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8  Methods in Short-Term Climate Prediction
1.climo, 2.persist, 3.OCN, 4. Local regress, 5 Non-local regress, 6 Composites, 7 regress at pattern level, 8 NWP, 9Consolidation, 10 Other method, 11 Methods not used, App I, App II

8.7 Regression on the Pattern Level Most empirical methods in short-term climate prediction are nowadays based on multiple linearregression ‘on the pattern level’.  A primitive example is as follows. Suppose we have two datasets, f(s,t) called the Predictor, and g(s,t) called the Predictand. One can perform two stand aloneEOF analyses of f and g, and then do the regression between the time series of the leading modesin the predictand and predictor data sets. Klein and Walsh(1984) made an in depth comparison ofregression between EOF mode time series on the one hand and regression between the originaldata at gridpoints on the other - this was in the context of ‘specification’ (as discussed forinstance in Ch 7.3). Using modes is efficient, and cuts down on endless choices, but it may notalways help the skill. For a more general approach we first discuss the time lagged covariance matrix. 8.7.1 The time lagged covariance matrix When we have two data sets, f(s,t) called Predictor, and g(s,t) called Predictand, one can
fgdefine the elements of the time lagged covariance matrix C  as

t        nij i j t    c = ! f(s ,t) g(s ,t+!)/n   (8.5)        1twhere n  is the number of time level, a time mean of f and g was removed, and " is the time lag. C,non-square in general, thus contains the covariance between the predictor at any place in itsdomain, and the predictand anywhere in its domain - local as well as non-local. (From the time lagin g our intention is clear: to predict g from f. However, some analyses below (CCA, SVD) donot go beyond establishing associations between f and g, leaving in the middle who predicts



Standard texts on regression should be consulted to find methods of exploratory regression that can avoid overfit in1most cases. 2

whom. Most texts on SVD and CCA thus do not show a time lag)
ijAssociated with c  there is also a correlation 

ij t ij i j# = n  * c /sqrt(! f (s ,t) ! g (s ,t+!) ) (8.5a)2 2If g and f were the same data set, and the time lag is zero, C would be the square Q, as per Eq
fg f g f ff(2.14). Along with C  we also need Q  and Q  below. (Q  = C (!=0)). Given how Q wasmanipulated to calculate EOF ( presented in chapter 5 as ‘self prediction’) one may surmise that Ccan be used to relate patterns&time series in the predictor field to patterns&time series in thepredictand field. Indeed, C, in its various renditions depending on prefiltering, truncation,orthogonality constraints, organization of input data sets, etc, is among the most studied in shortterm climate prediction. Instead of the role played by the notion explained variance (EV) in EOFs,the target of calculating coupled patterns/time series is often in ‘explaining’ the co-variance of fand g. Because covariance can be negative, the target is often taken to be ‘squared covariance’

ij (SC). i.e. the fraction of !c , where summation is over all i and j, that can be explained by 1, 2 or2m coupled ‘modes’.Without any truncation or constraint C is set up to create any imaginable regressionbetween f and g, so as to minimize the rmse of the prediction of g, on the dependent data that isused to compute C. Here lies a very significant problem. With so many predictors f(s,t), it is hardto avoid overfitting . C contains the correlation of everything with everything. The overfit is1combated by severe truncation at the pattern level. This reduces the subjective nature of choosingpredictors.  Somewhere in C also lie the methods we already discussed before, like local persistenceand local and non-local regression. The reason to present these simpler methods separately andupfront is twofold. First we may easily lose local effects when applying truncation at the patternlevel, i.e the very high persistence in temperature in San Diego California would not make it into a
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pattern method until hundreds of modes are admitted. Secondly, C is calculated without anyphysical intuition. The local effects approach can more easily be defended on physical grounds. 
8.7.2 CCA, SVD and EOT2In chapter 5 we presented EOFs of the data set f(s,t) as:

f    M m mf ( s, t) = $ % (t) e (s) (8.6)   m=1  where both the time series and spatial patterns are orthogonal. Eq (8.6) still gives a complete
frepresentation of f as long as either the time series or the spatial patterns are orthogonal, and M  islarge enough. Likewise we have for the predictand: 

g        M
m mg ( s, t+!) = $ & (t+!)d (s) (8.6a)      m=1  Coupling the modes among the two data sets f and g, which have the same number of time levels

f gbut possibly different spatial domains (also M  !M ), will be discussed below in terms of the
m m m mproperties of % (t) and & (t+!) and d (s) and e (s) respectively. In any of the methods beloworthogonality is maintained in either time or space (not both), so the coupled modes allowprojection of future data and/or partial rebuilding of  f and g themselves with a set of modes, andthe notion explained variance (not optimal obviously) within each data set still applies. The plain distinguishing feature of Canonical Correlation Analysis (CCA) is that the

m mcorrelation of % (t) and & (t+!), denoted cor(m), is maximized - the modes are ordered such thatcor(m)>cor(m+1) for all m.  Within each data set we have for CCA
k m! % (t)  % (t) =  0 for k ! m (CCA-1)
k m! & (t+!)  & (t+!) =  0 for k ! m (CCA-2)ti.e orthogonal time series, and across the data sets:
k m! % (t)  & (t+!) =  0 for k ! m (CCA-3)
k m! % (t)  & (t+!) = cor(m) for k = m (CCA-3a)



 We use the name SVD, even though we agree with Zwiers and Von Storch (1999) that it is unfortunate that the2name of the method is confused with a basic matrix operation; they suggest Maximum Covariance Analysis.4

where summation is over time. The cor(m) can be found as the square root of the eigenvalues of
f fg g fg g fg f fgthe matrix M = Q  C  Q  C  (or from Q  C  Q  C ). Note that CCA’s maps are not-1 -1 T -1 T -1orthogonal. On the other hand, in a method often called singular value decomposition (SVD) theexplained SC is maximized. For SVD  we have within each data set:2

k m! e (s)  e (s) =  0 for k ! m (SVD-1)
k m! d (s) d (s) =  0 for k ! m (SVD-2)si.e. orthogonal maps, and across the data sets:
k m! % (t)  & (t+!) =  0 for k ! m (SVD-3)
k m! % (t)  & (t+!) = '(m) for k = m (SVD-3a)

fgwhere '(m) is the m’th singular value of C . The SC explained by mode m is ' (m).2Notice the (dis)similarities of SVD and CCA. CCA has orthogonal time series, SVDorthogonal maps. Properties (CCA-1) and (CCA-2) vs (SVD-1) and (SVD-2) appear to be amatter of space-time reversal, but this can not be stated for the 3  property. The roles of cor(m)rdand '(m) appear similar. The notion ‘SC explained’ is sometimes also used for CCA, but does notrelate trivially to cor(m). Theoretically it is possible that the first CCA mode describes a perfectlycoupled f-g process of infinitesimal amplitude (high cor, low SC).CCA and SVD are methods to find coupled modes, but they are not quite forecast
m m m mmethods. A regression between the % (t) and & (t+!) is needed to forecast  & (t+!) given % (t) .An easy way of explaining both the idea and the actual application of methods like CCAand SVD to a forecast situation may be to use ‘EOT2' - we used EOT in Chapters 4 and 5, but

1extend it here to 2 data sets. Specifically, we seek the position s  in space so that the time series
1f(s ,t) explains the most of the variance in the predictand data set g(s,t) at lag !. I.e. we find i forwhich U(i) defined as 
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ij j t U(i) = ! ( #  * !  g (s ,t+!) / n ) (8.7)2 2j     t 
1 1is maximum. Having found s  we take f(s ,t) to be the first mode’s time series of both f and g

1 1 1 1 1expansions, i.e. f  (s, t) = a (s , s) f (s , t), and g  (s, t+!) = b (s , s) f (s , t), where a (s ,explained explained
1 1s) is the regression coefficient to predict f (s,t) from f (s , t) and b (s , s) is the regression

1 1 1coefficient to predict g (s,t+!) from f (s , t).  The spatial patterns in (8.6) are thus: e (s)= a (s , s)
1 1 1and d (s)= b (s , s).  Note that b (s , s) is proportional to the correlation defined in Eq(8.5) andused in Eq (8.7). We then seek the 2  point in the once reduced data setsnd

1 1 1 1 2f  (s, t) = f (s, t) - a (s , s) f (s , t), and g  (s, t+!) = g (s, t+!) - b (s , s) f (s , t), to find sreduced reducedetc.  This procedure has many of the properties of CCA, specifically the identities (CCA-1),(CCA-2) and (CCA-3/3a), the latter with cor(m)=1 for all modes. (Oddly, EOT2 actually ‘beats’CCA on producing the highest correlation between the time series.)  EOT2 has at least twonotions of relevance, the EV in data set f, and the EV in data set g. The latter is what ismaximized, albeit under the constraint that we use a single time series of f at one point in space(rather than linear combinations of f at various points). There does not appear to be a particularneed for the explained SC, after all the target of the prediction is EV in g.
1Making a forecast of g is easy. For the first mode we need the observation of f at s , then

1multiply by b (s , s). Subsequent modes are similar, but f has to be m-1 times reduced for the mthmode. The reader will not be surprised that there is an ‘alternative’ lagged covariance matrixgiven by
ij i j s    c = ! f(s, t ) g(s,t +!) /n  (8.5b)a

iwhere summation is in space. Here we consider inner products of maps of fields f and g at times t
jand t +!. At first sight this definition is possible only if the domain and gridpoints for f and g arethe same. However, this discrepancy is resolved by first executing EOFs on f and g individually

iand thinking of s in (8.5b) as the mode number. We now pick the one f map at time t  which



 under the constraint that we use maps of  f at one point in time (rather than linear combinations at3various times). 6

maximizes the variance explained in g, an expression similar to (8.7) but reversing the roles of
1 1time and space. This single map then acts as e (s) for f and d (s) for g. There are two time series,

1 i i 1 1 iwhich are regression coefficients a( t , t )  to predict f(s, t ) from f(s, t ) and b( t , t )  to predict
i  1 g(s, t +! ) from f(s, t ).  This alternative EOT2 route leads to the expansion (8.6) and (8.6a) withthe properties (SVD-1) and (SVD-2) but not (SVD-3).  The alternative EOT2 has again twonotions of relevance, the EV in data set f, and the EV in data set g. The latter is not only what ismaximized , but is the purpose of the regression.3The two EOT versions that closely bracket CCA (regular EOT2) and SVD (alternativeEOT2) come with either 2 maps and one time series (nearest CCA) or one map and two timeseries (nearest SVD). From this it appears that SVD is subject to more orthogonality constraintsthan CCA - after all (CCA-3) follows trivially when there is only one time series to begin with, but(SVD-3) does not follow automatically from having a single map (d=e).  Note that when admitting too many modes CCA/SVD goes in the direction of multiplelinear regression. Obviously, truncation is necessary for reaping the benefits of regression at thepattern level. Much information about SVD and CCA can be found in Bretherton et al(1992), Newmanand Sareshmukh(1997) and Zwiers and von Storch(1999).  Wilks(1995) provides a gooddiscussion of CCA.CCA was not used much in meteorology until Barnett and Preisendorfer(1987). The mainmethodological twist in their paper is a prefiltering step where both f and g are truncated to just afew EOFs before calculating C. (Moreover, the EOF associated time series are standardized, as ina version of the Mahalanobis norm (Stephenson 1997)) The prefiltering greatly reduces CCA’ssusceptibility to noise. The prefiltering also makes the practical difference between SVD and CCAin many instances very small. Additionally Barnett and Preisendorfer(1987) applied their adjusted
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CCA to the seasonal forecast and had the predictor data set cover four antecedent seasons. Thismethod and this particular predictor lay-out has been popularized by Barnston(1994) and his workfound short-term climate prediction application on nearly all continents (Johansson et al (1998)for Europe; Thiaw et al(1999) for Africa; Hwong et al(2001) for Korea, Shabbar andBarnston(1996) for Canada, He and Barnston(1996) for tropical Pacific Islands and Barnston andSmith(1996) for the whole globe). While SVD is often mentioned in one breath with CCA, andwidely used in research (Waliser et al 1999; Wu and Dickinson 2005) there appear to be far fewerreal-time forecast applications based on SVD. CCA is also applied as a method to correct errorsin GCM predictions (Smith and Livezey 1999; Tippett et al, 2005) As a diagnostic tool SVD or CCA may be as difficult to use as EOF, i.e. the patterns inthe predictor and predictand data set may or may not be revealing the underlying physics. Plentyof examples of patterns are found in Barnston(1994). Newman and Sardeshmukh (1997) show thefailure (to a certain extent) of SVD to discover that vorticity and streamfunction are lineartransforms of each other. Zwiers and Von Storch(1999) also provide several examples. We spent some paragraphs explaining SVD, CCA etc because so much of the modernempirical work is along these lines. Regression on the pattern level is thought to take away thearbitrariness of correlating everything with everything. Although methodological details are hotlydebated sometimes, the other choices may be more important than the exact method. For instance,which predictors, how far back in time, how many time levels, the domain for predictors andpredictands, pre-filtering, truncation etc, may be more important than the exact CCA vs SVDmethod. The CCA at CPC and CDC, identically the same method, often give conflicting tropicalPacific SST forecasts. While we presented the above material as a strictly separated predictor  fand predictand g, keep in mind that the data sets may be combined, i.e. fields of the predictand atan earlier time may be appended to f in order to forecast g. CCA has been used at both CPC andCDC for real time seasonal prediction; skill levels are at best (short lead JFM seasonal T&P) 0.3 -0.35 correlation nationwide with regional variations that reflect the large impact of ENSO
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(Barnston 1994; Quan et al 2005). The CCA modes suggest lesser influences from other tropicalareas and mid-latitude oceans as well.
8.7.3 LIM, POP and MarkovSomewhat similar to CCA and SVD are the linear inverse model (LIM) and principaloscillation patterns(POP). The similarity is in the central role of the lagged covariance matrix as in(8.5), evaluated from data. However, both POP and LIM try to generalize the results for lag " toall other lags by assuming an underlying theory. Following the Winkler et al(2001) notation onemay assume a linear model given byd x/dt = L x + R (8.8)where x is the retained scales state vector, L is a linear operator and R is random forcing due tounresolved scales (possibly with structure in space).  Vector x would for instance be acombination of data sets f and g. The solution to (8.8) is x(t+") = exp(L ") x(t) + R’, (8.9)where R’ depends on the history of R. The operator L can be determined from data at a chosen

0 0 0lag " , i.e. we evaluate C for lag " . L is given by C(" ) C ("=0), see Winkler et al (2001) for-1
0detail. The forecast for any lag " is given by the first term in (8.9). The forecasts for "  would,everything else being the same, be close to CCA’s. But an analytical flavor is added because timeevolution is implied. Moreover, it is possible to calculate the eigenvectors of the asymmetric Lonce and for all - they are structures evolving in time, and ultimately damped. By knowing theprojection of the current initial state onto the known eigenvectors of L, the forecast can be madeanalytically and can be interrogated for diagnostic purposes, such as in deriving the optimalstructure to produce an El Nino pattern 10 months later (Penland and Sardeshmukh 1995). This issimilar to what we presented for CA (section 7.6), although CA has additional growth due tounstable normal modes.  Several examples of POP, including for MJO forecasts, are given in Zwiers and von
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Storch(1999). Winkler et al’s (2001) application is in the week2 forecast, while Penland pioneeredLIM for seasonal SST forecasts, both in the Pacific (Penland and Magorian 1993) and Atlantic(Penland and Matrosova 1998). In all cases C is calculated from EOF truncated data, but thedegree of truncation varies wildly.A straightforward method has been presented in Xue et al(2000). In this paper thediscretized version of (8.8) is used: x (t+") = C(") C ("=0) x(t) , i.e. given an initial state x(t) and-1C(") C ("=0) as determined from data, the forecast for lead " can be made. No linear model is-1assumed, so the calculation has to be done for each " seperately, and nothing connects theforecasts at two different ", except to the extent the data suggest. No modes are calculated,neither eigenmodes of L (as in LIM/POP, see Eq 8.9), or M (CCA) nor singular vectors of C (asin SVD). This cuts down on interpretation. The problem is handled as multiple linear regression,however after extremely heavy truncation using extended EOF in the input data. Xue et al(2000)use sea-level height, wind stress and SST to forecast the same (sea-level height, wind stress andSST) in the tropical Pacific which appears to be a wise choice, since the methods has worked well in real time. They call their method a ‘Markov’ (MRK) method. CCA, SVD, and LIM, POPand MRK have options in truncation both in preparing the input data, and in truncating the modescalculated from C, L or M. 
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