
Slight exaggeration. We looked at data for 1968-2004 only.
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 One should not expect exact analogues, because exact analogues would imply a periodic system, hence perfect
2

predictability. Rather, we have states in mind that are close initially, with increasing differences as time progresses.

1

7. Analogues   
intro, 7.1 nat anal, 7.2 constr analog, 7.3 specification 7.4 global SST,  7.5 short range/dispersion, 7.6 growing modes

In 1999 the earth’s atmosphere was gearing up for a special event. Towards the end of

July, the 500mb flow in the extratropical SH started to look more and more like a flow pattern

observed some twenty two years earlier in May 1977.  Two trajectories in the N dimensional

phase space, N as defined in chapter 6, were coming closer together. Fig.7.1 shows the two states

at the moment of closest encounter, with the appropriate climatology subtracted. These two states

are, for a domain of this size, the most similar looking patterns in recorded history . But are these1

good analogues? They do look alike, nearly every anomaly center has its counterpart, but they are

certainly not close enough to be indistinguishable within observational error, the anomaly

correlation being only 0.81. The rms difference between the two states in Fig 7.1 is 71.6 gpm, far

above observational error (<10gpm). The close encounter did not make it to the newspaper and,

more telling, not even to a meteorological journal.

The idea of situations in geophysical flow that are analogues to each other has always had

tremendous appeal, at least in meteorology. Even lay people may comment that the weather today

or this season reminds them of the weather in some year past. The implications of true analogues

would be enormous. If two states many years apart were nearly identical in all variables on the

whole domain (of presumed relevance) , including boundary conditions, then their subsequent

behavior should be similar for some time to come.  In fact one could make forecasts that way, if2

only it was easy to find analogues from a ‘large enough’ data set. The analogue method was fairly

widely used for weather forecasting at one time (Schuurmans 1973) but currently is rarely used

for forecasts persé (for all the reasons explained in section 7.1). Rather analogues are used to

specify one field given another, a process called ‘specification’ or downscaling, or to learn about



One may always wonder about co-incidence or chance, or the alternative that something forces the flow to be similar
3

on specifically those dates. We remove the daily and annual cycle from the data and, in doing so, remove the effect of the main
periodic forcings known to us.

2

predictability (Lorenz 1969). In section 7.1 we review the idea and limitations of naturally

occurring analogues, and explain why/when it is (un)likely to find analogues. Finding analogues,

as such, is a diagnostic problem. If no analogues deserving of that name exist in a finite data set,

the application towards forecasting does not even arise. Section 7.2 develops the idea of

‘constructing’ an analogue in the absence of any natural analogues (NA). The constructed

analogue overcomes the main problem one has with natural analogues, although at some cost, and

appears to have forecast applications (7.4). In the process of constructing an analogue, we make

an empirical operator which allows us to address the calculation of unstable modes from just

observations (7.6), study weakly non-linear processes, and the dispersion of initial sources (much

like in Figs 3.1-3.2), but in a more realistic way than EWP.

7.1 Natural Analogues (NA)

The working definition for the existence of natural analogues is that two states in a

dynamical system are so close they can be called each other’s analogue. One qualifier is that these

two states should be far apart in time, well beyond the de-correlation time. Two successive states

could obviously be very close to each other, especially when observed at high temporal resolution,

but the application to forecasting of such look-alike temporal neighbors would be meaningless as

they stay temporal neighbors forever. We mean two states far apart in time, which by sheer co-

incidence  happen to be close. We are interested in ‘how close’ two states can be on a given data3

set of size 9, how long they will stay close, how long they have been close (i.e. the ramping up to

the closest encounter; symmetry in time or not) etc. And if we can’t find any worthwhile

analogues, why not? We are also interested in the most dissimilar flow patterns, the highest -ve

correlation, as it throws light on issues of linearity and symmetry. Importantly, we remove



There is no difference in the role of base and analogue. If a state at time t1 is very close to a state at t2, the reverse is
4

also true. It is only in real time that we cannot search for analogues in the future.

Assuming the atmosphere-ocean-land system has not changed over time. The continual change in atmospheric
5

composition, change in land use etc does violate this assumption, but we ignore this complication.
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periodic components from the system (daily and annual cycle) before searching for analogues on

the anomalies. 

The age old idea of a forecast based on analogues is displayed in Fig.7.2. Today’s point in

phase space (or alternatively: today’s weather map) is called the ‘base’, and has time t=0 assigned

to it. Then our task is to make a forecast for what will happen next. We look for analogues, i.e.

cases in the past  that are very close to the base. These cases have to be around the same time of4

the year or at least subject to the same general climatic conditions. Having found the appropriate

cases we line up the time axes and assign t=0 to these analogues also. The string of realizations,

or the trajectory in phase space observed in the analogue year, following the analogue at t=0 is the

forecast for the conditions that follow the base. If one compares this process to NWP, one might

look upon the analogue as an analysis of the base, with an initial difference or error, and nature

itself as the model that carries out the integration of the equations. The advantage of analogues,

apart from simplicity, would be the use of a perfect model . The problem with analogues is that5

the initial difference cannot be made small unless we either have an inordinate amount of data or

very few degrees of freedom.

7.1.1 Similarity measures

i jThe measure of similarity or analogy for two anomaly ‘maps’ observed at t  and t  includes

any of the following three expressions: 

a) RMSD, or root mean square difference, 

i j sRMSD = ( 3{ f (s,  t  ) - f (s, t  ) } /  n  ) (7.1) 2 ½ 
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                s
b) the covariance (from 2.14a)

ij i j sq  = 3 f (s, t  ) f (s, t  ) /  na

         s
  
or 
c) the correlation from (4.1)

ij ij ii jjD  = q  /sqrt( q  q ) ,  a a a

The RMSD makes a lot of sense, although it may favor states that have small amplitude,

amplitude defined as

i i sAMP( t  )  = ( 3 {f (s,   t  ) }  /  n   ) (7.1a)2 ½ 

s
(The footnote#1 in Ch 2 about weighting applies to (2.14a), (4.1), (7.1), (7.1a))

The covariance measure, the elements of the, by now, familiar Q , is made to regress each statea

towards the other so as to minimize their RMSD. We will use here the closely related correlation,

but we will not actually modify states by regression. Obviously, a near perfect analogue has low

RMSD, and both high covariance and correlation, so the measures should agree in the limit of

very good analogues. Many other slight variations in measures of (dis)similarity can be found in

Stephenson(1997). In the past circulation types (on the order of thirty) were used to quantify

similarity (Schuurmans 1973).

In practice we will search for the nearest neighbor in the N dimensional phase space, and

delay answering the question as to whether these nearest neighbors are worthy of the name

analogues. The area over which candidate analogues are sought depends on the application. If one

wants to compete with global NWP, f(s,t) should include all variables, including boundary

conditions and s runs over a global domain. However, in anticipation of the meager results

(Lorenz 1969; Ruosteenoja 1988), we scale down expectations considerably, and search for

analogues on the area from 20 degrees latitude to the pole, and one variable only, daily Z500 at



If forecasts applications were appropriate here at all, a hemispheric barotropic model is about the most comparable
6

technology.

5

0Z.   This exercise is thus the exact continuation of Chapter 6, where the empirical correlation6

distribution (ECD) was already studied for the same variable on the same domain.

7.1.2 Search for 500 mb height analogues.

As an example what an analogues search yields, we inspect here the wings of the ECD for

naturally occurring analogues on the domain from 20 degrees latitude to the pole, and using just

one variable (Z500). Data treatment was already described in Ch 6.2, i.e. we first take out a

smooth daily Z500 climatology, forming anomalies. First let’s focus on just one calendar month,

i jJanuary and one hemisphere, NH. For each date t  in January there is one other date t   in January

ij i .(in a non-matching year!) for which D  is the maximum over all j, denoted max(D ). Averaged

i .over all 31 days and all 37 years we determined that for January (Z500, NH, 0Z data) max(D ) is

typically around +0.54. Generally the nearest state is not very near. At 0.5 correlation, the nearest

state, (and this would be after applying a regression) is at about the distance to the climatology.

i .The record highest max(D ) value in January, 0.71,  is between January 25 1976 and January 10

1977. While this is better than 0.54 it is only for a single occurrence, and it still is not good

enough to be considered very close.

The most dissimilar state with the highest negative correlation is typically -0.51 in January

NH. There is a little asymmetry (present in all months and in both hemispheres) implying slightly

better analogues than anti-analogues, like +0.54 versus -0.51 in January, NH. This is because high

pressure and low pressure systems are not exactly each other’s opposite (relative to the

climatological mean). Indeed a small skew has been noted (White 1980). The record lowest

i .min(D ) value in January is between January 10 1974 and January 28 2000 at -0.69. 

i . i . Fig.7.3 shows the mean value of max(D ) and, with sign reversed, min(D ) Along with the

absolute highest correlations for the NH in all calendar months. Here we searched only in the
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i .same month. The quality of analogs as measured by max(D ) (and anti-analogs as well) is better in

winter than in summer. The average correlation one should expect for the best analogue varies

from 0.55 in winter to 0.45 in summer, essentially following the inverse of N, compare Fig. 6.1.

The record best pair in each month has a correlation of about 0.7 in winter (one case > 0.75 in

November) to only 0.56 in summer. These ‘best’ lines are more noisy than the average lines

because they are based on just one such occurrence in each month - they are the absolute

extremes in the ECD. Generally the values for analogs are very slightly better than for anti-

analogs, both in the mean and the extremes.

Year-round results for the SH, not shown, are similar to those shown in Fig.7.3 for the

NH winter. This is because N in the SH is about thirty in any season, see Fig. 6.1, i.e. equal to N

in the NH’s winter. In seasons other than winter the SH is the better hemisphere for finding

(dis)similar patterns because its N is much lower. Smaller N allows wider ECD and therefore

slightly higher chance of finding analogues. I.e the average correlation in the SH is between 0.50

and 0.55 year round, and the record best pair by month correlates at better than 0.70 year round,

with several record cases >=0.75.

In the above we used data windows of just one calendar month in order to make sure any

analogues are during the same time of year, under the same general conditions in terms of solar

radiation, SST etc. However, in the SH winter, both N and the standard deviation of height fields

are nearly constant from May thru September which is core winter, see Fig.6.1. Using this five

month window we redid the analog search for the SH. The number of paired comparisons

increases with the square of the length of the data set, and 25 times more CPU is used to check all

pairs. This extended search netted a handful of additional pairs correlating in excess of 0.75. We

also found 20 pairs of anti-analogs that correlate -0.70 or better (but only one beyond -0.75). A

search for Nov through March in the NH yielded only one more case >=0.75 and the two states in

this pair are within a month (but not in the same named month). 
While some positive research elements have been noted in the above, the main message is
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the complete lack of any cases that are truly close, a conclusion reached before by Lorenz(1969),

Ruosteenoja(1988), Van den Dool(1994) and many others. In some ways these findings have

killed all applications of analogues. In synoptic meteorology, a day-by-day forecast map has been

deemed useful as long as the correlation with reality is >=0.6. So to find a pair correlated at 0.80

is better than nothing in terms of pattern similarity and indeed the two maps looks alike

noticeably, see Fig.7.1. But in our judgement even a 0.80 correlation is not enough for two states

to be called each other’s analogue. This is even clearer when we further note that the rms

difference for this pair (71 gpm) is still 70% of the climatological standard deviation (100 gpm) in

SH winter. In general the distance to the closest neighbor is barely smaller than the standard

deviation. I.e. the nearest neighbor is, in general, no closer than the origin (climatological mean).

The phase space of N dimensions dotted with realizations from 1968-2004 is incredibly empty due

to undersampling. We have barely begun to observe the atmosphere. Any attempt to study

clusters, preferred or non-preferred circulation patterns (on the domain) or analogues will run into

serious data limitations unless we can lower N while retaining a meaningful physical system. If we

had an analogue pair at the 0.99 correlation level on a large domain, we could veritably test how

well NWP, as of today, makes forecasts compared to a perfect model, since they would be

starting from similar initial error magnitude.

The situation with respect to finding a natural analogue at a correlation >0.80, > 0.90 etc

on the NH/SH can be described as ‘possible but highly improbable’ - a matter of waiting very

long. The problem is not the idea about analogues, the problem is a lack of data in view of the

many degrees of freedom in the system. 

Table 7.2 shows how the quality of analogues and antilogues improves when the search

area is reduced progressively. As the area becomes smaller N decreases as well. For an area as

small as 500 by 1000km the analogues are near perfect.

i . i .Table 7.2 The average value of max(D ), min(D ) and the value of N for January, 1968-
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2004, for progressively smaller areas in the NH.  

Ana Anti N area # of gridpoints

53.6 -51.4 29.6 20N-pole, 0-360E, 29X144 gridpoints

69.7 -68.2 16.3 45N-50N, 0-360E 3 X 144 gridpoints

80.2 -78.3 11.4 45N-50N, 0-180E 3 X 72  gridpoints

90.7 -88.9  7.0 45N-50N, 0-90E 3 X 36  gridpoints

95.3 -94.6  5.3 45N-50N, 0-45E 3 X 18  gridpoints

99.1 -99.0  3.7 45N-50N, 0-10E 3 X 5 gridpoints

7.1.3 How long do we have to wait?

As reasoned in Van den Dool (1994) a three-way relationship can be derived between the

size (M years) of an historical data set or library, the distance , between an arbitrarily picked state

of the atmosphere and its nearest neighbor, and the size of the spatial domain, as measured by the

effective number of spatial degrees of freedom (N). This heuristic derivation proceeds from the

following steps and assumptions. 

i) We assume N equal variance (carrying sd  variance each) processes are going on independently.2

ii) The probability L of two arbitrarily picked states to be within an acceptably small distance , ( ,

= 15gpm would obviously be very good in view of Table 7.1), for a single one of the N processes

can be found by integrating a standard normal distribution from - ,/(sd*%2) to + ,/(sd*%2). We

found L.0.08 for , = 15gpm. An 8% chance is not bad as it practically guarantees an analogue if

one has say 100 to 1000 independent realizations from the past.

iii) The probability of finding two arbitrarily picked states within tolerance , for all N processes

simultaneously is L .N

iv) The probability c of finding an analogue in an M year library is c=1-(1-L ) , where theN 20*M

number 20 refers to the number of independent cases in say a two month window (and M is in

units of years). 

v) Demanding c>0.95 leads to

M > ln(0.05)/(20 * L ) (7.2)N

Thus it would take a library of order M=10  years in an unchanging climate to regularly find 230

observed flows that match to within current observational error over a large area, such as the
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Northern or Southern Hemisphere, for just one variable. Van den Dool(1994) gives a table for a

range of values of N and ,. Obviously, with only 10-100 years of data, the probability of finding

natural analogous over a large area (large N) is very very small. For constant M (~40years) and

constant , (or L), the annual cycle in N basically explains the annual cycle in the width of the ECD

and quality of analogue and anti-analogues as seen in Fig.7.3.

If the N dimensional phase space has a complicated structure the chance of finding an

analogue may depend on where the base case is situated. Nicolis (1998) has shown this to be the

case for what is perhaps the most researched dynamical system in history, Lorenz’ three variable

system (Lorenz 1963). For a system that simple (N is between 2 and 3) one can generate enough

data to a) make analogue forecasting (using data alone, not the equations) a success, and b) to

verify Eq 7.2 or more refined versions.  

7.1.4 Application of Natural Analogues

Because natural analogues are hard to find for large N the applications in geophysics are at best

limited. The main trick is to find meaningful physical problems, especially forecast problems, with

no more than 2 to 3 degrees of freedom. This can be done by 

a) limiting the search area for analogues to a circle of say 1000km radius (Van den Dool 1989).

From the many good matches, see Table 7.2, one can create limited area forecasts which are valid

at the center of the circle for short range (<=12 hours) forecasts. By moving around the circle, a

laborious activity, one can make forecasts for large domains, then repeat the process for the next

6 or 12 hour timestep.

b) the same 1000km radius areas, or small enough otherwise, but now to downscale or ‘specify’

one field from another (no forward time stepping involved). For instance Kruizinga and

Murphy(1983) and O’Lenic and Handel(2004) use limited area height analogues to translate NWP

forecasts into surface weather elements. Hamill et al(2006) use limited area analogues on NWP

model precipitation forecasts (of which they have a 22 year homogeneous reforecast data base) to

replace historical analogues (to the current forecast) by their matching verification fields (which

may be at much higher resolution). Such a practice has also long been in existence in aviation

meteorology (Hansen 2000).    

Another way of working with just 2 or 3 degrees of freedom would be 



We do not rule out that non-linear combinations are possible, but here we report only on linear combinations.
7
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c) by retaining only 2 or 3 leading empirical orthogonal modes on a domain large in km2, but

small in N. The question is whether this leaves any meaningful forecast problem intact. Given that

ENSO (~ 1 d.o.f.) has such a big influence over at least 50% of the earth, small natural subspaces

<<N, do suggest themselves. 

Lowering N by time averaging helps, but not nearly enough. Generating data by very long

GCM runs helps (Branstator and Berner 2005), but not nearly enough to make day by day short

range forecasts on a global domain possible. (One may also question whether GCM data are a

substitute for reality). Researchers in the UK have proposed to run global coupled ocean

atmosphere models for a long time to generate the data from which to select analogue cases for

forecasts of ENSO in the future. This could work only if ENSO has effectively only a few dof,

which appears to be case for certain climate variables (Fraedrich 1986). Of course, if it is true that

ENSO is contained in just a few dof one might as well use just the observations, see discussion

Chapter 10.

Finally, one way out appears to be the construction of an analogue, see next section.

Section 7.3-7.6 are all about applying the constructed analogue.

7.2 Constructed Analogues

7.2.1 The idea. 

Because  natural  analogues are highly unlikely to occur in high degree-of-freedom processes, we

may benefit from constructing an analogue  having greater similarity than the best natural

analogue. As described in Van den Dool (1994), the construction is a linear  combination of past7

observed anomaly patterns such that the combination is as close as desired to the initial state (or

‘base’). We then carry forward in time persisting the weights assigned to each historical case. All

one needs is a data set of modest affordable length.



One can construct analogues for monthly, seasonal or daily data. The procedure is the same. Here we start with
8

monthly.
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Assume we have a data set f(s, j, m) of, for instance, monthly mean  data as a function of8

0space (s), year (j = 1, M) and month (m). Given is an initial condition f (s,j ,m), for example theIC

0most recent state (monthly mean map), where j  is outside the range j=1..M.  A suitable monthly

climatology is removed from the data - henceforth f shall be the anomaly. A (linear) constructed

analogue is defined as:

                                     M

0 jf (s, j , m)  =   G    "  f(s, j, m) (7.3)CA

            j =1

0where the coefficients " are to be determined so as to minimize the difference between f (s, j ,CA

0m) and f (s, j , m). The technical solution to this problem is discussed below in sct 7.2.2 andIC

involves manipulating the alternative covariance matrix Q .a

Eq (7.3) is only a diagnostic statement, but since we know the time evolution of the f (we

jknow the next value historically) we can make a forecast keeping the weights "  =constant. More

generally we seek a forecast of variable g (which could be f itself) as follows:

    M

0 jg  (s, j , m+J)  =   G    "  g(s, j, m+J) (7.4)F

   j = 1

For J > 0 we are dealing with a forecast, J=0 would be ‘specification’ or down- or up-scaling of g

from f (the weights are based on f only!), and J<0 would be a backcast. The method is reversible

in time. For g = f one can see that the time dependence of f is entirely in the time evolving non-

orthogonal basis functions - this is the main trick of the CA forecast procedure and a significant

departure from traditional spectral methods in which the basis functions are constant and the time

jdependence is in the coefficients  " .

We will later refer to (7.3)-(7.4) in slightly rewritten form, the details depending on

whether we use daily, monthly, seasonal or a sequence of seasonal data.

Eq (7.4) can also be written (for g=f and J�0):
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        M

0 0 jf  (s, j , m+J) = f (s, j , m) +   G    "  (f(s, j, m+J) - f(s, j, m)) (7.4')F IC

   j = 1
In this form the equation looks like a forward time stepping procedure or the discretized version

of the basic equation Mf/Mt = linear and non-linear rhs terms. Note that on the rhs of (7.4') we

make linear combinations of historically observed time tendencies.

Why should Eq (7.4) yield any forecast skill? The only circumstance where one can verify

jthe concept is to imagine we have a natural analogue. That means "  should be 1 for the natural

analogue year and zero for all other years, and (7.4) simply states what we phrased already in

section 7.1 and depicted in Fig 7.2, namely that two states that are close enough to be called each

other’s analogue will track each other for some time and are each other’s forecast. Obviously, no 

construction is required if there was a natural analogue. But, as argued in the Appendix, in the

absence of natural analogues a linear combination of observed states gives an exact solution for

the time tendencies associated with linear processes. There is, however,  an error introduced into

the CA forecast by a linear combination of tendencies associated with purely non-linear

components, and so a verification of CA is a statement as to how linear the problem is. Large

scale wave propagation is linear, and once one linearizes wrt some climatological mean flow the

linear part of the advection terms may be larger than the non-linear terms. This is different for

each physical problem.

Is a constructed analogue linear? The definition in (7.4) is a linear combination of non-

linearly evolving states observed in the past. So even in (7.4) itself there is empirical non-linearity.

Moreover, in section 7.6, we will change the weights during the integration expressed in (7.4') -

this will add more to non-linearity. (We are not reporting on any attempts to add quadratic terms

in (7.4) - that would allow for more substantial non-linearity, but the procedure to follow is

unclear).  

j7.2.2 The method of finding the weights "

We are first concerned with solving Eq(7.3). The problem is that the solution may not be

unique, and the straightforward formulation given below leads to a (nearly) ill-posed problem.

Classically we need to minimize U given by:
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                                        M

0 jU   =   G  {f (s, j , m)  -   G    "  f(s, j, m)}  IC 2

s     j =1

jDifferentiation w.r.t. the "  leads to the equation

Q  " = a (7.5)a

This is the exact problem described in Eqs (5.1a) and (5.4a). Q  is the alternative covariancea

j jmatrix, " is the vector containing the "  and the rhs is vector a containing elements a  given by 

j 0a  = 3 f (s, j , m)  f(s, j, m), IC

jwhere the summation is over the spatial domain. Note that "  is constant in space - we linearly

combine whole maps so as to maintain spatial consistency. Even under circumstances where

jEq(7.5) has an exact solution, the resulting "  could be meaningless for further application, when

the weights are too large, and ultra-sensitive to a slight change in formulating the problem.

A solution to this sensitivity, suggested by experience, consists of two steps:

01) truncate f (s, j , m) and all f(s, j, m) to about M/2 EOFs. Calculate Q  and rhs vector a fromIC a

the truncated data. This reduces considerably the number of orthogonal directions without

lowering the EV (or effective degrees of freedom N) very much.

2) enhance the diagonal elements of  Q  by a small positive amount (like 5% of the mean diagionala

elements), while leaving the off-diagonal elements unchanged. This procedure might be described

as the controlled use of the noise that was truncated in step 1. 

Increasing the diagonal elements of  Q  is a process called ridging. The purpose of ridgea

regression is to find a reasonable solution for an underdetermined system (Tikhonov 1977; Draper

and Smith 1981). In the version of ridge regression used here the residual U is minimized but

jsubject to minimizing  3"  as well. The latter constraint takes care of unreasonably large and2

unstable weights. One needs to keep the amount of ridging small. For the examples discussed

jbelow the amounts added to  the diagonal elements of  Q  is continued until   3"  <0.5. a 2

We thus construct the analogue in an EOF truncated space. Strictly speaking we could

find an exact solution to Eq 7.3, no ridging, once the fields are truncated to M/2 EOFs, with just

any M/2 years chosen at random. But this procedure would be too sensitive. It is better to use all



Because EOTs are not unique it is tempting to use this freedom to think about tailoring EOT for the given base. I.e.
9

find the one state among the f(s,t), say at t=t1, that explains the most of the base, then on to the 2  tailored EOT etc etc as pernd

Gram-Schmidt procedure. This yields the set of EOTs that is best suited to explain the base (better even than the EOFs of
f(s,t)). However, the price to pay is that the historical data set will be truncated more by tailored EOT (than the EOT defined in
Ch 5).
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years, and deal with the underdetermination by ridging. 

Instead of using EOFs for truncation the alternative EOT suggest themselves, since we use

Q . In essence we would rewrite (7.3) asa

                                     M/2

0 jf (s, j , m)  =   G    (  e(s, j, m) (7.3a)CA

            j =1
where the e(s, j, m) are a set of alternative EOTs. One might look upon alternative EOT,

orthogonal in space, as the most obvious way of removing co-linearity among the f(s,t) so as to

j jmake the weights (  unique and their calculation easy (just projection). The "  in (7.5) can be

jfound from (  in (7.3a) by a recursive expression. The EOTs are linked to specific moments in

time, see Chapter 5, such that the execution of Eq (7.4) is easy . Note that in this variant the base9

functions are orthogonal initially, but turn non-orthogonal as the forecast proceeds.

One can raise the question about which years to pick, thus facing a near infinity of

possibilities to chose from. Here we will use all years. No perfect approach can be claimed here,

and the interested reader may invent something better. A large variety of details about ridging is

being developed in various fields (Green and Silberman 1994; Chandrasekaran and Schubert

2005), see also appendix of chapter 8.

Note that the calculation of "(t) has nothing to do with )t or future states of f or g, so the

forecast method is intuitive, and not based on minimizing some rms error for lead )t forecasts.

There could not possibly be an overfit on the predictand.

7.2.3 Example of the weights

jAn example of the weights obtained may be illustrative. Table 7.3 shows the weights "  for

global SST (between 45S and 45N) in JFM 2000. We have solved (7.3), i.e. found the weights to

be assigned to SSTA in JFM in the years 1956 through 1998 in order to reproduce the SST-

anomaly field observed in JFM 2000, truncated to 20 EOFs, as a linear combination. For each
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year we also give the inner product (ip) between the SST field in 2000 and the year in question,

i.e. the rhs of (7.5). The ip gives the sign of the correlation between the two years. The sum of

absolute values of ip is set to 1. Note the following:

i) there is no real large weight, 0.22 being the largest single value, indicating that no year is a

natural analogue

ii) we allow both +ve and -ve weights, as the problem is cast in terms of anomalies. A high

negative weight would point to an anti-analogue.

iii) the sum of the weights is unconstrained

iv) all years are used, even though years with small weights hardly participate. 

v) the weights are somewhat similar to the ip’s (have the same sign usually) but there are

exceptions (1992 has zero ip but a high +ve weight). These exceptions are caused by the co-

linearity as expressed by the off-diagonal elements of Q , i.e. the fact that years i and j have non-a

zero correlation.

vi) Since JFM2000 was a cold event in the Pacific, the reader may verify that previous cold events

generally have +ve weight, especially 1989. 

vii) The Pacific SST variability dominates variability globally during ENSO events, so the weights

reflect ENSO. Nevertheless, one can also see a trend from mainly negative to mainly positive

weights over the 40+ years shown. These trends can be even clearer when the tropical Pacific is

quiet.

Table 7.3 Weights (*100.) assigned to past years (1956-1998) to reproduce the global SST in
JFM 2000. The column ip refers to ‘inner product’, a type of weighting that ignores co-linearity.
See also footnote # xx in sct 7.4 on the sequence of 4 seasons. 

j j j j jyr ip  " yr ip  " yr ip  " yr ip  " yr ip  "

56  1  18 66 -5 -12 76  2 14 86  3   9 96  3 14

57  0   4 67 -5 -12 77 -3  -2 87 -1  -6 97  2 13

58 -4  -9 68 -2 -16 78 -4  -4 88  0   6 98 -1   3

59 -3  -7 69 -4  -8 79 -6  -7 89  4 22 99 NA NA



We present new work and review older work using either 500mb height or 500 mb streamfunction. These two
10

fields are closely related in mid-latitude, and nearly equivalent for specification purposes.
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60 -4  -2 70 -4  -6 80 -2  -7 90  5 14

61  2  12 71  2   0 81 -2  -2 91  2   6

62 -1  -1 72  1  -2 82  1  -3 92  0  18

63 -1   2 73 -2   3 83 -1  -5 93 -1 -17

64 -4   0 74  3   8 84  1 15 94  0  -6

65 -1 -19 75  1   0 85  5   6 95  0   1

Below we will discuss three applications to demonstrate how well constructed analogues

(CA) work. The first example is specification of monthly mean surface weather from 500mb

streamfunction. In section 7.4 we describe global SST forecasts - this has been the main

application of CA so far. In section 7.5 we describe how CA works on daily 500mb height data,

and how the dispersion of an isolated source is portrayed by CA, in comparison to EWP. This

leads us into the possibility of calculating the fastest growing modes by empirical means in section

7.6

7.3 Specification or downscaling 

Given a 500mb height map, what is the associated temperature at the same time near the

surface? This question comes up when judging the implication of a 500mb forecast in terms of

surface weather. In Fig. 7.4, upper left, we have the observed 500mb streamfunction (R)10

anomaly map for February 1998. Using R data for the same domain in the years 1961-1990, and

including neighboring months January and March (creating a data set of 90 cases), we first

truncated to 50 EOFs (Fig 7.4 upper right), then constructed an analogue, as per Eq (7.3). The

result is in the lower left. The EOF truncation is vitally important to find the solution, but as can

be seen in the bottom right the error between the upper left and lower left panel is very small.

Indeed 50 EOFs reproduces the original field, and the reader will be hardpressed to see any

difference between panel (b) and (c), i.e. within the truncated world the CA is very accurate by



850mb temperature is not literally a surface weather element. But due to difficulties in the Reanalysis/CDAS
11

surface 2-meter temperature, 850mb is the closest proxy.
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design. The error field (a) - (c) is given in panel (d). Making the CA for this application is no

problem at all.

With the weights known as per Eq (7.3) we now execute Eq (7.4) for J=0, and g is the

850mb temperature . Note that no temperature fields were used in Eq (7.3). The linear11

combination of temp anomalies observed during 1961-1990 is in the lower left of Fig. 7.5 - and is

to be verified against the observed in the upper left of Fig. 7.5. One can see that with one set of

weights, independent of space, we largely reproduce the near-surface observed temperature

anomaly from the streamfunction field aloft for most of the NH. In some small areas the error is

considerable, and other factors may determine near surface temperature, but overall the error is

1.0C and the correlation 0.85. We considered many cases, and the example shown is typical in

performance. In other years we find correlations ranging from 0.65 to 0.90. Specification of

precipitation is harder, but still has appreciable skill (not shown). 

To be sure: February 1998 is not an arbitrary month since it is during a strong ENSO

winter, and the flow pattern in Fig.7.5 may be largely a response to tropical convection.

Comparing to the 1  EOF of  R in Fig.5.9, one may note high +ve projection for 1998. Thest

surface weather in Fig.7.5 resembles regression or composites based on ENSO (Ch 8).

In Van den Dool(1994) this same procedure was applied to NH 500mb height, to specify

US weather and using CA was shown to work much better than NA. Results over the US by CA

appear consistent with far more laborious station by station regression equations developed by

Klein(1985) for T and Klein and Bloom(1987) for P. Note that CA damps less than regression

equations. Still CA damps some, and the error in Fig.7.5(d) (observed minus specified) often has

the sign of the observed anomaly.

We thus find that CA works well on problems that are to some good approximation linear.

The relationship between streamfunction (or height) and surface weather is fairly linear. As further

proof that CA is a very good linear operator indeed we apply CA to the problem of specifying

Z500 from R500. This problem presents itself in NWP when at the end of a numerical integration

the height field (not a prognostic variable in modern models) has to be derived from R. The most
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complex but still linear relation to obtain Z from R  is given by the linear balance equation:

L. (f  L R) =L  (g Z)    (7.6)  2

where f is the Coriolis parameter, and g the acceleration of gravity.  L is the horizontal gradient

operator. If CA is a good linear operator it should score as high as Eq 7.6 on the task of

calculating Z from R. We tested this for January mean 500mb data during 1991-2000, 10 cases in

all. CA scores better than the linear balance equation in 8 out of 10 cases, their average scores are

around 0.92 (Eq(7.6)) and 0.94 (CA) respectively. Both methods work well, and CA certainly

succeeds in being as good as Eq (7.6). This proves we have correctly built a linear operator from

data.

The reverse problem, calculating R from Z, is more difficult theoretically. But when we

used the linear CA to calculate R from Z we still found a correlation in excess of 0.90 in all 10

cases.

7.4 Global Seasonal SST Forecasts

The best prognostic application for CA sofar has been the forecast of global SST. This has

been done in real time at CPC since about 1993 (Barnston et al 1994). We use the (near) global

SST that has been (is) used as lower boundary condition in the NCEP/NCAR Reanalysis (Kalnay

et al 1996) (its continuation CDAS (Kistler et al 2001)), and form seasonal means. Thus, our data

set f(s, j, m) is the seasonal mean SST over the period 1955-present, and m denotes season, m=1

for DJF etc. The most recently observed SST  can be approximated by a constructed analogue as

per (7.3) as

                                    M

0 jf (s, j , m)  =   G    "  f(s, j, m) (7.3b)CA

            j =1
where j=1 corresponds to 1956, and M is the last year. The weights are determined after

truncating the global SST in EOF space. An example of the weights was shown in Table 7.3 when

we used data through 1998, and M=43. As of this writing we use data through 2003 for the

construction, and M=48. Given the weights the forecast is given by:

    M
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0 jf  (s, j , m+J)  =   G    "  f (s, j, m+J) (7.4b)F

   j = 1

which for m+J > 12 (NDJ) runs into the next year. In the example in Table 7.3 (initial state is JFM

2000), only data through JFM 1998 were used to determine the weights - in Eq (7.4b) the largest

forecast lead J used is 2 years. If one included 1999 in the construction J could be only up to one

year.

One of the most verified aspects of global SST forecasts is Nino34, an area between

170W and 120W and 5S to 5N. This index is thought to best describe ENSO (Barnston et al

1996). Fig 7.6 shows the skill of the CA forecasts for Nino34. The format of this graph is target

season vs lead (in months). A zero lead forecast for season 1, DJF, is made at the end of

November. The forecasts are automatically cross-validated because the year for which the

analogue is constructed has to be left out in Eq(7.3b). For winter target seasons, the anomaly

correlation is in excess of 0.9 out to a lead of 2 months, and in excess of 0.6 correlation until a

lead of one year. One can clearly see the so-called ‘spring barrier’. For instance, at a lead of 10

months, the correlation for June is < 0.4, but the correlation keeps increasing towards nearly 0.7

at lead 10 through fall and winter until about March, then suddenly drops back. Around the 

spring barrier the standard deviation is smallest, and most changes of sign take place in spring. It

is clear that a relatively simple method can have a high level of skill. Earlier verifications

(Barnston et al 1994; Landsea and Knaff 2000; Saha et al 2006) indicated that CA is among the

leading forecast methods, both in real time and on retroactive forecasts. In fact CA stays better

than random forecasts until a lead of more than 2 years. A problem in Nino34 forecasting, for all

methods, is that there are just a few occasions of strong anomalies in the 50 year record and they

make or break the overall verification scores. In between, and this can last for years, none of these

forecast methods performs particularly well.

In Eq (7.3b) we construct an analogue to a recent initial condition. As an alternative we

have constructed an analogue to a sequence of seasons, i.e. we construct an analogue that is

similar to the development of global SST over the whole past year. This does help to boost the

skill of the CA method for global SST. The justification for this may be as follows: We are

forecasting a single variable from a single variable in a world where many variables are

interrelated. An equation for a single variable would analytically be the result of eliminating all the



Note that Table 7.3 was constructed to the string of MJJ, JAS, OND1999 and JFM2000, each season five EOFs of
12

global SST.
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other variables, and the order of the final differential equation may be quite high. This justifies

using more that a single initial condition. In effect we use initial conditions for the 1 , 2  , 3st nd rd

derivative at recent times. To cut down on choices we have used either only a single season (the

most recent season) or 4 non-overlapping seasons (one year) . In EOF expenditure terms, these12

choices are the same, i.e. we either use a lot of precision in the latest season and none earlier, or

we use moderate precision spread out over a whole year. The idea of using analogy over a longer

period dates back to the days NA was used (Schuurmans 1973). 

The use of four successive seasons also breaks the linearity (or symmetry) of ENSO warm

and cold events somewhat. If warm and cold event evolve in different ways, an analogue

constructed to a warm event for four successive times will not give high negative weights to a

previous cold event.

The verification results shown in Fig. 7.6 are actually for an ensemble mean  forecast.

How is the ensemble made? One can vary the number of EOFs used, here 16, 21 or 26, the

participating years as M+1 or M, and by spending all EOFs on the latest season’s global SST, or

spread the EOFs out across 4 non-overlapping seasons so as to mimic the evolution over a whole

year. Any of these perturbations has the effect of changing the weights and creating a somewhat

different initial CA. Following these options we obtained 12 members. An example is given in Fig.

7.7, which shows the ensemble issued in early July 2005. Half the members use 49(48) years,

labeled l for late (e for early) in the 3  index, and half the members spend the EOF on just therd

latest season (last 12 months), labeled 1 (12) in the first index. The middle index is 16, 21 or 26

for the number of EOFs used. The forecast by the late members using M+1 years stops after one

year because the historical evolution following June 2004 was, at the time of forecast release, not

known beyond June 2005.  

Two members show an increase in Nino34, while 10 members show a tightly clustered

decrease. Considerable spread is thus seen to be possible among the members. Traditional

statistical methods minimize the rms error in the predictand (here Nino34) and all members would

ultimately go to zero anomaly and collapse to zero spread. But even at very long lead the CA



21

members do not agree. Clearly CA has features of error growth, divergence among states which

reflects the fact CA has unstable modes. This will be worked out further in section 7.6.  

7.5 Short range forecasts and dispersion experiments

Short range forecasting by CA is not a viable practical application at this time because

superior methods have been available for decades. The verification presented below is to further

understand the strengths and limitations of CA as a method. Especially the question as to why it

would be useful in the long range and not in the short range. The question of utility for practical

application involves comparison to other available tools. 

Given is a space time data set f(s,t), in this case f is the instantaneous daily 500 mb

geopotential height taken from NCEP-NCAR Reanalysis - s is a spatial coordinate (5  lat by 10o o

lon grid), and t is time. We form anomalies by subtracting a harmonically smoothed 1979-1995

daily climatology, appropriate for the time of year, produced by Schemm et al (1997). We

consider the domain 20N to the North Pole. The data set f is processed as follows: In 1968 we

take the fields for January, 1, 3, 5, ... 23 at 0Z, i.e. twelve fields in one year. Similarly for 1969

through 1992, for a total of 300 fields during 25 years. We now have f(s,t), where t=1, 300,

representing a great diversity of NH January flows. The time t is a counter for both regular time

and annual increments. f(s,t) represents the ‘library’ of historical states used for constructing

analogues. A similar data set f(s,t+)t) is used for making the forecast.

7.5.1 Short range forecasts

We now chose initial conditions every day from January 1-23 in the years 1993, 1994

through 2004, a total of 12 years, having no overlap with the library. Fields are truncated to 100

EOFs (determined from f(s,t)), and even though the CA is made in truncated space, the resulting

CA field correlates 0.99 with the original.  So we have: 

                      300

0f  (s, t ) . f (s)  /  E  "(t) f(s,t)         (7.3c)IC CA

                t=1
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And the forecast is given by:
                                    300

0f  (s, t +)t)   =  E "(t) f(s, t +)t)         (7.4c)F

         t=1

We verified all 276 forecasts (12 years, 23 ICs) based on (7.3c) and (7.4c) for )t=1 day on the

domain 20N to the North Pole. The anomaly correlation is on average only about 0.82, ranging

from 0.69 to 0.93 in individual cases. This has to be compared to the mean anomaly correlation of

persistence on the same domain, 0.73, and ranging from 0.53 to 0.89 in individual cases.

Even though we have a CA match of 0.99 at the initial time, the correlation for CA drops

like a rock to 0.82 in a single day - keep in mind that NWP stays above 0.9 for several days.

Perhaps this can be explained away because we did not match the temperature field. But even a

barotropic model has above 0.9 correlation at day 1 (Qin and van den Dool 1996).  CA and a

barotropic model only differ in the formulation of the anomaly vorticity advection by the anomaly

wind. Apparently the linear combination of time tendencies associated with non-linear terms

harms the CA forecast in the short range forecast. Still the total time tendency produced by CA

has some skill, otherwise we could not have beaten persistence. It thus follows that even in this

short range forecast problem the linear components of the time tendency are larger than the non-

linear components. Nevertheless, the errors made in the latter put CA behind the competition.

Looking back at the high scores for SST forecasts by the CA method months ahead of time

(discussed in ch7.4), one must conclude that the SST prediction problem is a far more linear

problem than the short range weather forecast problem.

Comparison of CA to NA and EWP can also be drawn. CA is better in forecast skill than

NA because the initial match for CA is very good - the day 1 score (0.82) for CA is still much

better than initial match for NA (which averages only 0.55 in winter, see Fig. 7.3). Even the day 2

score for CA, 0.60 correlation, is better than NA’s initial match. The NA may be a perfect

method, but its handicap (a bad initial state) makes it unusable - NA cannot even beat persistence

averaged over all cases. As a short range forecast tool the skill of CA is not very different from

EWP, compare to Table 3.7 for instance. Saying that the skill is similar does not mean that the

forecasts are similar, as we will see in the next section 7.5.2. It may be a partial coincidence that

CA and EWP have the same day 1 score. EWP is designed to do a simplified version of wave



This could be in part because we use the domain 20N-pole for CA, while for EWP2 (spherical harmonics) we use
13

the full globe.
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propagation, an imperfect attempt to calculate the linear part of the time tendency. On the other

hand CA is perfect at the linear part of the time tendency, but adds a presumably bad estimate of

the non-linear term to it.

We also checked the results of CA forecasts for 20S to the South pole. Results in the SH

are entirely consistent with the NH. The gain over persistence is much larger in the SH, roughly as

much as it was for EWP in Table 3.7.

7.5.2 CA Dispersion Experiment

We are now in a position to redo the ‘rock in the pond’ experiments of chapter 3 to study

CA behavior. We will start with the same ‘round’ 500 mb height anomaly disturbance at 45N used

in Chapter 3. But what is different from the EWP dispersion is the CA dispersion depends on

longitude. EWP as designed gives the same result, regardless of the longitudinal position of the

initial disturbance. In contrast CA ‘knows’ about the stationary waves in the background field,

and implicitly the underlying land-sea distribution. A technical issue is that for EWP we

maintained wave amplitude harmonic by harmonic, while CA has an evolving amplitude. We undo

this difference by restoring the amplitude of CA to its original value, where amplitude is as

defined in Eq (7.1a). Still the spectral distribution may change somewhat.  

Fig. 7.8 shows the CA dispersion from a source on the dateline and 45N. This has to be

compared to Figs 3.1 and 3.2 for EWP1&2. The geography in the latter two is only for

orientation while in Fig.7.8 the geography has real meaning. From the dateline and 45N, the

dispersion by CA and EWP are broadly similar, with similar upstream and downstream

developments. Mainly zonal dispersion can be seen in CA . The fields after a few days are13

qualitatively similar, but the details of the far downstream traveling stormtracks show differences

in slope, organization etc. This may be caused by the non-zonal background flow in which the CA

dispersion takes place compared to the uniform background flow for EWP.  

In Fig.7.9 we compare the 2-day forecasts by CA for four positions of an identical rock in

the pond at 45N and the dateline, 90W, Greenwich and 90E respectively. The maps are rotated



This difference may be slightly overstated because 100 EOFs explain less of the variance of the patch over Asia
14

than elsewhere. I.e. the starting rock in the pond is not 100% identical at all positions once the EOF truncation is applied.
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such that initial source is always at the bottom. We now see that of the four starting longitudes,

the dispersion from the dateline and Greenwich are the most similar to EWP. The other maps are

somewhat similar, but not greatly so. In all cases one can see downstream development of

opposite sign, but the intensity depends on longitude. Persistence of the original blob is strongest

near Greenwich. Other features are more different.  It does matter greatly at which longitude we

place the rock, or rather relative to what background flow. Especially the position over Asia gives

a different impression . In any of the four plots there is some slight meridional propagation, the14

amplitudes being non-zero outside the latitudinal band of the original disturbance, but is not as

clear as in Fig. 3.2. EWP works with a much more idealized zonally symmetric background flow.

A plot similar to Fig.7.9 for the SH has simpler structures, looks more like EWP and shows little

dependence on longitude. 
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