf ( s, t) = $ % (t)/c  e (s)*c (5.3b)  where c is a constant (positive or negative). (5.3b) is consistent with both (5.3) and (5.3a).Neither the polarity, nor the norm is settled in an EOF procedure. The only unique parameter is

m" . Since there is only one set of bi-orthogonal functions, it follows that during the aboveprocedure Q and Q  are simultaneously diagonalized, one explicitly, the other implicitly for free. Itais thus advantageous in terms of computing time to choose the covariance matrix with the
t ssmallest dimension. Often, in meteorology n << n . Savings in computer time can be enormous.5.1.6 Explained variance EV

1 2 3 MThe eigenvalues can be ordered:   "  >  "  >  "  ..... >  "  > 0. Moreover:
sM             nm   ii   s$  "  =  $ q /n  = STVm=1        i=1

m The " are thus a spectrum, descending by construction, and the sum of the eigenvalues equals thespace time variance. 
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Likewise
M             Mm   kk t$  "  =  $ q  /n   = STV am=1        k=1The eigenvalues for Q and Q  are the same. The total number of eigenvalues, M, is thus at mosta
s tthe smaller of n  and n   

m m tIn the context of Q one can also write: explained variance of mode m (" ) =  $  % (t) /n   as long2
m m m as |e|=1. Jargon: mode m ‘explains’ "  of STV or " /$ " *100. % EVThe notion EV requires reflection. In normal regression one explains variance of thepredictand y.  But here, in the EOF context, we appear to explain variance in f (s,t) the predictor.Indeed EOF is like self-prediction. (5.1) is still true if the dummy y(t) is actually taken to be the

mtime series of f(s,t) at the m-th point: f(s  ,t). (5.1) then reads:
m mf*(s  ,t)   = ! f (s, t) b (s, s ) (5.1)sm m m swhere b (s, s ), for a fixed point s , is the regression coefficient between s  and any s (1<=s<=n )and the EOFs are found by minimizing U 

s  n m mU =    !    ! ( f(s  ,t) - ! f (s, t) b (s, s ) ) (5.4)2m=1   t                  s
Now f (s, t) is both predictor and predictand. At this point the order m=1, 2 etc is arbitrary. Asper (5.2) and executing  E  B E the expression  -1

m m m! f (s, t) b (s, s ) is transformed to $ % (t)e (s) s sFor any truncation N (1<=N<M<=n ) the N functions retained are maximally efficient in EVbecause they minimize U. 
5.2 ExamplesFig.5.1 gives an example of an EOF calculation. Shown are the first four EOF following explicitdiagonalization of Q by step 2, i.e. solving (5.2) for B=Q and ordering by EV. The maps show



However, note that we mention a base point (seed=65N,50W) on top of each map. This is related to the initial guess2used to start an iteration towards the EOFs, see appendix/inset 2. The initial guess is irrelevant, except for the polarity and thespeed of convergence to EOF. 8

m me (s) for m=1, 4; the time series underneath each map are % (t), m=1,4 as per (5.3), wheret=1948 thru 2005, 58 values at annual increment. The example corresponds exactly to theseasonal mean JFM 500 mb data on the 20N-pole domain used already in chapter 4. The timemean removed is for 1971-2000, the current WMO climate normal. The time mean of each time
mseries has thus zero mean over 1971-2000. The maps e (s) are normed, see Appendix I/inset I fordetails, and the physical units are in the time series (gpm). One can thus see the amplitude of thetime series going down with increasing m and decreasing EV. The EV of the first four EOFs is23.0, 18.5, 9.3 and 8.1% respectively, for a total of nearly 60%. Indeed the first few modesexplain a lot of the variance, as is the general idea of ‘principal components’ analysis. EOF mode1 and 2 still look like NAO and PNA, but explain somewhat more variance than the EOTcounterparts in Fig.4.4. Moreover we did not have to identify some gridpoint as basepoint a-priorias we had to for Teleconnections and EOT . While modes 3 and 4 explain much less variance than2modes 1 and 2, they do have the attractive looks of dispersion on a sphere. The patterns shownare all orthogonal to each other (and to all 54 patterns not shown as well), but often in acomplicated way (not like sin/cos). Likewise, the time series have zero inner product, but in acomplicated way. For instance, the first two time series appear correlated by eye in the lowfrequencies, but this is compensated (and much harder to see for the human eye) by negativecorrelation on the inter-annual time-scale. Fig 5.2 and 5.3 are EOFs for daily 500mb data, for NH and SH respectively during1998-2002 (DJF or 450 days). We use only 5 years here, but still have many more realizationsthan for seasonal means (58). The contrast between the two hemispheres could hardly be larger.In the NH, standing wave patterns looking like sweeping combinations of NAO and PNAdominate even daily data albeit at much reduced EV compared to seasonal means. In the SH



The name AAO was invented later as the counterpart for the AO (Thompson and Wallace 1998), which has,3however, since been renamed Northern Annular Mode. 9

EOFs on daily data suggest domination of surprisingly simple harmonic-like wave motion in thewest to east direction. This is certainly consistent with the relative success of EWP forecasts inthe SH described in Chapter 3. It is amazing that so many variations of what looks basically likezonal wavenumber four can be spatially orthogonal. (For exactly four waves along 50S therewould be only two orthogonal arrangements). The time series in Fig 5.2 and 5.3 are for 450 dailypoints with zero mean and 4 discontinuities (at the end of Feb in ‘98, ‘99, 00 and ‘01). Even thedaily time series show some low-frequency behavior with periods of 10-20 (or more) days of onepolarity. Often the leading EOFs are thought of as displaying the large scale low-frequencybehavior, and most often they have been calculated from time-filtered data (e.g. monthly means)to force this to be the case. But this may not always be necessary - after all EOFs target the variance and given that the atmosphere has a red spectrum both in time and space it should be nosurprise that low-frequency large-scale components show up first.In Figs 5.2 and 5.3 the anomalies were formed first by subtracting an harmonicallysmoothed daily Z500 climatology based on 1979-1995 (Schemm et al 1997). This leaves aconsiderable non-zero mean anomaly for a time series as short as 15 months (D, J or F) during1998-2002. As a 2  step we subtracted the time mean across the 15 months to arrive at Figs 5.2ndand 5.3. Without removing the time mean the 1  EOF in the SH is a (nearly) zonally invariantstpattern with a nodal line at 55S and a time series that is positive for most of the 5 years - such‘annular’ variations are well established for the SH (Hartman 1995) and are known as theSouthern Annular Mode or Antarctic Oscillation (AAO). Apparently the SH had stronger thanaverage westerly mid-tropospheric flow in a band centered at 55S during 1998-2002.  3One should note that the EOFs (Fig. 5.1) and the EOTs presented in Fig. 4.4 are verysimilar. In this case EOF analysis does tell us something about teleconnections. The NAO andPNA renditions in Fig.4.4 are naturally orthogonal in space and very dominant in EV, so adding



EOT is quite free, while EOF is completely constrained by bi-orthogonality. One can even chose time series from4outside the domain of the data set of from another data set (as in Ch 8.7) and start EOT analysis that way.
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the constraint of spatial orthogonality will not change the results too much for these two modes.Usually the similarity between EOF and EOT is much less, and this could make interpretation ofEOF (if one wants to see teleconnections) difficult. For instance in Fig.5.2 the leading EOFs arenot readily seen as pure PNA and NAO, even though the EOT counterparts (not shown) would.
5.3 Simplification of EOF - EOT Jolliffe (2002, p) gives a list of methods to simplify EOFs, as practiced in various fields. Themethods include ‘rotation’, ‘regionalization’, and EOT. Why the need for simplification? Oftenthe blame is placed on the bi-orthogonality, which is allegedly too constraining or toomathematical to allow physical interpretation in many cases. In fact, this means that the way EOFsare calculated, as per (5.2), is overkill. There is no need to calculate the eigenvalues of Q or Q  ifathe only purpose is to create orthogonal predictors and to diagonalize either Q or Q  (not both atathe same time). All simplification of EOF methods appears to come down to relaxingorthogonality in one dimension (time or space) while maintaining orthogonality in the other. TheEOT method, as described in chapter 4, has orthogonal time series, thus diagonalizes Q, but theelements appearing on the diagonal are not the eigenvalues of Q. Notice that if the outer

s msummation m=1, n  was not applied, a trivial solution presents itself for Eq (5.4): b (s, s ) = 1 for 
ms = s  and b=0 for all other s. This procedure yields the EOT’s described in Chapter 4. The time

m m mseries of the EOT attached to gridpoint s  is f(s , t) and thus trivially explains all variance at s .
mHowever, f(s , t) explains far more variance of the whole field (STV) than it would if it justexplained the variance at one point. This, of course, is because of the non-zero correlationbetween point m and most other points. The EOTs are not unique, one can start with anygridpoint and proceed with any choice for a next gridpoint . Ordering m by EV makes sense and4
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drives the EOT closer to EOF. Upon ordering, the matrix Q has been transformed to a diagonal
m mmatrix ' (and thus orthogonal time series) with elements ( , where (  decreases with m.

m mAlthough (  are not the eigenvalues of Q we still have $ (  = STV.  No spatial basis exists. Soeven though an equation like (5.3) is still valid, it is satisfied without the e’s being orthogonal andthe %’s are not projection coefficient ( i.e. should not and cannot be calculated by projection dataonto the e’s). In the alternative case we have
t  n m mU =    !    ! ( f(s, t ) - ! f (s, t) b (t, t ) ) (5.4a)2m=1   s                  tIn the same way as described before (5.4a) diagonalizes Q  to form M (and thus orthogonal maps,a a 

mwhich are linear combinations of the original maps), and $ (  = STV. The time series are nota
m morthogonal. On a mode by mode basis (  does not equal (  (in general).  Although an equationalike (5.3) is valid, the %’s are not orthogonal. The alternative EOTs for JFM Z500 mean over 20-90N are shown in Fig 5.4. Thealternative (or ‘reverse’) EOTs start with the observed field in 1989. At 18.3 % EV this observedfield explains more of the variance of the 58 fields combined than any other. After regressing 1989out of the data set the ‘once reduced’ observed field in 1955 emerges as the next leading EOT,etc. The normalization described in Appendix 1 was applied for display purposes, so we cancompare Fig. 5.4 to Figs 4.4 and 5.1 in that the spatial patterns have been forcibly normed. Whilethe higher order modes all have a year assigned to them (like seed=1974), they look less and lesslike the observations in that year (because modes 1 to m-1 were regressed out). The alternativecalculation has 50% EV for 4 modes and the results do not look much like Fig 4.4, but aresweeping large scale fields nevertheless. The time series show a high positive value for the seedyear. The leading alternative EOTs are ‘real’ in the sense that they were actually observed at somepoint in time, a statement that cannot be made about the PNA, NAO (Fig. 4.4) or EOFs. Theutility of reverse EOT should become clearer in the chapter on (constructed) analogues.
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Not only can regular EOT be calculated in any order for gridpoint m, one can alsomanipulate the results. If someone does not like a portion of EOT#1, for instance the NAOrelated covariance over east Asian in Fig.4.4, one can modify EOT#1 by blanking out this area(forcing zeros). This would be an example of surgical regionalization. After this start one cancontinue to find the 2  EOT, possibly blank out more areas etc. This is the basis for Smith andndReynolds’ (2003; 2004) Reanalysis for Sea-Level Pressure and SST for century long periods.Smith and Reynolds also found by example that EOTs, for their SST/SLP data sets, are ‘nearlythe same’ as rotated EOF as arrived at by a popular recipe called ‘Kaiser varimax’.  The principleobjective of rotation of EOFs is to obtain more regionalized ‘simple’ structures that are also morerobust to sampling uncertainty as mimicked by leaving one or a few years in or out of the data set.The maps in Fig.4.4 change little upon adding one year, while the maps in Fig.5.1, (certainly themodes 3 and 4) can change beyond recognition. Much work on rotation methods was done byRichman(1986), see also Richman and Lamb(1985). There are two types of rotation, leavingeither the temporal or the spatial orthogonality intact (and sacrificing the other). There is anassociated loss in EV for the leading modes, making the components less principal. The rotationperformed commonly on atmospheric/oceanographic data is essentially to ‘rotate’ from Fig.5.1 toroughly Fig.4.4, although not precisely so, relaxing orthogonality in space. The precise results ofthis rotation may be dependent upon the specified number of modes retained in the rotation(O’Lenic and Livezey 1988) and the rotation recipe. Since Fig.4.4 was obtained without settingthe number of modes (in rotation), and even without a rotation recipe (like varimax) EOT seem aneasy, natural and quick way to achieve many of the stated goals of rotation. Regular EOTs aremore robust, simpler and more regionalized than EOFs. The alternative EOTs ‘regionalize’ in thetime domain, i.e. try to maximize projection on a flow that happened at a certain time. Appendix II shows how EOFs can be calculated one by one by an iteration procedure. Agood starting point for iteration are EOTs because they are already close to EOFs. Fig. 5.5.shows the EOFs one obtains by starting from the alternative EOTs (and normalization as per
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Appendix I). We obviously obtain the same EOFs as already shown in Fig.5.1, but we show themfor a number of reasons: 1) To show by example that there is only one set of EOFs, and one caniterate to those EOFs from drastically different directions, 2) The polarity, while arbitrary, is setby the first guess. For example EOF1 in Fig.5.5 results from whatever the anomalies were in1989, while in Fig.5.1 the polarity of EOF1 relates to the starting point being a basepoint nearGreenland, 3) The first EOT after EOF1 is removed differs from the first EOT after EOT1 isremoved. While in Fig.5.4 1955 is the 2  year chosen, in Fig.5.5 it is 1948. Comparing Fig.5.1 tond5.5 some modes comes out in the same (opposite) polarity, but within the framework of (5.3a/b)these are obviously the same functions in both in time and space.
5.4 Discussion of EOF5.4.1 Summary of procedures and propertiesFig.5.6 is an attempt to summarize in one schematic the various choices a researcher hasand the operations one can perform. Obviously, one needs a data set, follow the two options (Qand Q ), see the three possibilities EOT, alternative EOT and EOF. In all three cases one can haveaa complete empirical orthogonal function representation of the data. Only in the latter case is aneigenanalysis called for. The EOFs can be ‘rotated’ in the direction of EOT. From any initialconditions one can iterate towards the gravest EOF.

5.4.2 The spectrumFig.5.7 shows the EV as a function of modenumber for seasonal JFM Z500. For the EOF line(red) this is also a spectrum of "(m). The EV by mode, left scale, decreases with m because of theordering. The cumulative EV (right scale) obviously increases with m and is less noisy. The EOFsare more efficient than either version of EOT but never by more than a few % (10% cumulative).
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The cumulative EV lines for EOT and EOF are best separated at about m=8 for this data set. Butas we add more modes the advantage of EOF decreases. EOFs have a clear advantage only for afew modes. For either EOF or EOT only two modes stand out, or can be called principalcomponents, already at mode 3 we see the beginning of a continuum of slowly decreasing poorlyseparated EV values. In this case the regular EOT are slightly more efficient than alternative EOT,but this is not generally true. This relative advantage depends on the number of points in time andspace. If one imagines random processes taking place at a large number of gridpoints, the regular
sEOT would be very inefficient, on the order of EV=100%/n  per mode, while the alternative EOT

tcannot be less efficient than 100%/n  
5.4.3 Interpretation of EOFThe interpretation of EOFs in physical terms is rarely straightforward. Adding to the difficultiesare the vagaries of the procedure and display. The details of the covariance matrix, the exactdomains used, the weighting of non-equal area grids etc varies. Even the display convention isconfusing. Eq. (5.3) consists of a time series with physical units multiplying a spatial field of non-dimensional regression coefficients. The latter are the spatial patterns of the EOF but manyauthors have displayed instead the correlation between the time series and the original data. Whilethis may look better, these are not the EOFs. Nevertheless, in spite of these problems, IF (if!)there is an outstanding mode (like ENSO in global SST or the NAO in monthly or longer timemean sea-level pressure) any of the techniques mentioned will find them. Problems only arise withthe less than principal modes, poorly separated from each other in EV etc, On the other hand whybother interpret such modes?  
5.4.4 Reproducibility (sampling variability)We have described methods to calculate orthogonal functions from a given data set. To what
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extent are these the real EOFs of the population?. There are two different issues here. One is thatthe looks of a certain mode may change when the data set (a sample!) is changed slightly. SinceEOF has been done often with a bias towards spatial maps and teleconnections this is a problemfor the interpretation. Zwiers and von Storch(1999) are probably the best text in which samplingvariability is addressed. The second important issue is the degree to which orthogonal functionsexplain variance on independent data. Even if modes are hard to reproduce they may continue toexplain variance on independent data without too much loss, see examples in Van den Dool et al(2000). Hence the sampling errors are mainly a problem for the physical interpretation, not forrepresenting the data concisely. Here the North et al(1982) rule regarding eigenvalues applies:
mNever truncate a  "  spectrum in the middle of a shoulder (a shoulder or knee is an interruption inan otherwise regular decrease of eigenvalue with modenumber). Eigenvalues that are not wellseparated indicate possible problems with reproducibility (in terms of looks). Including allelements of the shoulder allows EV to be relatively unharmed on independent data. Recent workon this topic includes Quadrelli et al(2005).

5.4.5 Variations on the EOF themeIn the literature one can find related procedures, such as ‘extended’ EOFs (or ‘joint’ or‘combined’ EOFs), abbreviated as EEOF. This means that 2 data sets h(s,t) and g(s,t) are mergedinto one f(s,t), then the EOF is done on f(s,t) as before. For example Chang and Wallace(1987)combined a precip and temperature US data set and did EOF analysis on the combined data. It isconvenient (but not necessary) to have the two variables on the same grid (stations). In that caseEEOF is like extending the space domain to double the size. While EEOF is methodologically thesame as EOF, one needs to make decisions about the relative weighting of the participating fields- in the case of precip and temp one even has different physical units, so standardized anomaliesmay be an approach to place T&P on equal footing. If the number of gridpoints is different onecould also adjust relative weighting to compensate. One has this problem already with EOF on a
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univariate height field from 20N-90N. Because the standard deviation varies in space someresearchers prefer standardized anomalies, for instance to give the tropics a better chance toparticipate (Barnston and Livezey 1987). This goes back to using covariance versus correlationmatrices. There is no limit to the number of data sets in EEOF. Some authors merge time laggeddata sets to explore time lagged (predictive) connections through EEOF. When two data sets areunrelated the EEOFs are the same as the original EOFs in the participating data, and chosen inturn. The first EEOFs in meteorology are probably in Kutzbach(1967).Another procedure used is called  complex EOF. This variation on EOF is used tospecifically find propagating modes. In chapter 3 we used sin/cos to diagnose propagation (andwe could have called EWP ‘complex’). But EOFs are not analytical and not known ahead of time,so it is unclear whether any structures will emerge that are ‘90 degrees out of phase’ so as tosuggest propagation. Nevertheless, the EOFs based on daily data in the SH (Fig. 5.3) certainlyhave the looks of propagating waves. Another way is to inspect the "(m) spectrum of regularEOF to search for pairs - in the case of propagation one expects two modes with nearly equal EVside by side. Such pairs (which may not be a case of poor separation) may indicate propagation,but this is not a sure sign. A more automated way of finding propagation is to transform f(s,t) intof(s,t)+!(-1) *h(s,t), where h(s,t) is the Hilbert transform of f(s,t) (which is found by shifting allharmonics in f(s,t) over 90 degrees). Complex EOF is done on transformed data. This method hasbeen tried at least since the early 1980's, see for instance (Horel 1984), Branstator(1987),Kushnir(1987) and Lanzante(1990). <text deleted>
5.4.7. More examplesIn this chapter we have shown just a few examples. It is beyond the scope of this book toinvestigate EOF/EOT of all variables at all levels throughout the seasonal cycle, both hemispheres,daily as well as time filtered data. The Barnston and Livezey(1987) study remains unique in that
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sense. Two final examples of EOF calculation will suffice here, see Fig.5.8 and 5.9. Fig. 5.8 is anEOF analysis for global SST. The season chosen is OND, when the variance is near its seasonalpeak, and the EV for the first mode is well over 30%. The first mode absolutely stands out and itis identified as the ENSO mode as it manifests itself in global SST data. Starting the iteration from1975, the polarity is the opposite of a warm event. The time series on the right indicates allfamous warm event years (1972, 1982, 1997) as large -ve excursions. Cold event years, except1998, are harder to trace in the time series as they project on more than one mode, i.e. cold eventsare not just the opposite of warm events. The 2  mode is very striking also and has a nearnduniform increase in the time series over 58 years, and indicates a pattern of warming SST in manyoceans, except east of the dateline along the equator in the Pacific and in parts of the SouthernOceans. This mode had its strongest +ve projection in the 98/99 cold event. The 3  mode is onerdof interdecadal variation, and a period of 30-35 years. At this point, however, modes explain only5-6% of the variance. Fig. 5.9 gives more information about both sensitivity of EOF to details and the possibleimpact of ENSO on mid-latitude. Fig.5.9 is identically the same as Fig. 5.5 except that we usestreamfunction ()) instead of height (Z). Since the horizontal derivatives of ) and Z areapproximations to the same observed wind these two variables are closely related in mid-latitude.Under geostrophic theory )=Z/f, where f is the Coriolis parameter. At lower latitude thevariations in ) are thus more pronounced as those in Z, although not nearly as much as whenusing the correlation instead of the covariance matrix for Z. Fig. 5.9 shows the familiar NAO andPNA as modes # 2 and 3 at somewhat reduced variance (3 and 2% less than in Fig 5.5,respectively), but they are preceded by a mode we have not seen before, moreover explaining32% of the variance. One can tell from the high projection in 1983 (the seed) and 1998 that thispattern is active during warm ENSO years. The main action is a deep low in the North Pacificnear 40N and 160W and a like signed anomaly over the US Gulf coast. Together these ) centersmodulate the subtropical jets in both oceans. While the 1  mode looks loosely speaking like ast
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Pacific North American Pattern it is in fact orthogonal to the 3  pattern. Clearly, any statementsrdon the impact of ENSO on the mid-latitudes, as per EOF analysis, requires careful study.Changing the domain size in Fig. 5.5. down to 10N, or the equator also has a large impact,because an ENSO mode would be first, followed by NAO and PNA.
5.4.8 Common  misunderstandingsa) The 1  EOF ‘escapes’ the drawbacks of being forced to be orthogonal because it is the first.stThis opinion is wrong. There is no first EOF. All EOFs are simultaneously known by solving(5.2), and this is true even if only one of them is calculated. Ordering of EOFs is entirely arbitraryrelative to the calculation method. The opinion in italics is, however, correct for EOT. Forinstance in Fig.5.4 the field observed in 1989 is the first alternative EOT. Issues of orthogonalitycome in only when chosing the second EOT. b) EOF patterns always show teleconnections. This is wrong. They may or they may not. Forinstance, Fig.5.1 would suggest that the main center for the PNA in the Pacific is accompanied bya same signed anomaly in the Greenland/Iceland/Norway area. Fig. 4.1 shows that thesimultaneous correlations between the Pacific and the Atlantic are extremely weak. While theEOTs in Fig 4.4 are faithful to teleconnections (defined by linear simultaneous correlation), theEOFs in Fig.5.1 are not (everywhere). c) EOF analysis forces warm and cold ENSO events to come out as each other’s opposite. Whilelinearity has its drawbacks, this is not one of them. There is nothing against time-series that havevery strong values in a few years to be compensated by weak opposite anomalies in many otheryears; i.e. nothing in the procedure forces strong opposing values in just a few years. Fig 5.8demonstrates this for OND SST. The largest Pacific warm events are clear in the first mode(1972, 1982, 1997), but 1998 (a strong cold event) does NOT have a strong opposite projectionin the first mode. In fact cold events can only be reconstructed using several modes, so the
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asymmetry noted by several authors (Hoerling et al 1997) is not butchered by the EOF procedure.d) EOFs describe stationary patterns only. Geographically fixed patterns are no drawback indescribing a moving phenomena. A pair of EOFs, each stationary in its own right, but handingover amplitude from one to the other as time goes on, describe a moving system. Daily unfiltereddata, full of moving weather systems, can be described 100% by EOFs. 
5.4.9 Closing commentWe entered this chapter in classical fashion, the Q matrix, 1-point teleconnections, regular EOT, and associated diagnostics but we want to leave it in the alternative fashion, emphasizing the Qamatrix. The search for analogues (ch 7), the featured recipe to calculate degrees of freedom (ch6), alternative EOT and the construction of analogues (ch7) all use Q . Linking orthogonalafunctions to specific moments in times past has one major advantage, i.e. direct access to thetemporal evolution. If one expresses a specific state in the atmosphere as a linear combination ofalternative EOTs one can easily make a forecast using a linear combination of the states thatfollowed.
Inset or appendix I (applies to Figs 4.4, 5.1, 5.2, 5.3, 5.4, 5.5 and 5.9)About the graphical presentation of EOT and EOF, units, normalization etc. Let’s assume that adata set f(s,t) can be represented by (5.3) or (5.3a). We now discuss some postprocessing, whichin a nutshell is a matter of finding a factor c by which to divide e and multiply  %.  The  l.h.s. of(5.3) does not change in this operation:

m mf(s,t) = $ % (t)*c(m)  e (s) /  c(m)     (5.3b)       m
m mf(s,t) = $ & (s)*c (m)  e (t) / c (m)      (5.3c )   a a a    mFactor c is a function of m, and, c is different depending on whether we start with normal orreverse set-up, hence the superscript a.  The reasons for doing these extra manipulations are
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varied. One could wish to have unit vectors in either space or time, regardless of how thecalculations is done. Another reason is to make it more graphically obvious that EOFs obtained bynormal and reverse calculation are indeed identically the same. Here we present a postprocessingwhich makes, in all four (EOF/EOT, normal/ reverse) possible cases, the spatial maps of unitnorm, and places the variance and physical units in the time series.Thus note the following:1) We plot maps and time-series consistent with (5.3). We do not plot correlations on the map (as
mis very customary), because e is really a regression coefficient (when the %  carry the physicalunits and the variance).2) To say that a mode m calculated under (5.3) is the same as mode m calculated under (5.3a)

m m m m m monly means that % (t) e (s) = & (s) e (t)  ; but e (s) and  % (s) are not the same, in general. Buta
m m m mwith the appropriate c and c  applied  % (t)*c(m) = e (t) / c (m) and % (s)*c (m) = e (s) / c(m)a a a a3) In order to force two identical modes to actually look identically the same, we do thefollowing. We divide the map at each point by its spatial norm (and multiply the time series by this

msame norm so as to maintain the l.h.s. as in (5.3, (5.3c)).  The spatial norm of  e (s)  is defined as
m mc(m) = { !e (s) e (s)  } ,   similarly ½

m mc (m) = { !& (s) & (s)  }a ½where the sum is over space.  This action would make all maps of unit norm and places the
mvariance in the time series. The plots thus show, for example, % (t)*c(m) as the time series. 4) One can still tell how the calculation was performed, depending whether base-points or seedyears are mentioned in the label.

It turned out to be unsatisfactory vis-a-vis the contouring package to plot the normalized maps, sofor cosmetics, we divide the map at each point by its absolute maximum value - this procedurecreates maps with a maximum value of +/-1 (nearly always +1). 
Inset or Appendix II. Iteration
Often one needs to calculate only a few principal components. An insightful method is the so-

0called power method. Given Q, and an arbitrary initial state x  , one simply repeatedly executes
k+1 k m m m k+1 x = Q x , k=0,1 etc. In view of Q e  = "  e    (5.2),  x will converge to the eigenvector

0associated with the largest eigenvalue. This is so because if  x  contains at least minimal projection
1 1 1onto e  that projection will be multiplied by "  and since  "  is larger than all other eigenvalues the
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1 k kprojection onto e  will ultimately dominate x  for large k. Once x  has converged the eigenvalue is
kfound as the multiplication factor that results from executing Q  x  . At each step of the iteration

k 0one may need to set the norm of x  equal to that of x  for stability. This methods only fails to find
1 2the first eigenvector if the separation of "  and "  is very very small, i.e completely degenerate orpure propagation, a rare circumstance in practice. Once the first eigenvector is found one can

1proceed by removing the projection onto the estimate of e  from f(s,t), then recalculate a new Qfrom once reduced f(s,t). At this point the 2  eigenvalue should dominate. Etc. Convergence isnd
0often very quick. An arbitrary guess x  will do but the EOT’s are obviously a better initial guess.The iteration thus described is a rotation of the EOTs in the direction of EOFs. Van den Dool etal(2000) does the iteration even without a covariance matrix.

End=chapter 5


