
There is an implicit assumption that waves of different wavenumber travel independently, i.e. no non-linear1interaction. Ch. 3 Pg. 1

3 Empirical Wave PropagationThe purpose of this chapter is to demonstrate that, given a long data set of global extent,one can design a simple forecast method called Empirical Wave Propagation (EWP), which hasmodest forecast skill and allows us to explore aspects of atmospheric dynamics empirically, mostnotably aspects that help to explain mechanisms of teleconnection. The highlight of this chapterare dispersion experiments where we ask the question what happens to an isolated source at t=0.Even though nature has never done such an experiment, we will address this question empirically.In case the reader does not need/want to know the technical details of deriving wavespeeds he/shecan skip to page 6 (EWP diagnostics) of this chapter... We will also discuss the skill of one-dayEWP forecasts, in comparison to skill controls like ‘persistence’, as a function of season,hemisphere, level and variable. While short range forecasts are certainly not the topic of this book,we note that the short-term wave propagation features described here do nourish and maintain theteleconnection patterns thought to be important for longer range forecasts.    EWP uses either zonal harmonic waves (sin/cos pairs) along each latitude circle separately(EWP1), or global domain spherical harmonics (see Parkinson and Washington (1986) for basicson spherical harmonics), EWP2. The orthogonal functions used here are thus analytical. Theatmosphere is to first order rotation-symmetric and obviously periodic in the east-west direction,which makes the zonal Fourier transform a natural. Moreover, many weather systems, wave-likein the upper levels, are seen to move from west to east (east to west) in the mid-latitudes(tropics), so a decomposition in sin/cos functions should inform us about phase propagation andenergy dispersion on the sphere. For any initial time we decompose the state of the atmosphereinto harmonic waves. If we knew the wave speed, and make an assumption about the futureamplitude, we could make forecasts by analytical means . But how do we know the phase speed?1One way to proceed, with data alone, is to calculate from a large data set the climatological



Anomaly is defined as a departure from a climatological mean.2
Ch. 3 Pg. 2

speeds of anomaly  waves. This is where the empirical aspects come in. Phase speed estimates can2be made via a technique called phase shifting.
3.1 Data and EWP Method3.1.1 Data treatment.

Consider a data set of , for example, 500 mb height analyses (treated as ‘observed’), oncedaily at 0Z, on a 2.5  X 2.5  lat/lon grid, denoted as Z ( ! , ",  t , year), where ! , " are longitudeo oand latitude. Choosing just a small window in the annual cycle (+/- 15 days) around January 15,we can combine all January days during 1979-1995 into one single data set and have  t=1, 31. Wenow form anomalies by:
climoZ’(! , ",  t , year) = Z(! , ",  t, year ) - Z  (! , ",  t )

climowhere  Z  (! , ",  t ) is based on a long multi-year data set Z ( ! , " , p-level, day of the year,hour of the day .......). See Schemm et al(1997) for details on how such climatologies areprepared.  Global Reanalysis (Kalnay et al 1996) and CDAS, its continuation in real time (Kistleret al 2001), allow us to choose any sub-period during 1948-present. We now select data alongjust one latitude circle at a time, a periodic domain:  Z’(! , 50N,  t , year). We further simplifynotation to Z’(!, t).As in Eq (2.6) we project anomaly data Z’ onto the sin / cos orthogonal pair for each t. This yields two coefficients (a and b) , or, alternatively, an amplitude (A) and a phase (#) for eachm, m=0 to 72, i.e. 
0 m m 0 m mZ’( !, t ) =  A (t)  + ! a (t) cos mx + b (t) sin mx =  A (t) + ! A (t) cos m(x-# (t)),   (3.1)        m  m
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0where x = 2$ ! / 360, and  ! =0, 2.5, 5 ....... 357.5.   A  is the zonal mean of Z’, sometimes
mreferred to as wavenumber 0.  #  is the phase angle. (3.1) is a classical Fourier transform or

m mharmonic analysis of  Z’( !, t ). Recall, Z’, A  and #  are all functions of time.
3.1.2 Amplitude. Essentially, in view of (3.1), in order to forecast Z’( !, t+1 ) given Z’( !, t ), we seek

m minformation about the amplitude A  and the phase #  at t+1. Splitting up the forecast problemexplicitly into these two aspects (A, #) is not all that common, but leads to special insights. Thereal forecast skill resides in the propagation aspect, while the skill related to the amplitude, in datastudies, is usually just damping. Nevertheless we can learn from studying first the amplitude. Inview of Parceval’s theorem Eq (2.16), we can write the space time variance (STV) as: 
s t mSTV   = %% Z’  /(n  n )  =   ½ &&A      2 2  t s      t m

m m= ½ &( <A >  + <A’ > ) ,    (3.2)2 2        mwhere < > is the time mean, and A’ = A - <A>.From numerous calculations with many variables we find that about 75% or more of the variance
min the atmosphere is associated with  <A >  , i.e., the observed variability can be thought of as2

manomaly waves with amplitude fixed at their climatological value, <A > , residing at some phase.(An example of this calculation is forthcoming in the discussion of Table 3.1). The remainder,
m<A’ > , due to amplitude variations is 25% or less, depending on variable. This certainly creates,2by and large, the impression of stable waves, and therefore the prediction as one of primarily thephasing of waves. Striking ‘development’ localized in space (such as a suddenly growing cyclone)has to be mainly one of constructive interference, not one of periodic sin/cosine wave amplitudedevelopment. This point of view is in agreement with Farrell (1984) who was one of the first toquestion whether ‘modal’ (i.e. sin/cos) instability is the cause of mid-latitude cyclone
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development, a view that had been held since the 1940s.
climoPlease note the 2  layer of climatology in Eq (3.2). We had already removed  Z  fromndZ, then defined the climatology of the amplitude of anomaly waves (a 2  moment). In contrast tond

m m m<a > and <b >, <A > is not zero because amplitude is derived from a squared quantity (i.e. notethat Eq (3.2) does not refer to the amplitude of climatological mean waves in Z.)
m mNow, take a single anomaly wave A  cos m(x-# ). The question: will this wave move eastor west and by how much per unit time. The question cannot be trivially answered by studyingdata because a) the speed varies greatly from day-to-day, and b) ambiguities arise when the wavemoves more than 180  to the east (or west), relative to its own wavelength. To lessen theseoproblems we use a ‘phase shifting’ technique.

3.1.3 Phase shiftingFollowing Van den Dool and Qin(1996), and dropping the m index in A and # for simplicity, weconsider a single wave m and write:At time t: A cos m(x-#)    = a cos mx + b sin mx (3.3)At time t+1: A  cos m(x-# ) = a  cos mx + b sin mx (3.3a)+1 +1 +1 +1Now move the crest of the wave at time t  to a reference longitude (Greenwich for instance) - thisis done by phase shifting over +#.  Move the wave on the next time level (t+1) over the sameangle #  - this maintains the relative positioning of the waves at successive days, but in a newframework. Phase shifting yields:At time t: A cos m(x)  = A cos mx + 0 sin mx (3.4)At time t+1:   A  cos m(x- (# - #)) = c  cos mx + d  sin mx (3.4a)+1 +1 +1 +1where c  = a  cos m# + b  sin m# and d  = b  cos m# - a  sin m#. +1 +1 +1 +1 +1 +1The phase shifting is done for all pairs t/t+1 (all 510 pairs for say January 1979-1995 forinstance) and # is always the phase angle on the leading day. The r.h.s. coefficients in (3.4) and(3.4a), A, c  and d , are a function of time, with time means <A>, <c > and <d >. The time+1 +1 +1 +1
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mean of coefficients a and b (and a  and b ) would be very nearly zero.  All variables we have+1 +1introduced in (3.3) and (3.4) can be evaluated from the data.Amplitudes of the time averaged phase shifted (subscript ps) wave m are given by:
pst: A  = <A> (3.5a)
pst+1: A  =  !( <c >    + <d >  ) (3.5b)+1 +1 2 +1 2Phase angles of the time averaged phase shifted wave are given by:

pst: #  = 0 (3.5c)
pst+1 #  = arctan ( <d > / <c >) (3.5d)+1 +1 +1

ps psThe resulting A  and #  can be generated for each m. The amplitude at time t is not changed by
ps mthe phase shifting: A  is the same as <A > in (3.2). If the wave at t+1 were in a random phase relative to the wave at t, <c > and <d >+1 +1

ps ps pswould be zero and hence A would be zero. The ratio A / A  thus tells us the degree of non-+1 +1 randomness in (# - #) or the steadiness in propagation for the given time increment.+1The phase shifting technique is helpful mainly because it postpones dealing with theambiguity about displacement larger than +/-180 ,  until after the time averaging of c  and d . Ono +1 +1many individual days with either high phase speed and/or low amplitude waves (or too large timeincrement) the ambiguity is difficult to deal with. EWP is related to time spectral analysis but uses only short-time increment lagged data todetermine wave speeds under quasi linear conditions.
3.1.4 Mean propagation

pThe phase speed  " (in m/s) can be obtained from #  (in (3.5d) in radians) as+1
ps " (" , m) = #  (m, " ) . 6375000 . cos (") / 86400 / m (3.6)+1where the constants are the radius of the earth and number of seconds per day (since we used dataonce daily). When using spherical harmonics instead of sin/cos only the speed at the equator needs

ps psto be reported. In all cases  A  <  A , i.e using this method, anomaly wave amplitudes are+1
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always damped. Some degree of damping is typical for statistical methods. All waves appearstable. Damping is small (large) for long(short) waves. We have found that a 1-day time incrementworks very well. For larger time spacing (2 days....10 days), the damping increases quickly.
3.1.5 EWP forecast method.

psTo apply EWP as a forecast method it is enough to know #  as a function of wavenumber and+1latitude for a given time of year. I.e on independent data we decompose the anomaly height field
psat t=0 into waves, using (2.6), then move each wave by # (m, ") from (3.5d), then use (3.1) to+1arrive at a forecast in physical space for t=1. The very same forecast method could also be applied

psif # (m, ") were known from theory, as is the case for a simple model (barotropic) in a simple+1
eqbasic state (like U(") = U  cos ", a state called super rotation). EWP is an analytical prediction

psmethod, and the word empirical applies only to the source of information that yields  #  .+1In the above we presented and derived the EWP forecast method along intuitive lines. InAppendix 3.1, we also present a formal derivation based on rmse minimization with very nearlythe same result.
3.2 EWP diagnostics. Table 3.1 serves as an example of the diagnostic aspects of EWP. We analyzed 20 years of 500mbdata for January 1968-1987. Information is given here for 50°N, for selected zonal wavenumbersm=0,1,3,5,7,9,11. For quick comprehension all numbers are rounded off to the nearest integer.=============================================================Table 3.1  Tabulation of amplitude, % variance, phase angle propagation, phase speed andamplitude ratio, for selected zonal wavenumbers of daily 500mb height anomalies in January for50°N. The time increment is 24 hours. Period = 1969-1987. ND=Not Defined.  \ m–> 0 1 3 5 7 9 11 units Reference------------------------------------------------------------------------------------------------   

m ps<A > or A 26 73 73 57 35 21 13 gpm (3.5a)
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m m<A > /<A > 63 80 79 82 80 77 77 % (3.2)2 2
ps!  ND -3 3 31 71 108 136 " (3.5d)+1 o " ND -3 1 5 8 10 10 m/s (3.6)
ps psA /A 89 90 88 79 65 44 32 % (3.5a/b)+1===============================================================

mThe time mean amplitude <A > is given in the first line, and the fraction of variance represented
mby <A > in the second line. The long waves have large amplitude, nearly constant for m=1 to 4 at70-75 geopotential meter (gpm) while amplitude drops off sharply with m beyond wavenumber 4.As shown in the 2  line the time mean amplitude of the anomaly waves represents 75-80% of thendvariance (except in the zonal mean (m=0) where the percentage is only 63%). The phasepropagation, in degrees relative to own wavelength denoted !, is given in the 3  line and theo rdconversion to speed in m/s in the 4  line. Long waves travel westward (-), and short wavestheastward (+), in good qualitative agreement with the theoretical Rossby equation for mid-latitudes(Holton 1979 p167), which reads " = U - '/K , where " is the phase speed, U is the background2windspeed, ' is the meridional derivative of the Coriolis parameter, and K is wavenumber (if onlythe zonal wavenumber is considered K relates to m as K=2$m/L, where L is the length of thelatitude circle.) The short wave speed (large K or m) is nearly constant with m at 10m/s and noambiguities arise for the wavenumbers shown, the largest displacement shown being 136 or lesso than half the wavelength, even for m=11. The displacement in degrees depends obviously on thetime increment ((t), chosen here as one day, but the speed " in m/s depends barely on (t as longas (t is small. As can be judged from the 5  line: The phase propagation is rather steady (largeth

p pA /A )  for the long waves, but is increasingly more variable and harder to determine for the+1short waves.The fact that wave speed depends on m, or the wavelength, is called dispersion and leadsto most interesting consequences described later on.< deleted text >
 Next we report on using spherical harmonics. For these functions, sin/cos in longitude
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and associated Legendre functions in latitude, we have two wavenumbers to consider. Thereforein addition to m there is also the (total) wavenumber n (n-m is the number of zero crossingsbetween the two poles). On the other hand, results are simpler in that they apply to the wholesphere at once and there is thus no need to discuss 50 N, 50 S and Equator separately. Table 3.5o oshows zonal (west to east) phase speeds when using spherical harmonics. 
Table 3.5  Tabulation of phase speed  " for selected spherical harmonics of global daily 500mbheight anomalies in January. The time increment is 24 hours. Period = 1969-1987. ND=NotDefined. Units are m/s, and the reference is Eq 3.6. The speeds shown are valid at the equator -speeds at other latitudes are obtained by multiplication by cos #. \  m–> 1 3 5 7 9 11n=1 -35 ND ND ND  ND ND n=3 -13 -9 ND ND ND ND n=5 -4 -3 0 ND  ND ND n=7 2 3 5 4  ND ND n=9 3 6 9 9  3 ND n=11 6 9 11 13  9 3n=13 7 9 11 16 14 9n=15 9 9 13 16 18 13
Clearly spherical harmonics obtain an even better separation in westward moving long waves andeastward moving short waves. For instance, depending on n, zonal wavenumber m=1 has speedsranging from -35m/s to +7m/s. Shorter zonal waves (m=9), if associated with short scales in themeridional direction as well, can reach phase speeds of 18m/s in January. While meridional phasespeed is not defined for either zonal or spherical harmonics, the dependence of the zonal phasespeed on n (as opposed to only m) makes a major difference for wave propagation on a sphere.Theoretically (Baer 1972) the phase speed of spherical harmonics in a simple background flowdepends on n only, see inset 2, but we find empirically a strong dependence on m as well.
3.3 Rock in the pond experiments.
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We are now ready for an experiment. A round disturbance is placed at 45 N on a polarostereographic map of the Northern Hemisphere, see Fig.3.1 upper left.  (The values of the
0disturbance decrease from the maximum (150 in arbitrary units) as exp(-"r/r  ) , where r is

0 0distance to the center in degrees and r  is the e-folding radius, r  =7.5 degrees. The center value(in arbitrary units) is 150. The 20 contour extends about 15 degrees from the center.) One canthink of this as an isolated anomaly Z’ in 500mb height in January. The rest of the world has near-zero anomalies initially. The continental outlines are for orientation only - the experiment iszonally invariant. Contours are every 20, no zero line shown. Units (and sign) are arbitrarybecause the method is linear. The question is what will happen to this initial source. If this were apassive tracer one might expect the blob to move along with the background wind. Dispersion bygravity waves would take the pressure perturbation in all directions. Here we will witness verydifferent behavior. Decomposing the disturbance into twenty zonal waves, one can use EWP topropagate each wave at each latitude (at 2.5 degree spacing) by its own phase speed (using thecomplete version of Tables 3.1-3.3, all latitudes, all m) while leaving the wave amplitudeunchanged, and recompose the field one day later. After one day the original disturbance hasmoved east, but one may notice a downstream development of opposite sign and an upstreamdevelopment of like sign. At day one we have, in a sense, three rocks in the pond, each of which isrepeating the process. The downstream anomaly gains amplitude by day 2 and kicks off ananomaly further downstream. One can follow the peak of the original rock moving east until day4. A wavetrain (+, -, +) or traveling stormtrack  plus envelope is seen at day 3 and beyond.Remarkably, the dispersion of stable waves leads to downstream development and even formationof strong gradients (frontogenesis). The upstream development of the same sign causes muchpersistence in the area of origin. Much of the variability (75-80% of the variance) in theatmosphere can be ‘explained’ this way (stable waves moving around). Even though in nature onewill never observe this experiment we have, by applying empiricism, found reasonable behaviorand are able to demonstrate a number of physical processes. The dispersion causes the non-trivial
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motion of the original anomaly. For the notion ‘energy ’ think of Z’ . This quantity is conserved in2a space integrated sense, but one can see the energy travel at speeds higher than the phase speedthrough the wavetrain. This phenomenon is also called group velocity, see Holton(1979) p151.Comparison to numerical experiments by Simmons and Hoskins (1979) and Chang andOrlanski(1994) can be made. The shape and orientation of the eddies in the wavetrain is such thatthey would transport momentum (u’v’) into the jet, so remarkably a linear empirical experimentshows features of non-linearity, similar to Branstator’s (1995) eddy feedback model.Fig.3.2 is the same experiment, but now the dispersion is two dimensional by usingspherical harmonics instead of (as done in Fig.3.1) zonal harmonics by latitude. From thebeginning the dispersion is different in character than in Fig.3.1. While zonal dispersion can still beseen, this 2D version of EWP also shows meridional energy propagation, i.e. the anomalies traveloutside the latitude band in which they were contained at t=0,  and after a few days patternsemerge that look like veritable large scale teleconnections. This happens even though the phasespeed is always in the zonal direction. After many days the NH source even kicks off wavetrainsin the SH midlatitudes (not shown). Dependence of phase speed on n thus makes a very largedifference for energy propagation. (For later reference: the energy travels in a directionperpendicular to the long axis of the anomaly ellipse.) Studies of teleconnections by Rossby wavepropagation on the sphere in idealized numerical models were made by Opsteegh and Van denDool(1980) and Hoskins and Karoly(1981). Many of their results could have been obtained withthe even simpler EWP approach.In both Fig.3.1 and 3.2 one may think of the experiment in the following way. Byconstructive and destructive interference, a set of global functions is made to be non-zero in alocal area, and zero elsewhere. As soon as the clock starts ticking, the waves move and the degreeof interference changes gradually. Because of dispersion the initial blob is not just translated (tothe east or west) as a single entity but shows remarkable transformation, zonally as well asmeridonally.   
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We have essentially created a virtual laboratory experiment. The reader could place one ormore sources wherever she/he wants to study propagation for a certain season and variable andthen study what happens.
3.4 Skill of EWP 1-day forecasts.Instead of using idealized initial states we can start from an observed anomaly field andmake a 24 hour forecast which can be verified. We now discuss the skill of such EWP forecasts. The above discussion about wave energy dispersion and the basic processes of teleconnectionswould be enhanced if we can show that EWP has a certain forecast capability. Because ofsuperior performance by Numerical Weather Prediction, in 2005, EWP is not a forecast tool ofpractical interest. Our control to judge skill is persistence (PER), i.e. persist yesterday’s anomaliesfor 24 hours as a ‘lazy man’s forecast’. Both EWP and PER are verified over a very large numberof cases using the anomaly correlation defined in chapter 2. 
Table 3.6: Anomaly Correlation of 24 hr forecasts by EWP and Persistence (PER) for threedomains, Northern and Southern Hemisphere (NH, SH) and Tropics (TR), as a function ofvariable and level. Data is for 0Z, 1979-1995 in December through February. Where the gain ofEWP over PER exceeds 10  points the values are underlined bold. 

Streamfunction Velocity Potential Geop Height TemperatureEWP PER EWP PER EWP PER EWP PERNH 95 94 64 64 94 93 92 9150mb TR 90 88 63 62 81 80 76 76SH 94 93 52 51 91 89 85 79NH 86 80 75 67 86 81 74 63200mb TR 86 84 80 78 86 83 73 68SH 86 75 73 67 85 72 74 53NH 84 78 55 52 83 77 71 60
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500mb TR 82 79 65 64 82 79 72 69SH 84 70 55 54 83 69 74 53NH 81 75 64 55 79 74 73 66850mb TR 77 75 75 73 78 77 74 73SH 80 70 65 58 78 67 71 53- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Prec.water vert motion 500mb surf pressure precipitation NH 50 32 16 6 76 70 15 5TR 76 73 41 40 78 75 41 40SH 55 31 18 6 75 63 18 6EWP PER EWP PER EWP PER EWP PERFor all variables and levels EWP is better than PER. This is true even for every single forecast.Indeed EWP is a very safe and conservative forecast (wave dispersion is always in effect). Thegains over PER are largest in the troposphere, the mid-latitudes, the southern hemisphere and fortemperature. The largest gains are about 20 points. In the tropics, in the stratosphere, and forvelocity potential EWP has very little skill over PER at day 1. At the bottom of Table 3.6 someassorted variables are listed. The surface pressure behaves consistent with heights aloft. In fact,phase speeds are nearly constant from sea-level to 50 mb (not shown) as systems appear to travelwith strong vertical coherence. Vertical motion and rainfall are nearly impossible to forecast, buteven here some propagation can be surmised. Precipitable water in the atmosphere is not easy toforecast either, but EWP does have a large gain over PER.We conclude the EWP describes realistic processes because it results in forecasts with asubstantial gain in skill over persistence. If the reader feels that EWP is like a barotropic model,please note that EWP works equally well for many variables at many levels, not just Z500 in mid-latitudes.Fig.3.3 shows reduction in root-mean-square error (rmse) of EWP relative to PER as afunction of wavenumber for the NH and SH along 50°. It is pretty obvious that the gains are dueto mobile waves m=4-13. Without taking wave motion into account (PER) the error is large,while EWP accomodates the motion (if only in an averaged sense), cutting the rmse by up to
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50%. In the long waves EWP does not beat PER, even though the phase speed is non-zero. Thisis because it takes a high speed for a long wave to travel an appreciable distance relative to itsown wavelength (which is what is needed to beat PER). Such speeds are not observed. The+10m/s for short waves is worth a lot more in terms of forecast skill than the -25m/s for thelongest waves. Fig.3.3 is for EWP using zonal waves. Use of spherical harmonics lowers forecastskill  everywhere! Apparently there is some merit in localizing the phase speed estimates. 
3.5 Discussion of EWP<deleted text>3.5.3 Application of EWPIt would be a stretch to believe that EWP has a wide practical application in forecasting. Its use ismainly for teaching and demonstration purposes. Nevertheless there are a few application withpractical meaning based on EWP, which we list here.a) NWP models have been weak at some specific features, such as the Madden and JulianOscillation (MJO; Madden and Julian 1971), a global phenomenon in the tropics travelingeastward along the equator (Waliser et al 2005).  Real time forecasts of the MJO by severalmethods including EWP can be found on the web. In the case of MJO, EWP was applied to200mb velocity potential fields, see link at(http://ww.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/mjo.html) , and the article underreadme. In spite of the strong westward speed reported for the height field (or streamfunction) inthe tropics, see Table 3.3, the longest waves in velocity potential anomalies travel eastward with aspeed that varies semi-annually between 5.5m/s (February and September) and 11m/s (May andNovember). These eastward speeds may indicate the dominance of Kelvin waves. Fig. 3.4 givesthe near equatorial phase speeds of 200mb velocity potential anomalies for waves 1 - 30 in April.Long waves move eastwards, but short waves move westwards. The longest waves have thelargest amplitude, and the amplitude is highest near the equator. 
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b) Interpolation of weather maps provided only every 6 hours. EWP is much more accurate atinterpolation than linear interpolation, see Van den Dool and Qin(1996). This EWP applicationwill exist as long as model forecast and analysis results are provided infrequently (~ every 6hours). For potent small scale moving weather systems EWP is a good interpolation method evenif weather maps were available every hour. EWP can likewise be applied to provide timeinterpolated boundary conditions for a limited area model, given global forecasts every 6 hours.c) In many geophysical disciplines there is a need to know atmospheric tides at high temporalresolution. Interpolation of very fast atmospheric tides (one revolution per day) from 6 hourlydata to once hourly was addressed in Van den Dool et al(1997) and the results are applied inseveral geodetic and oceanographic research areas. Salvaging data originally sampled at theNyquist frequency (the semi-diurnal tide dominates!) is a peculiar challenge that can be addressedusing EWP.  d) the guess field for data assimilation. In data assimilation an NWP model is used to make theguess field. This is a drawback in case the model keeps introducing certain systematic errors.EWP could be used to advance the previous analysis for 3 or 6 hours, i.e. EWP could make theguess field. 

3.5.5 Weak points of EWPWe hope the reader feels encouraged to interrogate a data set to come up with empirically basedmethods that can be used to explain difficult concepts, and to some degree to make forecasts.Certainly, EWP is not perfect. In listing weak points we hope some readers will be inspired to tryto outdo something as deceptively simple as EWP. 1. EWP derives propagation properties without regard for longitude, i.e. for Fig. 3.1 it makes nodifference where the source is situated relative to longitude or the standing waves (implicitly the
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land-ocean distribution).2. Propagation speeds are independent of time (except the annual cycle). In view of the Rossbyequation one might want to study time variation on the interannual time scale. In years withstronger jets, waves should move faster.3. The meridional scale was neglected in EWP1 (zonal harmonics), and when it was included(EWP2, spherical harmonics) the forecast skill decreased. This appears to be because sphericalharmonics give estimates as a compromise between two hemispheres (in different seasons),tropics and mid-latitude. An approach in a restricted latitude bands, like 20N to the pole, with sinewaves in the north-south direction (semi Fourier) would improve upon EWP1.At a more fundamental level and beyond repair is the drawback that EWP does notdeal with energy lost to or gained from the basic state. As an arching route is followed by a groupof disturbances new energy added to the disturbance may be as large as the energy from the initialsource. In Chapter 7 we will see that an empirical method called constructed analogue makesforecasts a la EWP, but some interaction with the basic state can be seen. 
Inset or Appendix 1 : EWP formal derivationOne can derive EWP formally by asking which constant propagation angle # and damping factor) should be applied to a wave at t=0 so as to yield, on average over many cases, the best forecastof that wave at a future time. Here, best forecast means lowest rms error on average. Theobserved (phase shifted) waves at t=0 and t=1 being Acosx and  c cos x + d sin x, respectively,and the forecast for t=1 based on observations at t=0 being )Acos(x-#), one thus needs tominimize 

U = &()Acos#- c)  + ()Asin#- d)  (3.a1)2 2
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In (3.a1) summation is over all times, A, c, d are a function of time (with non-zero means). # and) are constant in time. Upon differentiation wrt ) and # one obtains:
& )A  - c Acos# - d Asin# = 02and &c Asin# - d Acos# = 0 

The solution (to be evaluated from a data set) is:
# = atan { <dA> / <cA> } (3.a2) 

where < > are time means. Given #, the damping ) can be calculated as
) = [ < cA > cos# + <dA> sin# ] / <A > (3.a3)2

(3.a2) can also be written as
# = atan [{ <d><A>+<d’A’>} / {<c><A>+<c’A’>} ] (3.y’) 

If we neglect the covariance between A and both c and d,  the requirement for minimal U is  # =atan { <d> / <c> ), which is EWP as proposed intuitively. Even if the transients terms like <d’A’>are not small the resulting # may not necessarily differ much from atan(<d>/<c>). An evaluationon the data used in Table 3.1-3.3 shows extremely minor influence from the covariances on theresulting # . The impact would be larger if, for instance, above average A is associated with fasterthan average propagation - apparently this does not happen. Note that damping the wave, )<1, for the purpose of lowering rms error does not change
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the requirements for optimal propagation. The damping, given by (3.a3), goes to zero for largetime increments (say 10 days). Two final comments: 1. One can derive EWP formally with all the result shown abovewithout phase shifting! The expressions are a little longer but otherwise the same. So while phaseshifting is helpful, it is not necessary. 2. The rms minimization for phase shift and amplitudedamping appear unrelated, i.e. one can simplify the of exercise finding # without mention of ). 
Inset 2: The Rossby equationThe simplest expression for the phase speed of Rossby waves is  " = U - '/K , where " is phase2speed, U is the background windspeed, ' is the meridional derivative of the Coriolis parameter,and K is wavenumber (if only the zonal wavenumber is considered K relates to m as follows:K=2$m/L, where L is circumference of the earth.). This was derived by Rossby and collaboratorsin 1939. A more complete expression is " = U - ('-# U/#y +F U)/(K +F ), where K is the three2 2 2 2 2dimensional wavenumber, F is the inverse of the Rossby radius of deformation, and '*= '-# U/#y   is the apparent '-effect. Ignoring the vertical wavenumber, and setting the meridional2 2wavenumber l equal to n$/acos" (and taking n=3, independent of m) the wavespeeds at 50S and50N in Tables 3.1 and 3.2 are actually to within 1.5m/s from theory, i.e. in quantitative agreementwith the Rossby equation. Likewise we found the seasonal cycle in phase speed along 50N/S to bewell explained by the seasonal cycle in U, and '*. 

gx gyThe energy travels with the group speed (c ,  c ) which can be derived from the above bydifferentiation wrt wavenumber. We find 
gx gyc  = U+ ('* +F U)(k -l ) /(K +F )  and  c  = 2 '* (kl) /(K +F ) , see Pedlosky(1979, p114,2 2 2 2 2 2 2 2 2chapter 3). Clearly group speed is higher in the zonal than in the meridional direction, see alsocomments in Chapter 4 about the shape of eddies.As for an expression on the sphere we obtained 
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eq eq2 ( * a+ U  ) + a  F  U2 2
eq  " = U  - -------------------------------------------(n(n+1) + a  F )2 2

where,  * is the rate of rotation of the earth, and a is the radius of the earth. This expression holds
eqonly for a simple background flow U(") = U  cos ", also called super rotation. The phase speedgiven is valid at the equator. Interestingly, phase speed depends theoretically on n only. However,in Table 3.5 we established empirically that phase speed depends nearly as much on m.
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Above: Surface pressure tides in Reanalysis at 0, 6, 12 and 18Z. By making a weightedaverage of EWP forward and backward, tides can be estimated at any time in between, see nextpage. Black dot is the position of the sun.
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